STMicroelectronics M95040-DRMF4TG Automotive 4-kbit serial spi bus eeprom Datasheet

M95040-A125
M95040-A145
Automotive 4-Kbit serial SPI bus EEPROMs
with high-speed clock
Datasheet - production data
Features
• Compatible with the Serial Peripheral Interface
(SPI) bus
SO8 (MN)
150 mil width
TSSOP8 (DW)
169 mil width
WFDFPN8 (MF)
2 x 3 mm
• Memory array
– 4 Kbit (512 byte) of EEPROM
– Page size: 16 byte
– Write protection by block: 1/4, 1/2 or whole
memory
– Additional Write lockable Page
(Identification page)
• Extended temperature and voltage ranges
– Up to 125 °C (VCC from 1.7 V to 5.5 V)
– Up to 145 °C (VCC from 2.5 V to 5.5 V)
• High speed clock frequency
– 20 MHz for VCC ≥ 4.5 V
– 10 MHz for VCC ≥ 2.5 V
– 5 MHz for VCC ≥ 1.7 V
• Schmitt trigger inputs for noise filtering
• Short Write cycle time
– Byte Write within 4 ms
– Page Write within 4 ms
• Write cycle endurance
– 4 million Write cycles at 25 °C
– 1.2 million Write cycles at 85 °C
– 600 k Write cycles at 125 °C
– 400 k Write cycles at 145 °C
• Data retention
– 50 years at 125 °C
– 100 years at 25 °C
• ESD Protection (Human Body Model)
– 4000 V
• Packages
– RoHS-compliant and halogen-free
(ECOPACK2®)
February 2016
This is information on a product in full production.
DocID024225 Rev 6
1/41
www.st.com
Contents
M95040-A125 M95040-A145
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
2.1
Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Serial Data input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8
VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1
Active power and Standby power modes . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Hold mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.4
Protocol control and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.5
4
2/41
3.4.1
Protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.2
Status Register and data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Identification page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7
Read Identification Page (RDID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8
Write Identification Page (WRID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9
Read Lock Status (RDLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.10
Lock Identification Page (LID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID024225 Rev 6
M95040-A125 M95040-A145
5
Contents
Application design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.1
Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.3
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2
Implementing devices on SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3
Error Correction Code (ECC x 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.3
WFDFPN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DocID024225 Rev 6
3/41
3
List of tables
M95040-A125 M95040-A145
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
4/41
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Device identification bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Significant bits within the address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Cycling performance by byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Operating conditions (voltage range W, temperature range 4). . . . . . . . . . . . . . . . . . . . . . 28
Operating conditions (voltage range R, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . 28
Operating conditions (voltage range R, temperature range 3)
for high-speed communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DC characteristics (voltage range W, temperature range 4). . . . . . . . . . . . . . . . . . . . . . . . 29
DC characteristics (voltage range R, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . 30
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch
dual flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DocID024225 Rev 6
M95040-A125 M95040-A145
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8-pin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Hold mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Write Disable (WRDI) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Write Status Register (WRSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Write Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Read Lock Status sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Lock ID sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Bus master and memory devices on the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 34
SO8N – 8-lead plastic small outline, 150 mils body width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch
dual flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DocID024225 Rev 6
5/41
5
Description
1
M95040-A125 M95040-A145
Description
The M95040-A125 and M95040-A145 are 4-Kbit serial EEPROM Automotive grade devices
operating up to 145°C. They are compliant with the very high level of reliability defined by
the Automotive standard AEC-Q100 grade 0.
The devices are accessed by a simple serial SPI compatible interface running up to
20 MHz.
The memory array is based on advanced true EEPROM technology (Electrically Erasable
PROgrammable Memory). The M95040-A125 and M95040-A145 are byte-alterable
memories (512 × 8 bits) organized as 32 pages of 16 byte in which the data integrity is
significantly improved with an embedded Error Correction Code logic.
The M95040-A125 and M95040-A145 offer an additional Identification Page (16 byte) in
which the ST device identification can be read. This page can also be used to store
sensitive application parameters which can be later permanently locked in read-only mode.
Figure 1. Logic diagram
,K>
t
^
,ŝŐŚǀŽůƚĂŐĞ
ŐĞŶĞƌĂƚŽƌ
ŽŶƚƌŽůůŽŐŝĐ
Y
/ͬKƐŚŝĨƚƌĞŐŝƐƚĞƌ
ĂƚĂ
ƌĞŐŝƐƚĞƌ
ĚĚƌĞƐƐƌĞŐŝƐƚĞƌ
ĂŶĚĐŽƵŶƚĞƌ
^ƚĂƚƵƐ
ƌĞŐŝƐƚĞƌ
zĚĞĐŽĚĞƌ
ϭͬϰ
ϭͬϮ
^ŝnjĞŽĨƚŚĞ
ZĞĂĚŽŶůLJ
WZKD
ĂƌĞĂ
ϭƉĂŐĞ
/ĚĞŶƚŝĨŝĐĂƚŝŽŶƉĂŐĞ
yĚĞĐŽĚĞƌ
069
6/41
DocID024225 Rev 6
M95040-A125 M95040-A145
Description
Figure 2. 8-pin package connections
-XXX
3 1 7 633 6##
(/,$
#
$
!)$
1. See Package mechanical data section for package dimensions and how to identify pin-1.
Table 1. Signal names
Signal name
Description
C
Serial Clock
D
Serial data input
Q
Serial data output
S
Chip Select
W
Write Protect
HOLD
Hold
VCC
Supply voltage
VSS
Ground
DocID024225 Rev 6
7/41
40
Signal description
2
M95040-A125 M95040-A145
Signal description
All input signals must be held high or low (according to voltages of VIH or VIL, as specified in
Table 12 and Table 13). These signals are described below.
2.1
Serial Data output (Q)
This output signal is used to transfer data serially out of the device during a Read operation.
Data is shifted out on the falling edge of Serial Clock (C), most significant bit (MSB) first. In
all other cases, the Serial Data output is in high impedance.
2.2
Serial Data input (D)
This input signal is used to transfer data serially into the device. D input receives
instructions, addresses, and the data to be written. Values are latched on the rising edge of
Serial Clock (C), most significant bit (MSB) first.
2.3
Serial Clock (C)
This input signal allows to synchronize the timing of the serial interface. Instructions,
addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial
Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C).
