IRF IRF3710ZGPBF Advanced process technology Datasheet

PD - 96349
IRF3710ZGPbF
Features
l
l
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
Halogen-Free
HEXFET® Power MOSFET
D
VDSS = 100V
RDS(on) = 18mΩ
G
ID = 59A
Description
S
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
TO-220AB
IRF3710ZGPbF
Absolute Maximum Ratings
Parameter
Max.
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
59
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (See Fig. 9)
42
Pulsed Drain Current
Maximum Power Dissipation
240
IDM
PD @TC = 25°C
c
EAS (tested)
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
VGS
EAS
i
c
d
h
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Thermal Resistance
Parameter
RθJC
RθCS
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
RθJA
Junction-to-Ambient
Units
A
160
W
1.1
± 20
W/°C
V
170
mJ
200
See Fig.12a,12b,15,16
A
mJ
-55 to + 175
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Typ.
Max.
–––
0.92
0.50
–––
–––
62
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
01/18/11
IRF3710ZGPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
Min. Typ. Max. Units
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
100
–––
–––
2.0
35
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.10
14
–––
–––
–––
–––
–––
–––
82
19
27
17
77
41
56
4.5
–––
–––
18
4.0
–––
20
250
200
-200
120
28
40
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
2900
290
150
1130
170
280
–––
–––
–––
–––
–––
–––
gfs
IDSS
IGSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 35A
V VDS = VGS, ID = 250µA
S VDS = 50V, ID = 35A
µA VDS = 100V, VGS = 0V
VDS = 100V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
nC ID = 35A
VDS = 80V
VGS = 10V
ns VDD = 50V
ID = 35A
RG = 6.8Ω
VGS = 10V
D
nH Between lead,
f
f
f
6mm (0.25in.)
from package
pF
G
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 80V
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
c
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 0.27mH,
RG = 25Ω, IAS = 35A, VGS =10V. Part not
recommended for use above this value.
ƒ ISD ≤ 35A, di/dt ≤ 380A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
„ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
–––
–––
59
A
–––
–––
240
–––
–––
–––
–––
50
100
1.3
75
160
Conditions
MOSFET symbol
V
ns
nC
D
showing the
integral reverse
G
p-n junction diode.
TJ = 25°C, IS = 35A, VGS = 0V
TJ = 25°C, IF = 35A, VDD = 25V
di/dt = 100A/µs
S
f
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
† Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
‡ This value determined from sample failure population. 100%
tested to this value in production.
www.irf.com
IRF3710ZGPbF
1000
1000
100
10
BOTTOM
1
4.5V
0.1
20µs PULSE WIDTH
Tj = 25°C
100
BOTTOM
4.5V
10
20µs PULSE WIDTH
Tj = 175°C
1
0.01
0.1
1
10
0.1
100
1
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
120
GFS , Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
T J = 175°C
100
10
T J = 25°C
1
VDS = 25V
20µs PULSE WIDTH
0
2
4
6
8
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
100
TJ = 25°C
80
T J = 175°C
60
40
20
VDS = 15V
20µs PULSE WIDTH
0
0
10
20
30
40
50
60
70
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRF3710ZGPbF
VGS = 0V,
C
f = 1 MHZ
=C + C , C
gs
gd
ds
= Cgd
iss
C rss
C
C, Capacitance(pF)
10000
oss
12.0
ID= 35A
SHORTED
V GS, Gate-to-Source Voltage (V)
100000
=C +C
ds
gd
Ciss
1000
Coss
Crss
100
10
1
10
100
V DS= 50V
V DS= 20V
8.0
6.0
4.0
2.0
0.0
0
V DS, Drain-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
1000
100.00
10.00
TJ = 25°C
1.00
V GS = 0V
0.10
0.4
0.6
60
80
100
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100
TJ = 175°C
0.2
40
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
1000.00
ISD, Reverse Drain Current (A)
20
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
0.8
1.0
1.2
1.4
V SD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
V DS= 80V
10.0
1.6
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
1
10
100
1000
V DS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF3710ZGPbF
60
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
ID, Drain Current (A)
50
40
30
20
10
0
2.5
ID = 59A
V GS = 10V
2.0
1.5
1.0
0.5
0.0
25
50
75
100
125
150
175
-60 -40 -20 0
TC , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF3710ZGPbF
300
DRIVER
L
VDS
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
15V
ID
15A
25A
BOTTOM 35A
TOP
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
V GS(th) Gate threshold Voltage (V)
5.0
4.0
3.0
ID = 250µA
2.0
1.0
-75 -50 -25
VGS
0
25
50
75 100 125 150 175 200
TJ , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRF3710ZGPbF
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
10
0.05
0.10
1
0.1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 35A
150
100
50
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF3710ZGPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF3710ZGPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRFB4310GPBF
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "G" s uffix in part number
indicates "Halogen - Free"
Note: "P" in as s embly line position
indicates "Lead - Free"
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE:
Y= LAS T DIGIT OF
CALENDAR YEAR
WW= WORK WEEK
X= FACT ORY CODE
TO-220AB package is not recommended for Surface Mount Application
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf3710z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/2011
www.irf.com
9
Similar pages