Infineon IRL7472L1PBF Directfetâ® n-channel power mosfet Datasheet

StrongIRFET™
IRL7472L1TRPbF
DirectFET® N-Channel Power MOSFET 
Application
Brushed Motor drive applications
 BLDC Motor drive applications
Battery powered circuits
 Half-bridge and full-bridge topologies
 Synchronous rectifier applications
 Resonant mode power supplies
 OR-ing and redundant power switches
 DC/DC and AC/DC converters
 DC/AC Inverters
Benefits
Optimized for Logic Level Drive
Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dv/dt and di/dt Capability
Lead-Free, RoHS Compliant
VDSS
40V
RDS(on) typ.
max
@ VGS = 10V
0.34m
RDS(on) typ.
max
@ VGS = 4.5V
ID (Package Limited)
0.52m
S
S
D
S
G
S
Standard Pack
IRL7472L1PbF
Direct FET Large Can (L8)
Quantity
Tape and Reel
4000
1.6
375A
S
S
D
S
DirectFET™ ISOMETRIC
Orderable Part Number
IRL7472L1TRPbF
700
ID = 195A
1.4
Limited by package
600
1.2
1.0
0.8
TJ = 125°C
0.6
0.4
0.2
500
400
300
200
100
TJ = 25°C
0.0
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
Form
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m)
Package Type
0.70m
S
L8
Base part number
0.45m
25
50
75
100
125
150
175
TC , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
2016-8-9
IRL7472L1TRPbF
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited) 
ID @ TC = 25°C
IDM
PD @TC = 25°C
PD @TA = 25°C
Continuous Drain Current, VGS @ 10V (Package Limited)
VGS
TJ
TSTG
Pulsed Drain Current 
Maximum Power Dissipation
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Operating Junction and
Storage Temperature Range
Thermal Resistance
Symbol
Parameter
Junction-to-Ambient 
RJA
Junction-to-Ambient 
RJA
Junction-to-Ambient 
RJA
Junction-to-Case 
RJC
Junction-to-PCB Mounted
RJA-PCB
VGS(th)
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Notes:
 Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
 Used double sided cooling , mounting pad with large heatsink.
 Surface mounted on 1 in. square Cu
board (still air).
2
Units
456
A
68
375
1500
341
3.8
0.025
± 20
-55 to + 175
Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy 
EAS (Thermally limited) Single Pulse Avalanche Energy 
IAR
Avalanche Current 
EAR
Repetitive Avalanche Energy 
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
Max.
645
A
W
W/°C
V
°C
308
765
mJ
See Fig.15,16, 23a, 23b
A
mJ
Typ.
–––
12.5
20
–––
1.0
Max.
40
–––
–––
0.44
–––
Units
°C/W
Min. Typ. Max. Units
Conditions
40
––– –––
V
VGS = 0V, ID = 250µA
–––
30
––– mV/°C Reference to 25°C, ID = 5.0mA
––– 0.34 0.45
VGS = 10V, ID = 195A 
m
––– 0.52 0.70
VGS = 4.5V, ID = 98A 
1.0
1.7 2.5
V
VDS = VGS, ID = 250µA
––– ––– 1.0
VDS = 40V, VGS = 0V
µA
––– ––– 150
VDS = 40V, VGS = 0V, TJ = 125°C
––– ––– 100
VGS = 20V
nA
––– ––– -100
VGS = -20V
––– 1.0 –––

 TC measured with thermocouple mounted to top (Drain) of part.
 Mounted to a PCB with small clip
heatsink (still air)
 Mounted on minimum footprint full size
board with metalized back and with
small clip heatsink (still air)
2016-8-9
IRL7472L1TRPbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Forward Transconductance
Qg
Total Gate Charge
Qgs
Gate-to-Source Charge
Qgd
Gate-to-Drain ("Miller") Charge
Qsync
Total Gate Charge Sync. (Qg - Qgd)
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Coss eff. (ER) Effective Output Capacitance (Energy Related)
Coss eff. (TR) Effective Output Capacitance (Time Related)
Diode Characteristics
Symbol
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
(Body Diode) 
VSD
Diode Forward Voltage
dv/dt
Peak Diode Recovery 
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
Min.
232
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
220
95
87
133
68
176
174
137
20082
2436
1594
2855
3544
Max. Units
Conditions
–––
S VDS = 10V, ID = 195A
330
ID = 195A
–––
VDS = 20V
nC
–––
VGS = 4.5V 
–––
ID = 195A, VDS =0V, VGS = 4.5V
–––
VDD = 20V
–––
ID = 30A
ns
–––
RG = 2.7
–––
VGS = 4.5V 
–––
VGS = 0V
–––
VDS = 25V
–––
pF ƒ = 10kHz
–––
VGS = 0V, VDS = 0V to 32V 
–––
VGS = 0V, VDS = 0V to 32V 
Min. Typ.