2.4
Chip Select (S)
Driving Chip Select (S) low selects the device in order to start communication. Driving Chip
Select (S) high deselects the device and Serial Data output (Q) enters the high impedance
state.
2.5
Hold (HOLD)
The Hold (HOLD) signal is used to pause any serial communications with the device without
deselecting the device. During the Hold condition, the Serial Data Output (Q) is high
impedance, and the Serial Data Input (D) and Serial Clock (C) are Don’t Care. To start the
Hold condition, the device must be selected, with Chip Select (S) driven low.
2.6
Write Protect (W)
This pin is used to write-protect the Status Register.
2.7
VSS ground
VSS is the reference for all signals, including the VCC supply voltage.
8/41
DocID024225 Rev 6
M95040-A125 M95040-A145
2.8
Signal description
VCC supply voltage
VCC is the supply voltage pin. Refer to Section 3.1: Active power and Standby power modes
and to Section 5.1: Supply voltage (VCC).
DocID024225 Rev 6
9/41
40
Operating features
M95040-A125 M95040-A145
3
Operating features
3.1
Active power and Standby power modes
When Chip Select (S) is low, the device is selected and in the Active power mode.
When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in
progress, the device then goes in to the Standby power mode, and the device consumption
drops to ICC1, as specified in Table 12 and Table 13.
3.2
SPI modes
The device can be driven by a microcontroller with its SPI peripheral running in either of the
two following modes:
•
CPOL=0, CPHA=0
•
CPOL=1, CPHA=1
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and
output data is available from the falling edge of Serial Clock (C).
The difference between the two modes, as shown in Figure 3, is the clock polarity when the
bus master is in Stand-by mode and not transferring data:
•
C remains at 0 for (CPOL=0, CPHA=0)
•
C remains at 1 for (CPOL=1, CPHA=1)
Figure 3. SPI modes supported
#0/, #0(!
#
#
$
-3"
1
-3"
!)"
10/41
DocID024225 Rev 6
M95040-A125 M95040-A145
3.3
Operating features
Hold mode
The Hold (HOLD) signal is used to pause any serial communications with the device without
resetting the clocking sequence.
The Hold mode starts when the Hold (HOLD) signal is driven low and the Serial Clock (C) is
low (as shown in Figure 4). During the Hold mode, the Serial Data output (Q) is high
impedance, and the signals present on Serial Data input (D) and Serial Clock (C) are not
decoded. The Hold mode ends when the Hold (HOLD) signal is driven high and the Serial
Clock (C) is or becomes low.
Figure 4. Hold mode activation
#
(/,$
(OLD
CONDITION
(OLD
#ONDITION
CONDITION
-36
Deselecting the device while it is in Hold mode resets the paused communication.
3.4
Protocol control and data protection
3.4.1
Protocol control
The Chip Select (S) input offers a built-in safety feature, as the S input is edge-sensitive as
well as level-sensitive: after power-up, the device is not selected until a falling edge has first
been detected on Chip Select (S). This ensures that Chip Select (S) must have been high
prior to going low, in order to start the first operation.
For Write commands (WRITE, WRSR, WRID, LID) to be accepted and executed:
•
the Write Enable Latch (WEL) bit must be set by a Write Enable (WREN) instruction
•
a falling edge and a low state on Chip Select (S) during the whole command must be
decoded
•
instruction, address and input data must be sent as multiple of eight bits
•
the command must include at least one data byte
•
Chip Select (S) must be driven high exactly after a data byte boundary
Write command can be discarded at any time by a rising edge on Chip Select (S) outside of
a byte boundary.
To execute Read commands (READ, RDSR, RDID, RDLS), the device must decode:
•
a falling edge and a low level on Chip Select (S) during the whole command
•
instruction and address as multiples of eight bits (byte)
From this step, data bits are shifted out until the rising edge on Chip Select (S).
DocID024225 Rev 6
11/41
40
Operating features
3.4.2
M95040-A125 M95040-A145
Status Register and data protection
The Status Register format is shown in Table 2 and the status and control bits of the Status
Register are as follows:
Table 2. Status Register format
b7
b6
b5
b4
b3
b2
b1
b0
1
1
1
1
BP1
BP0
WEL
WIP
Block Protect bits
Write Enable Latch bit
Write In Progress bit
Note:
Bits b7, b6, b5 and b4 are always read as 1.
WIP bit
The WIP bit (Write In Progress) is a read-only flag that indicates the Ready/Busy state of the
device. When a Write command (WRITE, WRSR, WRID, LID) has been decoded and a
Write cycle (tW) is in progress, the device is busy and the WIP bit is set to 1. When WIP=0,
the device is ready to decode a new command.
During a Write cycle, reading continuously the WIP bit allows to detect when the device
becomes ready (WIP=0) to decode a new command.
WEL bit
The WEL bit (Write Enable Latch) bit is a flag that indicates the status of the internal Write
Enable Latch. When WEL is set to 1, the Write instructions (WRITE, WRSR, WRID, LID) are
executed; when WEL is set to 0, any decoded Write instruction is not executed.
The WEL bit is set to 1 with the WREN instruction. The WEL bit is reset to 0 after the
following events:
•
Write Disable (WRDI) instruction completion
•
Write instructions (WRITE, WRSR, WRID, LID) completion including the write cycle
time tW
•
Power-up
BP1, BP0 bits
The Block Protect bits (BP1, BP0) are non-volatile. BP1,BP0 bits define the size of the
memory block to be protected against write instructions, as defined in Table 2. These bits
are written with the Write Status Register (WRSR) instruction.
12/41
DocID024225 Rev 6
M95040-A125 M95040-A145
Operating features
Table 3. Write-protected block size
Status Register bits
3.5
Protected block
Protected array addresses
0
None
None
0
1
Upper quarter
180h-1FFh
1
0
Upper half
100h - 1FFh
1
1
Whole memory
000h - 1FFh plus Identification page
BP1
BP0
0
Identification page
The M95040-A125 and M95040-A145 offer an Identification page (16 byte) in addition to the
4 Kbit memory. The Identification page contains two fields:
Note:
•
Device identification: the three first byte are programmed by STMicroelectronics with
the Device identification code, as shown in Table 4.
•
Application parameters: the bytes after the Device identification code are available for
application specific data.
