IRF IRHLNM87Y20 Radiation hardened logic level power mosfet surface mount Datasheet

PD-97811
RADIATION HARDENED
LOGIC LEVEL POWER MOSFET
SURFACE MOUNT (SMD-0.2)
IRHLNM87Y20
20V, N-CHANNEL
R8
™
TECHNOLOGY
Product Summary
Part Number
IRHLNM87Y20
Radiation Level
100K Rads (Si)
RDS(on)
15mΩ
ID
17A*
IRHLNM83Y20
300K Rads (Si)
15mΩ
17A*
SMD-0.2
(METAL LID)
International Rectifier’s R8TM Logic Level Power MOSFETs
provide simple solution to interfacing CMOS and TTL control
circuits to power devices in space and other radiation
environments.The threshold voltage remains within
acceptable operating limits over the full operating
temperature and post radiation.This is achieved while
maintaining single event gate rupture and single event
burnout immunity.
The device is ideal when used to interface directly with most
logic gates, linear IC’s, micro-controllers, and other device
types that operate from a 3.3-5V source. It may also be
used to increase the output current of a PWM, voltage
comparator or an operational amplifier where the logic level
drive signal is available.
Features:
n
n
n
n
n
n
n
n
n
n
5V CMOS and TTL Compatible
Fast Switching
Single Event Effect (SEE) Hardened
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Surface Mount
Light Weight
ESD Rating: Class 1B per MIL-STD-750,
Method 1020
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @VGS = 4.5V,TC = 25°C
ID @VGS = 4.5V,TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current À
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
Pckg. Mounting Surface Temp.
Weight
Units
17*
17*
68
36
0.3
±12
37
17
3.6
3.75
-55 to 150
300 (for 5s)
0.25 (Typical)
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
g
* Current is limited by package
For footnotes refer to the last page
www.irf.com
1
07/09/13
IRHLNM87Y20
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
BVDSS
Min
Drain-to-Source Breakdown Voltage
∆BV DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient
gfs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Typ Max Units
20
—
—
V
—
0.028
—
V/°C
—
—
1.0
—
20
—
—
12
11
—
-4.2
—
—
—
15
14
2.3
—
—
1.0
10
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
18
5.0
4.0
18
73
24
10
1.0
100
-100
24
7.2
6.3
24
150
32
18
—
Ciss
C oss
C rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
2336
596
147
—
—
—
Rg
Gate Resistance
mΩ
V
mV/°C
S
VGS = 4.5V, ID = 17A*
Ã
VGS = 7.0V, ID = 17A*
VDS = VGS, ID = 250µA
nC
VDS = 15V, IDS = 17A Ã
VDS = 16V ,VGS = 0V
VDS = 16V,
VGS = 0V, TJ = 125°C
VGS = 12V
VGS = -12V
VGS = 5.5V, ID = 17A
VDS = 10V
ns
VDD = 10V, ID = 17A ‡
VGS = 5.5V, RG = 2.35Ω
µA
nA
nH
pF
Ω
0.76
Test Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 250µA
Measured from the center of
drain pad to center of source pad
VGS = 0V, VDS = 20V
f = 1.0MHz
f = 1.0MHz, open drain
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
t rr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
17*
68
1.0
41
33
Test Conditions
A
V
ns
nC
Tj = 25°C, IS = 17A, VGS = 0V Ã
Tj = 25°C, IF = 17A, di/dt ≤ 100A/µs
VDD ≤ 20V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
* Current is limited by package
Thermal Resistance
Parameter
R thJC
Junction-to-Case
Min Typ Max Units
—
—
3.5
Test Conditions
°C/W
Note: Corresponding Spice and Saber models are available on International Rectifier Web site.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHLNM87Y20
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
BVDSS
V GS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Upto 300K Rads (Si)1
Units
Test Conditions
V
VGS = 0V, ID = 250µA
VGS = VDS , ID = 250µA
VGS = 12V
VGS = -12V
VDS= 16V, VGS = 0V
Min
Max
20
1.0
—
—
—
—
2.3
100
-100
1.0
µA
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source „
On-State Resistance (TO-39)
Static Drain-to-Source On-state „
Resistance (SMD-0.2)
—
32
mΩ
VGS = 4.5V, ID = 10.2A
—
15
mΩ
VGS = 4.5V, ID = 17A
Diode Forward Voltage„
—
1.0
V
VGS = 0V, ID = 17A
nA
1. Part numbers IRHLNM87Y20, IRHLNM83Y20
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Typical Single Event Effect Safe Operating Area
LET
Energy
Range
(MeV)
(µm)
2
(MeV/(mg/cm ))
VDS (V)
@VGS=
@VGS=
@VGS=
@VGS=
@VGS=
@VGS=
0V
-1V
-2V
-3V
-5V
-10V
8
4
12
8
-
12
6
-
37 ± 5%
298 ± 5%
38 ± 5%
18
18
60 ± 5%
320 ± 5%
32 ± 7.5%
18
18
81 ± 5%
375 ± 7.5%
28 ± 7.5%
18
18
15
Bias VDS (V)
20
16
LET=37 ± 5%
12
LET=60 ± 5%
8
LET=81 ± 5%
4
0
0
-2
-4
-6
-8
-10
Bias VGS (V)