Max.
Units
–––
–––
341
–––
–––
1500
–––
–––
1.2
V
–––
1.3
–––
V/ns
–––
–––
–––
–––
–––
57
58
103
114
3.1
–––
–––
–––
–––
–––
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ= 25°C, IS =195A, VGS = 0V
D
A
G
S
TJ =175°C, IS =195A,
VDS = 40V
TJ = 25° C VR = 34V,
ns
TJ = 125°C IF = 195A
TJ = 25°C di/dt = 100A/µs 
nC
TJ = 125°C
A TJ = 25°C
Notes:
Package limit current based on source connection technology
Repetitive rating; pulse width limited by max. junction temperature.
 Limited by TJmax, starting TJ = 25°C, L = 0.016mH, RG = 50, IAS = 195A, VGS =10V.
 ISD ≤ 195A, di/dt ≤ 984A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the
same energy as Coss while VDS is rising from 0 to 80% VDSS.
R is measured at TJ approximately 90°C.
 Limited by TJmax, starting TJ = 25°C, L = 1.0mH, RG = 50, IAS = 39A, VGS =10V.
 Silicon limit current based on maximum allowable junction temperature TJmax.
3
2016-8-9
IRL7472L1TRPbF
10000
10000
1000
BOTTOM
VGS
15V
10V
6.0V
5.0V
4.5V
4.0V
3.5V
3.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
6.0V
5.0V
4.5V
4.0V
3.5V
3.0V
100
3.0V
10
1000
BOTTOM
100
10
 60µs PULSE WIDTH
 60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
1
1
0.01
0.1
1
10
0.01
100
Fig 3. Typical Output Characteristics
10
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(A)
1
Fig 4. Typical Output Characteristics
10000
1000
TJ = 175°C
TJ = 25°C
100
10
VDS = 10V
 60µs PULSE WIDTH
1.0
ID = 195A
VGS = 10V
1.7
1.4
1.1
0.8
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 5. Typical Transfer Characteristics
100000
VGS, Gate-to-Source Voltage (V)
Ciss
10000
Coss
Crss
1000
1
10
Fig 6. Normalized On-Resistance vs. Temperature
14
VGS = 0V,
f = 10 KHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
0.1
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
100
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
3.0V
ID= 195A
12
VDS = 32V
VDS = 20V
10
8
6
4
2
0
0
60 120 180 240 300 360 420 480 540 600
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
2016-8-9
IRL7472L1TRPbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1000
TJ = 175°C
100
TJ = 25°C
10
1000
100µsec
100
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1.0
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0.1
1
VSD , Source-to-Drain Voltage (V)
10
VDS , Drain-to-Source Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
2.0
50
Id = 5.0mA
1.8
1.6
48
1.4
47
Energy (µJ)
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
DC
0.1
0.2
49
1msec
Limited by Package
46
45
44
1.2
1.0
0.8
0.6
43
0.4
42
0.2
0.0
41
-60
-20
20
60
100
140
-5
180
TJ , Temperature ( °C )
0
5
10
15
20
25
30
35
40
VDS, Drain-to-Source Voltage (V)
R DS (on), Drain-to -Source On Resistance (m)
Fig 11. Drain-to-Source Breakdown Voltage
Fig 12. Typical Coss Stored Energy
1.8
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.5V
Vgs = 6.0V
Vgs = 8.0V
Vgs = 10V
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
20 40 60 80 100 120 140 160 180 200
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
2016-8-9
IRL7472L1TRPbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  Tj = 125°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Avalanche Current vs. Pulse Width
350
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 195A
EAR , Avalanche Energy (mJ)
300
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
6
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
2016-8-9
IRL7472L1TRPbF
20
IF = 117A
VR = 34V
18
2.0
16
TJ = 25°C
TJ = 125°C
14
1.5
IRRM (A)
VGS(th), Gate threshold Voltage (V)
2.5
ID = 250µA
1.0
ID = 1.0mA
ID = 1.0A
12
10
8
6
0.5
4
2
0.0
100
-60 -40 -20 0 20 40 60 80 100120140160180
200
300
400
500
600
diF /dt (A/µs)
TJ , Temperature ( °C )
Fig 17. Threshold Voltage vs. Temperature
Fig 18. Typical Recovery Current vs. dif/dt
20
18
16
IF = 117A
VR = 34V
900
TJ = 25°C
TJ = 125°C
800
TJ = 25°C
TJ = 125°C
700
12
QRR (nC)
IRRM (A)
14
1000
IF = 195A
VR = 34V
10
8
600
500
400
6
300
4
200
2
100
200
300
400
500
100
600
100
diF /dt (A/µs)
200
300
400
500