If the end application does not need to read the Device identification code, this field can be
overwritten and used to store application-specific data. Once the application-specific data
are written in the Identification page, the whole Identification page should be permanently
locked in Read-only mode.
The Read, Write, Lock Identification Page instructions are detailed in Section 4: Instructions.
Table 4. Device identification bytes
Address in
Identification page
Content
Value
00h
ST Manufacturer code
20h
01h
SPI Family code
00h
02h
Memory Density code
09h (4 Kbit)
DocID024225 Rev 6
13/41
40
Instructions
4
M95040-A125 M95040-A145
Instructions
Each command is composed of bytes (MSBit transmitted first), initiated with the instruction
byte, as summarized in Table 5.
If an invalid instruction is sent (one not contained in Table 5), the device automatically enters
a Wait state until deselected.
Table 5. Instruction set
Instruction
Instruction
format
Description
WREN
Write Enable
0000 X110(1)
WRDI
Write Disable
0000 X100(1)
RDSR
Read Status Register
0000 X101(1)
WRSR
Write Status Register
0000 X001(1)
READ
Read from Memory Array
0000 A8011(2)
WRITE
Write to Memory Array
0000 A8010(2)
RDID
Read Identification Page
1000 0011
WRID
Write Identification Page
1000 0010
RDLS
Reads the Identification Page lock status.
1000 0011
LID
Locks the Identification page in read-only mode.
1000 0010
1. X = Don’t Care.
2. A8 = 1 for the upper half of the memory array, and 0 for the lower half.
For read and write commands to memory array and Identification Page, the address is
defined by two bytes as explained in Table 6.
Table 6. Significant bits within the address byte(1)(2)
Bit b3 of the instruction byte
LSB Address byte
Instructions
b7
b6
b5
b4
b3
b2
b1
b0
READ or
WRITE
x
x
x
x
x
x
x
A8
A7
A6
A5
A4
A3
A2
A1
A0
RDID or
WRID
0
0
0
0
0
0
0
0
0
0
0
A4
A3
A2
A1
A0
RDLS or
LID
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1. A: Significant address bit.
2. x: bit is Don’t Care.
14/41
DocID024225 Rev 6
M95040-A125 M95040-A145
4.1
Instructions
Write Enable (WREN)
The WREN instruction must be decoded by the device before a write instruction (WRITE,
WRSR, WRID or LID).
As shown in Figure 5, to send this instruction to the device, Chip Select (S) is driven low, the
bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D) after what the
Chip Select (S) input is driven high and the WEL bit is set (Status Register bit).
Figure 5. Write Enable (WREN) sequence
^
Ϭ ϭ Ϯ ϯ ϰ ϱ ϲ ϳ
/ŶƐƚƌƵĐƚŝŽŶ
,ŝŐŚ/ŵƉĞĚĂŶĐĞ
Y
DLYJ
4.2
Write Disable (WRDI)
One way of resetting the WEL bit (in the Status Register) is to send a Write Disable
instruction to the device.
As shown in Figure 6, to send this instruction to the device, Chip Select (S) is driven low,
and the bits of the instruction byte are shifted in (MSB first), on Serial Data Input (D), after
what the Chip Select (S) input is driven high and the WEL bit is reset (Status Register bit).
If a Write cycle is currently in progress, the WRDI instruction is decoded and executed and
the WEL bit is reset to 0 with no effect on the ongoing Write cycle.
In fact, the Write Enable Latch (WEL) bit becomes reset by any of the following events:
•
Power-up
•
WRDI instruction execution
•
WRSR instruction completion
•
WRITE instruction completion
•
Write Protect (W) line being held low.
DocID024225 Rev 6
15/41
40
Instructions
M95040-A125 M95040-A145
Figure 6. Write Disable (WRDI) sequence
3
#
)NSTRUCTION
$
(IGH )MPEDANCE
1
!)D
4.3
Read Status Register (RDSR)
The Read Status Register (RDSR) instruction is used to read the content of the Status
Register.
As shown in Figure 7, to send this instruction to the device, Chip Select (S) is first driven
low. The bits of the instruction byte are shifted in (MSB first) on Serial Data Input (D), the
Status Register content is then shifted out (MSB first) on Serial Data Output (Q).
If Chip Select (S) continues to be driven low, the Status Register content is continuously
shifted out.
The Status Register can always be read, even if a Write cycle (tW) is in progress. The Status
Register functionality is detailed in Section 3.4.2: Status Register and data protection.
Figure 7. Read Status Register (RDSR) sequence
3
#
)NSTRUCTION
$
3TATUS 2EGISTER /UT
3TATUS 2EGISTER /UT
(IGH )MPEDANCE
1
-3"
-3"
!)%
16/41
DocID024225 Rev 6
M95040-A125 M95040-A145
4.4
Instructions
Write Status Register (WRSR)
The Write Status Register (WRSR) instruction allows new values to be written to the Status
Register. Before it can be accepted, a Write Enable (WREN) instruction must previously
have been executed.
The Write Status Register (WRSR) instruction is entered (MSB first) by driving Chip Select
(S) low, sending the instruction code followed by the data byte on Serial Data input (D), and
driving the Chip Select (S) signal high.
This instruction allows the user to change the values of the BP1 and BP0 bits which define
the size of the area that is to be treated as read only, as defined in Table 3: Write-protected
block size.
The contents of the BP1, BP0 bits are updated after the completion of the WRSR
instruction, including the Write cycle (tW).
The Write Status Register (WRSR) instruction has no effect on the b6, b5, b4, b1 and b0 bits
in the Status Register (see Table 2: Status Register format). Bits b7, b6, b5, b4 are always
read as 1.
The Status Register functionality is detailed in Section 3.4.2: Status Register and data
protection.
The instruction is not accepted, and is not executed, under the following conditions:
•
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable
instruction just before)
•
if a write cycle is already in progress
•
if the device has not been deselected, by Chip Select (S) being driven high, after the
eighth bit, b0, of the data byte has been latched in
•
if Write Protect (W) is low during the WRSR command (instruction, address and data)
Figure 8. Write Status Register (WRSR) sequence
3
#
)NSTRUCTION
3TATUS
2EGISTER )N
$
(IGH )MPEDANCE
-3"
1
!)D
DocID024225 Rev 6
17/41
40
Instructions
4.5
M95040-A125 M95040-A145
Read from Memory Array (READ)
The READ instruction is used to read the content of the memory.
