IRF IRFH7440TRPBF Hexfet power mosfet Datasheet

StrongIRFET™
IRFH7440PbF
HEXFET® Power MOSFET
Applications
l Brushed Motor drive applications
l BLDC Motor drive applications
l PWM Inverterized topologies
l Battery powered circuits
l Half-bridge and full-bridge topologies
l Electronic ballast applications
l Synchronous rectifier applications
l Resonant mode power supplies
l OR-ing and redundant power switches
l DC/DC and AC/DC converters
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l RoHS Compliant containing no Lead, no Bromide,
and no Halogen
Package Type
IRFH7440PBF
PQFN 5mm x 6mm
PQFN 5mm x 6mm
ID (Package Limited)
85A
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
6.0
c
Orderable Part Number
IRFH7440TRPBF
IRFH7440TR2PBF
200
ID = 50A
5.0
4.0
T J = 125°C
3.0
2.0
Limited By Package
150
100
50
TJ = 25°C
1.0
0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
40V
1.8m
2.4m
159A
PQFN 5X6 mm
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m )
Base Part Number
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
www.irf.com © 2012 International Rectifier
25
50
75
100
125
150
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
October 11, 2012
IRFH7440PbF
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
VGS
d
Single Pulse Avalanche Energy
Thermal Resistance
Symbol
V/ns
°C
mJ
121
273
See Fig. 14, 15, 22a, 22b
l
d
Max.
–––
1.2
j
Junction-to-Ambient j
–––
–––
–––
31
35
22
RJA
Junction-to-Ambient
Parameter
A
mJ
Typ.
RJC (Top)
RJA (<10s)
W
W/°C
V
Junction-to-Case
k
Junction-to-Case k
RJC (Bottom)
e
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
d
A
104
0.83
± 20
3.0
-55 to + 150
Avalanche Characteristics
EAS (Thermally limited)
EAS (tested)
IAR
EAR
Units
c
c
f
dv/dt
TJ
TSTG
Max.
159
101
85
624
Units
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
V(BR)DSS/TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Current is limited to 85A by source bond technology.
Note that current limitations arising from heating of the
device leads may occur with some lead mounting arrangements.
(Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.097mH
RG = 50, IAS = 50A, VGS =10V.
„ ISD  50A, di/dt  1126A/μs, VDD V(BR)DSS, TJ  150°C.
2
www.irf.com © 2012 International Rectifier
Min.
Typ.
Max. Units
40
–––
–––
–––
2.2
–––
–––
–––
–––
–––
–––
0.031
1.8
2.7
–––
–––
–––
–––
–––
2.6
–––
–––
2.4
–––
3.9
1.0
150
100
-100
–––
V
V/°C
m
m
V
μA
nA
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 50A
VGS = 6.0V, ID = 25A
VDS = VGS, ID = 100μA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
g
g
d

Pulse width  400μs; duty cycle  2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of
FR-4 material.
‰ R is measured at TJ approximately 90°C.
Š This value determined from sample failure population,
starting T J = 25°C, L= 0.097mH, RG = 50, IAS = 50A, VGS =10V.
October 11, 2012
IRFH7440PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
Min.
Typ.
149
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
92
22
29
63
12
45
53
42
4574
700
466
863
1229
Max. Units
Min.
Typ.