600
diF /dt (A/µs)
Fig 20. Typical Stored Charge vs. dif/dt
Fig 19. Typical Recovery Current vs. dif/dt
1000
900
800
QRR (nC)
700
IF = 195A
VR = 34V
TJ = 25°C
TJ = 125°C
600
500
400
300
200
100
100
200
300
400
500
600
diF /dt (A/µs)
Fig 21. Typical Stored Charge vs. dif/dt
7
2016-8-9
IRL7472L1TRPbF
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
L
VDS
D.U.T
RG
IAS
20V
tp
DRIVER
+
V
- DD
A
I AS
0.01
Fig 23a. Unclamped Inductive Test Circuit
Fig 23b. Unclamped Inductive Waveforms
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Id
Vds
Vgs
VDD
Vgs(th)
Qgs1 Qgs2
Fig 25a. Gate Charge Test Circuit
8
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
2016-8-9
IRL7472L1TRPbF
DirectFET® Board Footprint, L8 Outline
(Large Size Can, 8-Source Pads)
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
D
S
S
S
S
D
D
G
S
S
S
S
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
2016-8-9
IRL7472L1TRPbF
DirectFET® Outline Dimension, L8 Outline
(Large Size Can, 8-Source Pads)
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN MAX
A
9.05 9.15
6.85 7.10
B
C
5.90 6.00
0.55 0.65
D
E
0.58 0.62
F
1.18 1.22
0.98 1.02
G
0.73 0.77
H
J
0.38 0.42
1.335 1.465
K
L
2.535 2.665
5.335 5.465
L1
M
0.68 0.74
P
0.09 0.17
0.02 0.08
R
IMPERIAL
MIN
MAX
0.356
0.360
0.270
0.280
0.232
0.236
0.022
0.026
0.023
0.024
0.046
0.048
0.039
0.040
0.029
0.030
0.015
0.017
0.053
0.058
0.100
0.105
0.210
0.215
0.027
0.029
0.003
0.007
0.001
0.003
Dimensions are shown in
millimeters (inches)
DirectFET® Part Marking
GATE MARKING
+
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
2016-8-9
IRL7472L1TRPbF
DirectFET® Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
+
NOTE: Controlling dimensions in mm
Std reel quantity is 4000 parts. Order as IRF7472L1TRPBF).
REEL DIMENSIONS
STANDARD OPTION (QTY 4000)
IMPERIAL
METRIC
MIN
CODE
MAX
MIN
MAX
12.992
A
N.C
330.00
N.C
0.795
B
20.20
N.C
N.C
0.504
C
12.80
0.520
13.20
0.059
D
1.50
N.C
N.C
3.900
E
99.00 100.00
3.940
F
N.C
N.C
0.880
22.40
G
0.650
16.40
0.720
18.40
H
0.630
15.90
0.760
19.40
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
4.69
0.476
11.90
12.10
0.154
0.161
3.90
4.10
0.623
0.642
15.90
16.30
0.291
0.299
7.40
7.60
0.283
0.291
7.20
7.40
0.390
0.398
9.90
10.10
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Note: For the most current drawing please refer to IR webite at http://www.irf.com/package/
Qualification Information
Industrial *
Qualification Level
Moisture Sensitivity Level
(per JEDEC JESD47F† guidelines)
DFET (L-CAN)
RoHS Compliant
MSL1
(per JEDEC J-STD-020D†)
Yes
† Applicable version of JEDEC standard at the time of product release.
* Industrial qualification standards except autoclave test conditions.
11
2016-8-9
IRL7472L1TRPbF
Revision History
Date
08/09/2016
Comments





Changed datasheet with Infineon logo - all pages.
Changed max Rdson @ 10V/4.5V from “0.59m /0.97m" to “0.45m" / 0.7m" - on pages 1 & 2.
Changed ID @ TC 25C/100C from “564A/399A” to “645A/456A” - on pages 1 & 2.
Changed ID @ TA 25C from “59A” to “68A” - on pages 1 & 2.
Changed Fig.2 -on page 2.
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™,
CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™,
GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™,
OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID
FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2016-04-19
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about this
document?
Email: [email protected]
Document reference
ifx1
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.
In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility
of
customer’s
technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.
12
For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).
Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automotive Electronics Council.
WARNINGS
Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized
representatives
of
Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result in
personal injury.
2016-8-9
Similar pages