As shown in Figure 9, to send this instruction to the device, Chip Select (S) is first driven
low.
The bits of the instruction byte and address byte are then shifted in, on Serial Data Input (D).
The most significant address bit, A8, is incorporated as bit b3 of the instruction byte, as
shown in Table 5: Instruction set. The address is loaded into an internal address register,
and the byte of data at that address is shifted out, on Serial Data Output (Q).
If Chip Select (S) continues to be driven low, the internal address register is automatically
incremented, and the next byte of data is shifted out. The whole memory can therefore be
read with a single READ instruction.
When the highest address is reached, the address counter rolls over to zero, allowing the
Read cycle to be continued indefinitely.
The Read cycle is terminated by driving Chip Select (S) high at any time when the data bits
are shifted out on Serial Data Output (Q).
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 9. Read from Memory Array (READ) sequence
3
#
)NSTRUCTION
$
!
"YTE !DDRESS
! ! ! ! ! ! ! !
$ATA /UT
(IGH )MPEDANCE
1
!)%
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.
18/41
DocID024225 Rev 6
M95040-A125 M95040-A145
4.6
Instructions
Write to Memory Array (WRITE)
The WRITE instruction is used to write new data in the memory.
As shown in Figure 10, to send this instruction to the device, Chip Select (S) is first driven
low. The bits of the instruction byte, address byte, and at least one data byte are then shifted
in (MSB first), on Serial Data Input (D). The instruction is terminated by driving Chip Select
(S) high at a data byte boundary. Figure 10 shows a single byte write.
Figure 10. Byte Write (WRITE) sequence
^
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ ϭϬ ϭϭ ϭϮ ϭϯ ϭϰ ϭϱ ϭϲ ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ
/ŶƐƚƌƵĐƚŝŽŶ
ϴ
LJƚĞĚĚƌĞƐƐ
ϳ ϲ ϱ ϰ ϯ Ϯ ϭ Ϭ ϳ
ĂƚĂLJƚĞ
ϲ
ϱ
ϰ
ϯ
Ϯ
ϭ
Ϭ
,ŝŐŚ/ŵƉĞĚĂŶĐĞ
Y
$,'
A Page write is used to write several bytes inside a page, with a single internal Write cycle.
For a Page write, Chip Select (S) has to remain low, as shown in Figure 11, so that the next
data bytes are shifted in. Each time a new data byte is shifted in, the least significant bits of
the internal address counter are incremented. If the address counter exceeds the page
boundary (the page size is 32 byte), the internal address pointer rolls over to the beginning
of the same page where next data bytes will be written. If more than 16 byte are received,
only the last 16 byte are written.
For both Byte write and Page write, the self-timed Write cycle starts from the rising edge of
Chip Select (S), and continues for a period tW (as specified in Table 14).
The instruction is discarded, and is not executed, under the following conditions:
Note:
•
if a Write cycle is already in progress
•
if Write Protect (W) is low or if the addressed page is in the area protected by the Block
Protect (BP1 and BP0) bits
•
if one of the conditions defined in Section 3.4.1 is not satisfied
The self-timed Write cycle tW is internally executed as a sequence of two consecutive
events: [Erase addressed byte(s)], followed by [Program addressed byte(s)]. An erased bit
is read as “0” and a programmed bit is read as “1”.
DocID024225 Rev 6
19/41
40
Instructions
M95040-A125 M95040-A145
Figure 11. Page Write (WRITE) sequence
3
#
)NSTRUCTION
"YTE !DDRESS
!
$
$ATA "YTE ! ! ! ! ! ! ! ! .
.
.
.
.
.
.
.
3
#
$ATA "YTE $
$ATA "YTE .
$ATA "YTE !)$
20/41
DocID024225 Rev 6
M95040-A125 M95040-A145
4.7
Instructions
Read Identification Page (RDID)
The Read Identification Page instruction is used to read the Identification Page (additional
page of 16 byte which can be written and later permanently locked in Read-only mode).
The Chip Select (S) signal is first driven low, the bits of the instruction byte and address
bytes are then shifted in (MSB first) on Serial Data input (D). Address bit A8 must be 0 and
the other upper address bits are Don't Care (it might be easier to define these bits as 0, as
shown in Table 6). The data byte pointed to by the lower address bits [A4:A0] is shifted out
(MSB first) on Serial Data output (Q).
The first byte addressed can be any byte within the identification page.
If Chip Select (S) continues to be driven low, the internal address register is automatically
incremented and the byte of data at the new address is shifted out.
Note that there is no roll over feature in the Identification Page. The address of bytes to read
must not exceed the page boundary.
The read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip
Select (S) signal can occur at any time when the data bits are shifted out.
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 12. Read Identification Page sequence
3
#
)NSTRUCTION
"YTE !DDRESS
! ! ! ! ! ! ! !
$
$ATA /UT
(IGH )MPEDANCE
1
-36
The first three bytes of the Identification page offer information about the device itself.
Please refer to Section 3.5: Identification page for more information.
DocID024225 Rev 6
21/41
40
Instructions
4.8
M95040-A125 M95040-A145
Write Identification Page (WRID)
The Write Identification Page instruction is used to write the Identification Page (additional
page of 16 byte which can also be permanently locked in Read-only mode).
The Chip Select signal (S) is first driven low, and then the bits of the instruction byte,
address bytes, and at least one data byte are shifted in (MSB first) on Serial Data input (D).
Address bit A8 must be 0 and the other upper address bits are Don't Care (it might be easier
to define these bits as 0, as shown in Table 6). The lower address bits [A4:A0] define the
byte address inside the identification page.
The self-timed Write cycle starts from the rising edge of Chip Select (S), and continues for a
period tW (as specified in Table 14).
Figure 13. Write Identification Page sequence
^
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ ϭϬ ϭϭ ϭϮ ϭϯ ϭϰ ϭϱ ϭϲ ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ
/ŶƐƚƌƵĐƚŝŽŶ
LJƚĞĚĚƌĞƐƐ
ϳ ϲ ϱ ϰ ϯ Ϯ ϭ Ϭ ϳ
ĂƚĂLJƚĞ
ϲ
ϱ
ϰ
ϯ
Ϯ
ϭ
Ϭ
,ŝŐŚ/ŵƉĞĚĂŶĐĞ
Y
069
Note:
The first three bytes of the Identification page offer the Device Identification code (Please
refer to Section 3.5: Identification page for more information). Using the WRID command on
these first three bytes overwrites the Device Identification code.
