PD - 96349 IRF3710ZGPbF Features l l l l l l l l Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free Halogen-Free HEXFET® Power MOSFET D VDSS = 100V RDS(on) = 18mΩ G ID = 59A Description S This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. TO-220AB IRF3710ZGPbF Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 59 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9) 42 Pulsed Drain Current Maximum Power Dissipation 240 IDM PD @TC = 25°C c EAS (tested) Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range VGS EAS i c d h Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw Thermal Resistance Parameter RθJC RθCS Junction-to-Case Case-to-Sink, Flat, Greased Surface RθJA Junction-to-Ambient Units A 160 W 1.1 ± 20 W/°C V 170 mJ 200 See Fig.12a,12b,15,16 A mJ -55 to + 175 °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Typ. Max. ––– 0.92 0.50 ––– ––– 62 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 01/18/11 IRF3710ZGPbF Static @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) Min. Typ. Max. Units Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 100 ––– ––– 2.0 35 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.10 14 ––– ––– ––– ––– ––– ––– 82 19 27 17 77 41 56 4.5 ––– ––– 18 4.0 ––– 20 250 200 -200 120 28 40 ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 2900 290 150 1130 170 280 ––– ––– ––– ––– ––– ––– gfs IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 35A V VDS = VGS, ID = 250µA S VDS = 50V, ID = 35A µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V nC ID = 35A VDS = 80V VGS = 10V ns VDD = 50V ID = 35A RG = 6.8Ω VGS = 10V D nH Between lead, f f f 6mm (0.25in.) from package pF G S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 80V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time c Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.27mH, RG = 25Ω, IAS = 35A, VGS =10V. Part not recommended for use above this value. ISD ≤ 35A, di/dt ≤ 380A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. 2 Min. Typ. Max. Units ––– ––– 59 A ––– ––– 240 ––– ––– ––– ––– 50 100 1.3 75 160 Conditions MOSFET symbol V ns nC D showing the integral reverse G p-n junction diode. TJ = 25°C, IS = 35A, VGS = 0V TJ = 25°C, IF = 35A, VDD = 25V di/dt = 100A/µs S f f Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. www.irf.com IRF3710ZGPbF 1000 1000 100 10 BOTTOM 1 4.5V 0.1 20µs PULSE WIDTH Tj = 25°C 100 BOTTOM 4.5V 10 20µs PULSE WIDTH Tj = 175°C 1 0.01 0.1 1 10 0.1 100 1 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 120 GFS , Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V T J = 175°C 100 10 T J = 25°C 1 VDS = 25V 20µs PULSE WIDTH 0 2 4 6 8 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 TJ = 25°C 80 T J = 175°C 60 40 20 VDS = 15V 20µs PULSE WIDTH 0 0 10 20 30 40 50 60 70 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRF3710ZGPbF VGS = 0V, C f = 1 MHZ =C + C , C gs gd ds = Cgd iss C rss C C, Capacitance(pF) 10000 oss 12.0 ID= 35A SHORTED V GS, Gate-to-Source Voltage (V) 100000 =C +C ds gd Ciss 1000 Coss Crss 100 10 1 10 100 V DS= 50V V DS= 20V 8.0 6.0 4.0 2.0 0.0 0 V DS, Drain-to-Source Voltage (V) ID, Drain-to-Source Current (A) 1000 100.00 10.00 TJ = 25°C 1.00 V GS = 0V 0.10 0.4 0.6 60 80 100 OPERATION IN THIS AREA LIMITED BY RDS(on) 100 TJ = 175°C 0.2 40 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000.00 ISD, Reverse Drain Current (A) 20 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 0.8 1.0 1.2 1.4 V SD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 V DS= 80V 10.0 1.6 100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 10msec 0.1 1 10 100 1000 V DS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF3710ZGPbF 60 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 ID, Drain Current (A) 50 40 30 20 10 0 2.5 ID = 59A V GS = 10V 2.0 1.5 1.0 0.5 0.0 25 50 75 100 125 150 175 -60 -40 -20 0 TC , Case Temperature (°C) 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF3710ZGPbF 300 DRIVER L VDS D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 15V ID 15A 25A BOTTOM 35A TOP 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS V GS(th) Gate threshold Voltage (V) 5.0 4.0 3.0 ID = 250µA 2.0 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 TJ , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRF3710ZGPbF 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 10 0.05 0.10 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 35A 150 100 50 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF3710ZGPbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF3710ZGPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRFB4310GPBF INT ERNAT IONAL RECT IFIER LOGO Note: "G" s uffix in part number indicates "Halogen - Free" Note: "P" in as s embly line position indicates "Lead - Free" AS S EMBLY LOT CODE PART NUMBER DAT E CODE: Y= LAS T DIGIT OF CALENDAR YEAR WW= WORK WEEK X= FACT ORY CODE TO-220AB package is not recommended for Surface Mount Application Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf3710z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2011 www.irf.com 9