Max. Units
–––
–––
85
c
A
–––
–––
745
A
–––
–––
–––
–––
–––
–––
0.9
25
27
16
17
1.2
1.3
–––
–––
–––
–––
–––
V
ns
–––
138
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
Conditions
VDS = 10V, ID = 50A
ID = 50A
VDS =20V
VGS = 10V
ID = 50A, VDS =0V, VGS = 10V
VDD = 20V
ID = 30A
R G = 2.7
VGS = 10V
VGS = 0V
VDS = 25V
ƒ = 1.0 MHz
VGS = 0V, VDS = 0V to 32V
VGS = 0V, VDS = 0V to 32V
g
ns
pF
g
i
h
Diode Characteristics
Symbol
IS
Parameter
VSD
trr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
ISM
d
3
www.irf.com © 2012 International Rectifier
nC
A
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 50A, VGS = 0V
TJ = 25°C
VR = 34V,
TJ = 125°C
IF = 50A
di/dt = 100A/μs
TJ = 25°C
TJ = 125°C
TJ = 25°C
g
D
S
g
October 11, 2012
IRFH7440PbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
4.5V
100
BOTTOM
4.5V
10
60μs PULSE WIDTH
60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
100
1.8
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
T J = 150°C
100
T J = 25°C
10
VDS = 10V
60μs PULSE WIDTH
1.0
ID = 50A
VGS = 10V
1.6
1.4
1.2
1.0
0.8
0.6
3
4
5
6
7
8
9
14.0
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
10000
Ciss
Coss
Crss
1000
20 40 60 80 100 120 140 160
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
100
ID= 50A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com © 2012 International Rectifier
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
October 11, 2012
IRFH7440PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
100
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100μsec
100
1msec
10
Limited by
package
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
DC
0.1
1.0
0.0
0.5
1.0
1.5
2.0
0.1
2.5
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
0.7
50
Id = 1.0mA
0.6
48
0.5
46
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
10msec
44
0.4
0.3
0.2
42
0.1
0.0
40
-60 -40 -20 0
-5
20 40 60 80 100 120 140 160
0
T J , Temperature ( °C )
10
15
20
25
30
35
40
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( m)
5
Fig 12. Typical COSS Stored Energy
40
VGS = 5.0V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS =10V
30
20
10
0
0
100
200
300
400
500
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com © 2012 International Rectifier
October 11, 2012
IRFH7440PbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
140
120
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 50A
100
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com © 2012 International Rectifier
October 11, 2012
IRFH7440PbF
10
4.0
IF = 30A
V R = 34V
8
TJ = 25°C
TJ = 125°C
3.5
3.0
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.5
ID = 100μA
ID = 1.0mA
2.5
6
4
ID = 1.0A
2
2.0
1.5
0
-75 -50 -25
0
25
50
75 100 125 150
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
200
10
IF = 30A
V R = 34V
IF = 50A
V R = 34V
8
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
150
6
QRR (nC)
IRRM (A)
400
diF /dt (A/μs)
4
100
50
2
0
0
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/μs)
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
200
IF = 50A
V R = 34V
TJ = 25°C
TJ = 125°C
QRR (nC)
150
100
50
0
0
200
400
600
800
1000
diF /dt (A/μs)
7
Fig. 21 - Typical Stored Charge vs. dif/dt
www.irf.com © 2012 International Rectifier
October 11, 2012
IRFH7440PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
 Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple  5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width µs
Duty Factor 
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50K
12V
tf
.2F
.3F
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
www.irf.com © 2012 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
October 11, 2012
IRFH7440PbF
PQFN 5x6 Outline "E" Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to application note
AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "E" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
9
www.irf.com © 2012 International Rectifier
October 11, 2012
IRFH7440PbF
PQFN 5x6 Outline "E" Tape and Reel
NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts.
REEL DIMENSIONS
STANDARD OPTION (QTY 4000)
TR1 OPTION (QTY 400)
METRIC
IMPERIAL
IMPERIAL
METRIC
MIN
MIN
MAX
CODE
MIN
MIN
MAX
MAX
MAX
A
6.988
12.972
7.028
329.5 330.5
178.5
13.011 177.5
B
0.823
0.823
0.846
20.9
20.9
0.846
21.5
21.5
C
0.520
0.504
0.543
12.8
13.5
13.8
13.2
0.532
D
0.075
0.067
0.091
0.091
1.7
2.3
2.3
1.9
E
2.350
3.819
2.598
97
99
66
65
3.898
F
Ref
17.4
12
Ref
G
0.512
0.512
0.571
13
0.571
13
14.5
14.5
10
www.irf.com © 2012 International Rectifier
October 11, 2012
IRFH7440PbF
Qualification information†
Indus trial
(per JE DE C JE S D47F guidelines )††
Qualification level
Moisture Sensitivity Level
MS L1
(per JE DE C J-S TD-020D†† )
PQFN 5mm x 6mm
RoHS compliant
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
11
www.irf.com © 2012 International Rectifier
October 11, 2012
Similar pages