The instruction is discarded, and is not executed, under the following conditions:
4.9
•
If a Write cycle is already in progress
•
If the Block Protect bits (BP1,BP0) = (1,1)
•
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.
Read Lock Status (RDLS)
The Read Lock Status instruction is used to read the lock status.
To send this instruction to the device, Chip Select (S) first has to be driven low. The bits of
the instruction byte and address bytes are then shifted in (MSB first) on Serial Data input
(D). Address bit A7 must be 1; all other address bits are Don't Care (it might be easier to
define these bits as 0, as shown in Table 6). The Lock bit is the LSB (Least Significant Bit) of
the byte read on Serial Data output (Q). It is at ‘1’ when the lock is active and at ‘0’ when the
lock is not active. If Chip Select (S) continues to be driven low, the same data byte is shifted
out.
22/41
DocID024225 Rev 6
M95040-A125 M95040-A145
Instructions
The read cycle is terminated by driving Chip Select (S) high. The instruction sequence is
shown in Figure 14.
The Read Lock Status instruction is not accepted and not executed if a Write cycle is
currently in progress.
Figure 14. Read Lock Status sequence
3
#
)NSTRUCTION
"YTE !DDRESS
! ! ! ! ! ! ! !
$
$ATA /UT
(IGH )MPEDANCE
1
-36
4.10
Lock Identification Page (LID)
The Lock Identification Page (LID) command is used to permanently lock the Identification
Page in Read-only mode.
The LID instruction is issued by driving Chip Select (S) low, sending (MSB first) the
instruction code, the address and a data byte on Serial Data input (D), and driving Chip
Select (S) high. In the address sent, A7 must be equal to 1. All other address bits are Don't
Care (it might be easier to define these bits as 0, as shown in Table 6). The data byte sent
must be equal to the binary value xxxx xx1x, where x = Don't Care. The LID instruction is
terminated by driving Chip Select (S) high at a data byte boundary, otherwise, the instruction
is not executed.
Figure 15. Lock ID sequence
^
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϯ ϭϰ ϭϱ ϭϲ ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϱ
/ŶƐƚƌƵĐƚŝŽŶ
ϴͲďŝƚĂĚĚƌĞƐƐ
ϳ
ϲ
ϱ
ϯ
ĂƚĂďLJƚĞ
Ϯ
ϭ
Ϭ
ϳ
ϲ
ϱ
ϰ
ϯ
Ϯ
ϭ
Ϭ
,ŝŐŚŝŵƉĞĚĂŶĐĞ
Y
D^ϯϭϲϯϮsϭ
DocID024225 Rev 6
23/41
40
Instructions
M95040-A125 M95040-A145
Driving Chip Select (S) high at a byte boundary of the input data triggers the self-timed Write
cycle which duration is tW (specified in Table 14). The instruction sequence is shown in
Figure 15.
The instruction is discarded, and is not executed, under the following conditions:
24/41
•
If a Write cycle is already in progress
•
If the Block Protect bits (BP1,BP0) = (1,1)
•
If one of the conditions defined in Section 3.4.1: Protocol control is not satisfied.
DocID024225 Rev 6
M95040-A125 M95040-A145
Application design recommendations
5
Application design recommendations
5.1
Supply voltage (VCC)
5.1.1
Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied (see Table 9 and Table 10).
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a Write instruction, until the completion of the internal Write cycle (tW). In order to
secure a stable DC supply voltage, it is recommended to decouple the VCC line with a
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the VCC/VSS package
pins.
5.1.2
Power-up conditions
When the power supply is turned on, VCC continuously rises from VSS to VCC. During this
time, the Chip Select (S) line is not allowed to float but should follow the VCC voltage. It is
therefore recommended to connect the S line to VCC via a suitable pull-up resistor (see
Figure 16).
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage
defined in Table 12 and Table 13.
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)
circuit is included.
At power-up, the device does not respond to any instruction until VCC reaches the internal
threshold voltage (this threshold is defined in the DC characteristics tables 12 and 13 as
VRES).
When VCC passes over the POR threshold, the device is reset and in the following state:
•
in the Standby power mode
•
deselected
•
Status register values:
•
–
Write Enable Latch (WEL) bit is reset to 0.
–
Write In Progress (WIP) bit is reset to 0.
–
BP1 and BP0 bits remain unchanged (non-volatile bits).
not in the Hold condition
As soon as the VCC voltage has reached a stable value within [VCC(min), VCC(max)] range,
the device is ready for operation.
DocID024225 Rev 6
25/41
40
Application design recommendations
5.1.3
M95040-A125 M95040-A145
Power-down
During power-down (continuous decrease in the VCC supply voltage below the minimum
VCC operating voltage defined in Table 12 and Table 13), the device must be:
5.2
•
deselected (Chip Select (S) should be allowed to follow the voltage applied on VCC),
•
in Standby power mode (there should not be any internal Write cycle in progress).
Implementing devices on SPI bus
Figure 16 shows an example of three devices, connected to the SPI bus master. Only one
device is selected at a time, so that only the selected device drives the Serial Data output
(Q) line. All the other devices outputs are then in high impedance.
Figure 16. Bus master and memory devices on the SPI bus
6##
3$/
30) INTERFACE WITH
#0/, #0(! OR 3$)
3#+
# 1 $
6##
# 1 $
6##
# 1 $
6##
30) BUS MASTER
2
#3 #3 #3
30) MEMORY
DEVICE
3
2
7 (/,$
30) MEMORY
DEVICE
3
7 (/,$
2
30) MEMORY
DEVICE
3
7 (/,$
633
-36
1. The Write Protect (W) and Hold (HOLD) signals must be driven high or low as appropriate.
A pull-up resistor connected on each /S input (represented in Figure 16) ensures that each
device is not selected if the bus master leaves the /S line in the high impedance state.
5.3
Error Correction Code (ECC x 1)
The Error Correction Code (ECC x 1) is an internal logic function which is transparent for the
SPI communication protocol.
The ECC x 1 logic is implemented on each byte of the memory array. If a single bit out of the
byte happens to be erroneous during a Read operation, the ECC x 1 detects this bit and
replaces it with the correct value. The read reliability is therefore much improved.
26/41
DocID024225 Rev 6
M95040-A125 M95040-A145
6
Delivery state
Delivery state
The device is delivered with:
7
•
the memory array set to all 1s (each byte = FFh),
•
Status register: bit BP1 =0 and BP0 =0,
•
Identification page: the first three bytes define the Device identification code (value
defined in Table 4). The content of the following bytes is Don’t Care.
Absolute maximum ratings
Stressing the device outside the ratings listed in Table 7 may cause permanent damage to
the device. These are stress ratings only, and operation of the device at these, or any other
conditions outside those indicated in the operating sections of this specification, is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 7. Absolute maximum ratings
Symbol
Parameter
Min.
Max.
Unit
TSTG
Storage temperature
–65
150
°C
TAMR
Ambient operating temperature
–40
150
°C
TLEAD
Lead temperature during soldering
See
note (1)
°C
VO
Voltage on Q pin
–0.50
VCC+0.6
V
VI
Input voltage
–0.50
6.5
V
IOL
DC output current (Q = 0)
-
5
mA
IOH
DC output current (Q = 1)
-
5
mA
VCC
Supply voltage
–0.50
6.5
V
VESD
Electrostatic pulse (Human Body Model)(2)
-
4000
V
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS
directive 2011/65/EU of July 2011).
2. Positive and negative pulses applied on pin pairs, in accordance with AEC-Q100-002 (compliant with
ANSI/ESDA/JEDEC JS-001-2012, C1=100 pF, R1=1500 Ω, R2=500 Ω)
DocID024225 Rev 6
27/41
40
DC and AC parameters
8
M95040-A125 M95040-A145
DC and AC parameters
This section summarizes the operating conditions and the DC/AC characteristics of the
device.
Table 8. Cycling performance by byte
Symbol
Ncycle
Parameter
Write cycle endurance
Test condition
Min.
Max.
TA ≤ 25 °C, 1.7 V < VCC < 5.5 V
-
4,000,000
TA = 85 °C, 1.7 V < VCC < 5.5 V
-
1,200,000
TA = 125 °C, 1.7 V < VCC < 5.5 V
-
600,000
-
400,000
(2),
TA = 145 °C
2.5 V < VCC < 5.5 V
Unit
Write
cycle(1)
1. A Write cycle is executed when either a Page Write, a Byte Write, a WRSR, a WRID or an LID instruction is decoded.
When using the Byte Write, the Page Write or the WRID, refer also to Section 5.3: Error Correction Code (ECC x 1).
2. For temperature range 4 only.
Table 9. Operating conditions (voltage range W, temperature range 4)
Symbol
Conditions
Min.
Max.
Unit
Supply voltage
-
2.5
5.5
V
TA
Ambient operating temperature
-
–40
145
°C
fC
Operating clock frequency
-
10
MHz
VCC
Parameter
5.5 V ≥ VCC ≥ 2.5 V,
capacitive load on Q pin ≤100pF
Table 10. Operating conditions (voltage range R, temperature range 3)
Symbol
Conditions
Min.
Max.
Unit
Supply voltage
-
1.7
5.5
V
TA
Ambient operating temperature
-
–40
125
°C
fC
Operating clock frequency
VCC ≥ 2.5 V, capacitive load on Q pin ≤100pF
-
10
VCC ≥ 1.7 V, capacitive load on Q pin ≤100pF
-
5
VCC
Parameter
MHz
Table 11. Operating conditions (voltage range R, temperature range 3)
for high-speed communications
Symbol
Conditions
Min.
Max.
Unit
Supply voltage
-
4.5
5.5
V
TA
Ambient operating temperature
-
–40
85
°C
fC
Operating clock frequency
-
20
MHz
VCC
28/41
Parameter
VCC ≥ 4.5 V, capacitive load on Q pin ≤ 60 pF
DocID024225 Rev 6
M95040-A125 M95040-A145
DC and AC parameters
Table 12. DC characteristics (voltage range W, temperature range 4)
Specific test conditions
Symbol
COUT(2)
Parameter
(in addition to conditions specified in
Table 9)
Min.
Max.
Output capacitance (Q)
VOUT = 0 V
-
8
Input capacitance
VIN = 0 V
-
6
ILI
Input leakage current
VIN = VSS or VCC
-
2
ILO
Output leakage current
S = VCC, VOUT = VSS or VCC
-
3
VCC = 2.5 V, fC = 10 MHz,
C = 0.1 VCC/0.9 VCC, Q = open
-
2
VCC = 5.5 V, fC = 10 MHz,
C = 0.1 VCC/0.9 VCC, Q = open
-
4
2.5 V < VCC < 5.5 V, during tW,
S = VCC
-
2(2)
t° = 85 °C, VCC = 2.5 V, S = VCC
VIN = VSS or VCC
-
2
t° = 85 °C, VCC = 5.5 V, S = VCC
VIN = VSS or VCC
-
3
t° = 125 °C, VCC = 2.5 V, S = VCC
VIN = VSS or VCC
-
15
t° = 125 °C, VCC = 5.5 V, S = VCC
VIN = VSS or VCC
-
20
t° = 145 °C, VCC = 2.5 V, S = VCC
VIN = VSS or VCC
-
25
t° = 145 °C, VCC = 5.5 V, S = VCC
VIN = VSS or VCC
-
40
CIN
(2)
ICC
ICC0(1)
ICC1
Supply current (Read)
Supply current (Write)
Supply current
(Standby power mode)
pF
µA
mA
µA
VIL
Input low voltage
-
–0.45
0.3 VCC
VIH
Input high voltage
-
0.7 VCC
VCC+1
VOL
Output low voltage
IOL = 2 mA
-
0.4
VOH
Output high voltage
IOH = –2 mA
0.8 VCC
-
Internal reset threshold
voltage
-
0.5
1.5
VRES(2)
Unit
V
1. Average value during the Write cycle (tW)
2. Characterized only, not 100% tested
DocID024225 Rev 6
29/41
40
DC and AC parameters
M95040-A125 M95040-A145
Table 13. DC characteristics (voltage range R, temperature range 3)
Test conditions
Symbol
COUT(3)
Parameter
(in addition to conditions specified
in Table 10)
Min.
Max.
Output capacitance (Q)
VOUT = 0 V
-
8
Input capacitance
VIN = 0 V
-
6
ILI
Input leakage current
VIN = VSS or VCC
-
2
ILO
Output leakage current
S = VCC, VOUT = VSS or VCC
-
3
VCC = 1.7 V, C = 0.1 VCC/0.9 VCC,
Q = open, fC = 5 MHz
-
2
VCC = 2.5 V, C = 0.1 VCC/0.9 VCC,
Q = open, fC = 10 MHz
-
2
VCC = 5.5 V, fC = 20 MHz(1)
C = 0.1 VCC/0.9 VCC, Q = open
-
5
1.7 V ≤ VCC < 5.5 V during tW,
S = VCC
-
2(3)
t° = 85 °C, VCC = 1.7 V,
S = VCC, VIN = VSS or VCC
-
1
t° = 85 °C, VCC = 2.5 V,
S = VCC, VIN = VSS or VCC
-
2
t° = 85 °C, VCC = 5.5 V,
S = VCC, VIN = VSS or VCC
-
3
t° = 125 °C, VCC = 1.7 V,
S = VCC, VIN = VSS or VCC
-
15
t° = 125 °C, VCC = 2.5 V,
S = VCC, VIN = VSS or VCC
-
15
t° = 125 °C, VCC = 5.5 V,
S = VCC, VIN = VSS or VCC
-
20
1.7 V ≤ VCC < 2.5 V
–0.45
0.25 VCC
2.5 V ≤ VCC < 5.5 V
–0.45
0.3 VCC
1.7 V ≤ VCC < 2.5 V
0.75 VCC
VCC+ 1
2.5 V ≤ VCC < 5.5 V
0.7 VCC
VCC+ 1
VCC = 1.7 V, IOL = 1 mA
-
0.3
VCC ≥ 2.5 V, IOL = 2 mA
-
0.4
VCC = 1.7 V, IOH = 1 mA
0.8 VCC
-
VCC ≥ 2.5 V, IOH = -2 mA
0.8 VCC
-
0.5
1.5
CIN
(3)
ICC
ICC0(2)
ICC1
Supply current (Read)
Supply current (Write)
Supply current (Standby mode)
VIL
Input low voltage
VIH
Input high voltage
VOL
Output low voltage
VOH
Output high voltage
VRES(3)
Internal reset threshold voltage
-
1. When –40 °C < t° < 85 °C.
2. Average value during the Write cycle (tW)
3. Characterized only, not 100% tested
30/41
DocID024225 Rev 6
Unit
pF
µA
mA
mA
µA
V
V
V
V
V
M95040-A125 M95040-A145
DC and AC parameters
Table 14. AC characteristics
Min.
Symbol
Alt.
fC
fSCK
Parameter
Max.
Min.
Max.
Min.
Max.
Test
Test
Test
conditions
conditions
conditions
specified in
specified in
specified in
Table 9 and
Table 10
Table 11
Table 10
Clock frequency
-
5
-
10
-
20
tSLCH
tCSS1 S active setup time
60
-
30
-
15
-
tSHCH
tCSS2 S not active setup time
60
-
30
-
15
-
tSHSL
tCS
S deselect time
90
-
40
-
20
-
tCHSH
tCSH
S active hold time
60
-
30
-
15
-
S not active hold time
60
-
30
-
15
-
tCHSL
tCH(1)
tCLH
Clock high time
80
-
40
-
20
-
(1)
tCL
tCLL
Clock low time
80
-
40
-
20
-
tCLCH(2)
tRC
Clock rise time
-
2
-
2
-
2
tCHCL(2)
tFC
Clock fall time
-
2
-
2
-
2
tDVCH
tDSU
Data in setup time
20
-
10
-
5
-
tCHDX
tDH
Data in hold time
20
-
10
-
10
-
tHHCH
Clock low hold time after HOLD not active
60
-
30
-
15
-
tHLCH
Clock low hold time after HOLD active
60
-
30
-
15
-
tCLHL
Clock low set-up time before HOLD active
0
-
0
-
0
-
tCLHH
Clock low set-up time before HOLD not
active
0
-
0
-
0
-
Output disable time
-
80
-
40
-
20
Clock low to output valid
-
80
-
40
-
20
tSHQZ(2)
tDIS
tCLQV(3)
tV
tCLQX
tHO
Output hold time
0
-
0
-
0
-
tQLQH(2)
tRO
Output rise time
-
20
-
20
-
20
(2)
tFO
Output fall time
-
20
-
20
-
20
tLZ
HOLD high to output valid
-
80
-
40
-
20
tHZ
HOLD low to output high-Z
-
80
-
40
-
20
tWC
Write time
-
4
-
4
-
4
tQHQL
tHHQV
tHLQZ
tW
(2)
Unit
MHz
ns
µs
ns
ms
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max).
2. Value guaranteed by characterization, not 100% tested in production.
3. tCLQV must be compatible with tCL (clock low time): if tSU is the Read setup time of the SPI bus master, tCL must be equal to
(or greater than) tCLQV+tSU.
DocID024225 Rev 6
31/41
40
DC and AC parameters
M95040-A125 M95040-A145
Figure 17. AC measurement I/O waveform
,QSXWDQG2XWSXW
7LPLQJ5HIHUHQFH/HYHOV
,QSXW/HYHOV
ೌ9&&
ೌ9&&
ೌ9&&
ೌ9&&
$,&
Figure 18. Serial input timing
W6+6/
6
W&+6/
W&+
W6/&+
W&+6+
W6+&+
&
W'9&+
W&/
W&+&/
W&/&+
W&+';
'
/6%,1
06%,1
+LJKLPSHGDQFH
4
$,G
Figure 19. Hold timing
6
W+/&+
W&/+/
W++&+
&
W&/++
W+/4=
W++49
4
+2/'
$,F
32/41
DocID024225 Rev 6
M95040-A125 M95040-A145
DC and AC parameters
Figure 20. Serial output timing
6
W6+6/
W&+
&
W&/49
W&/&+
W&+&/
W&/
W6+4=
W&/4;
4
W4/4+
W4+4/
'
$''5
/6%,1
$,J
DocID024225 Rev 6
33/41
40
Package mechanical data
9
M95040-A125 M95040-A145
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
9.1
SO8N package information
Figure 21. SO8N – 8-lead plastic small outline, 150 mils body width, package outline
K[Û
$
$
F
FFF
E
H
PP
*$8*(3/$1(
'
N
(
(
$
/
/
62$B9
1. Drawing is not to scale.
Table 15. SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data
inches(1)
millimeters
Symbol
34/41
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.170
-
0.230
0.0067
-
0.0091
D
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
DocID024225 Rev 6
M95040-A125 M95040-A145
Package mechanical data
Table 15. SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
Figure 22. SO8N – 8-lead plastic small outline, 150 mils body width,
package recommended footprint
[
2B621B)3B9
1. Dimensions are expressed in millimeters.
DocID024225 Rev 6
35/41
40
Package mechanical data
9.2
M95040-A125 M95040-A145
TSSOP8 package information
Figure 23. TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,
package outline
ϴ
ϱ
Đ
ϭ
ϭ
ϰ
ɲ
>
ϭ
W
Ϯ
>ϭ
ď
Ğ
76623$0B9
1. Drawing is not to scale.
Table 16. TSSOP8 – 8-lead thin shrink small outline, 3 x 4.4 mm, 0.65 mm pitch,
package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
CP
-
-
0.100
-
-
0.0039
D
2.900
3.000
3.100
0.1142
0.1181
0.1220
e
-
0.650
-
-
0.0256
-
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1
4.300
4.400
4.500
0.1693
0.1732
0.1772
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
α
0°
-
8°
0°
-
8°
1. Values in inches are converted from mm and rounded to four decimal digits.
36/41
DocID024225 Rev 6
M95040-A125 M95040-A145
9.3
Package mechanical data
WFDFPN8 package information
Figure 24. WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch
dual flat package outline
'
'
'DWXP<
'
3LQ,'PDUNLQJ
H
$ %
3LQ
(
(
(
6HH=
'HWDLO
[
.
DDD #
1;E
[
1' [H
DDD #
7RSYLHZ
EEE - & $ %
GGG - &
%RWWRPYLHZ
'DWXP<
FFF #
HHH # $
6HDWLQJSODQH
&
$
/ /
H
H
/
6LGHYLHZ
7HUPLQDOWLS
'HWDLO³=´
$<B0(B9
1. Drawing is not to scale.
2. The central pad (the area E2 by D2 in the above illustration) must be either connected to Vss or left floating
(not connected) in the end application.
DocID024225 Rev 6
37/41
40
Package mechanical data
M95040-A125 M95040-A145
Table 17. WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch
dual flat package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.700
0.750
0.800
0.0276
0.0295
0.0315
A1
0.025
0.045
0.065
0.0010
0.0018
0.0026
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
1.900
2.000
2.100
0.0748
0.0787
0.0827
E
2.900
3.000
3.100
0.1142
0.1181
0.1220
e
-
0.500
-
-
0.0197
-
L1
-
-
0.150
-
-
0.0059
L3
0.300
-
-
0.0118
-
-
D2
1.050
-
1.650
0.0413
-
0.0650
E2
1.050
-
1.450
0.0413
-
0.0571
K
0.400
-
-
0.0157
-
-
L
0.300
-
0.500
0.0118
-
0.0197
(2)
8
(3)
4
NX
ND
aaa
0.150
0.0059
bbb
0.100
0.0039
ccc
0.100
0.0039
ddd
0.050
0.0020
eee(4)
0.080
0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
2. NX is the number of terminals.
3. ND is the number of terminals on “D” sides.
4. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.
38/41
DocID024225 Rev 6
M95040-A125 M95040-A145
10
Part numbering
Part numbering
Table 18. Ordering information scheme
Example:
M95040-D
W
DW 4
T
P /K
Device type
M95 = SPI serial access EEPROM
Device function
040-D = 4 Kbit (512 byte) plus Identification Page
Operating voltage
W = VCC = 2.5 to 5.5 V
R = VCC = 1.7 to 5.5 V
Package(1)
MN = SO8 (150 mils width)
DW = TSSOP8 (169 mils width)
MF = WFDFPN8 (2 x 3 mm)
Device grade
3 = –40 to 125 °C. Device tested with high reliability certified flow(2)
4 = –40 to 145 °C. Device tested with high reliability certified flow(2)
Option
blank = Tube packing
T = Tape and reel packing
Plating technology
P or G = ECOPACK2®
Process letter
/K = Manufacturing technology code
1. All packages are ECOPACK2® (RoHS compliant and free of brominated, chlorinated and antimony-oxide
flame retardants).
2. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your nearest
ST sales office for a copy.
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Engineering samples
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are
not yet qualified and therefore not yet ready to be used in production and any consequences
deriving from such usage will not be at ST charge. In no event, ST will be liable for any
customer usage of these engineering samples in production. ST Quality has to be contacted
prior to any decision to use these Engineering samples to run qualification activity.
DocID024225 Rev 6
39/41
40
Revision history
11
M95040-A125 M95040-A145
Revision history
Table 19. Document revision history
Date
Revision
05-Apr-2013
1
Initial release.
2
Added WFDFPN8 (MF) package.
Removed UFDFPN8 (MLP8) package.
Updated:
– Section 4.4: Write Status Register (WRSR): replaced “Bits b7, b6,
b5, b4 are always read as 0” by “Bits b7, b6, b5, b4 are always
read as 1”.
– Note (1) under Table 7: Absolute maximum ratings.
3
Updated Figure 24: WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm
pitch very very thin fine pitch dual flat package outline.
Document status changed from “Preliminary Data” to “Production
Data”.
Data retention modified from “40 years at 50 °C” to “50 years at
125 °C”“.
4
Updated Note 2 below Table 7: Absolute maximum ratings.
Updated Table 13: DC characteristics (voltage range R, temperature
range 3).
Updated Table 17: WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch
very very thin fine pitch dual flat package mechanical data.
Updated Table 18: Ordering information scheme.
Added Note 2 below Figure 24: WFDFPN8 (MLP8) – 8-lead, 2 x
3 mm, 0.5 mm pitch very very thin fine pitch dual flat package
outline.
12-Jan-2015
5
Updated Table 17: WFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch
very very thin fine pitch dual flat package mechanical data
Updated Figure 24: WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm
pitch very very thin fine pitch dual flat package outline
Added paragraph: Engineering samples on page 39
16-Feb-2016
6
Updated
– Section 9: Package mechanical data
– VCC min value.
05-Sep-2013
11-Dec-2013
26-Sept-2014
40/41
Changes
DocID024225 Rev 6
M95040-A125 M95040-A145
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID024225 Rev 6
41/41
41
Similar pages