Fig a. Typical Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHLNM87Y20
Pre-Irradiation
ID, Drain-to-Source Current (A)
TOP
10
BOTTOM
VGS
10V
7.0V
5.5V
4.5V
4.0V
3.5V
3.0V
2.5V
2.25V
1
2..25V
20µs PULSE WIDTH
Tj = 25°C
100
TOP
ID, Drain-to-Source Current (A)
100
0.1
2.25V
20µs PULSE WIDTH,
Tj =150°C
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
100
1.6
RDS(on) , Drain-to-Source On Resistance
10
(Normalized)
ID, Drain-to-Source Current (A)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
T J = 150°C
T J = 25°C
1
VDS = 20V
20µs PULSE WIDTH
15
01
ID = 17A
1.4
1.2
1.0
0.8
0.6
VGS = 4.5V
0.4
1
1.5
2
2.5
3
3.5
4
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
BOTTOM
10
VGS
10V
7.0V
5.5V
4.5V
4.0V
3.5V
3.0V
2.5V
2.25V
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
IRHLNM87Y20
50
45
ID = 17A
40
35
30
25
20
T J = 150°C
15
10
T J = 25°C
5
0
0
2
4
6
8
RDS(on), Drain-to -Source On Resistanc (m Ω)
RDS(on), Drain-to -Source On Resistance (m Ω)
Pre-Irradiation
30
25
TJ = 150°C
20
15
T J = 25°C
10
5
VGS = 4.5V
0
10
0
10
20
VGS, Gate -to -Source Voltage (V)
40
50
60
70
ID, Drain Current (A)
Fig 5. Typical On-Resistance Vs
Gate Voltage
Fig 6. Typical On-Resistance Vs
Drain Current
2.5
40
ID = 250µ$
VGS(th) Gate threshold Voltage (V)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
30
38
36
34
32
2.0
1.5
1.0
0.5
ID = 50µA
ID = 250µA
ID = 1.0mA
ID = 150mA
0
30
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Temperature ( °C )
Fig 7. Typical Drain-to-Source
Breakdown Voltage Vs Temperature
www.irf.com
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Temperature ( °C )
Fig 8. Typical Threshold Voltage Vs
Temperature
5
IRHLNM87Y20
4500
12
3500
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1.0 MHz
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
4000
C, Capacitance (pF)
Pre-Irradiation
C oss = C ds + C gd
3000
Ciss
2500
2000
1500
Coss
1000
500
ID = 17A
10
VDS = 5.0V
8
6
4
2
FOR TEST CIRCUIT
SEE FIGURE 17
Crss
0
0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
4
8
12 16 20 24 28 32 36 40
QG, Total Gate Charge (nC)
Fig 10. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 9. Typical Capacitance Vs.
Drain-to-Source Voltage
45
100
40
LIMITED BY PACKAGE
35
T J = 150°C
10
T J = 25°C
1
ID, Drain Current (A)
ISD, Reverse Drain Current (A)
VDS = 16V
VDS = 10V
30
25
20
15
10
VGS = 0V
0.1
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD , Source-to-Drain Voltage (V)
Fig 11. Typical Source-to-Drain Diode
Forward Voltage
6
5
25
50
75
100
125
150
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current Vs.
Case Temperature
www.irf.com
Pre-Irradiation
IRHLNM87Y20
60
EAS , Single Pulse Avalanche Energy (mJ)
ID, Drain-to-Source Current (A)
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
100µs
10
1ms
10ms
1
DC
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
ID
7.6A
10.8A
17A
TOP
50
BOTTOM
40
30
20
10
0
0
1
10
100
25
VDS , Drain-to-Source Voltage (V)
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 13. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy
Vs. Drain Current
Thermal Response ( Z thJC )
10
D = 0.50
P DM
0.20
1
0.10
t1
t2
SINGLE PULSE
( THERMAL RESPONSE )
0.02
0.05
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
7
IRHLNM87Y20
Pre-Irradiation
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T.
RG
+
- VDD
IAS
VGS
20V
A
0.01Ω
tp
Fig 16a. Unclamped Inductive Test Circuit
I AS
Fig 16b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
5.5V
50KΩ
.2µF
12V
QGS
.3µF
QGD
D.U.T.
VG
+
V
- DS
VGS
3mA
IG
Charge
Fig 17a. Basic Gate Charge Waveform
VDS
Fig 17b. Gate Charge Test Circuit
RD
VDS
90%
VGS
D.U.T.
RG
ID
Current Sampling Resistors
VDD
+
-
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
8
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
www.irf.com
Pre-Irradiation
IRHLNM87Y20
Footnotes:
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
À Repetitive Rating; Pulse width limited by
maximum junction temperature.
Á VDD = 20V, starting TJ = 25°C, L= 0.26mH
Peak IL = 17A, VGS = 12V
 ISD ≤ 17A, di/dt ≤ 419A/µs,
VDD ≤ 20V, TJ ≤ 150°C
12 volt VGS applied and V DS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
Å Total Dose Irradiation with VDS Bias.
16 volt VDS applied and V GS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
‡ Switching speed maximum limits are based on
manufacturing test equipment and capability.
Case Outline and Dimensions — SMD-0.2 (Metal Lid)
2.69 [.106]
MAX.
5.74 [.226]
5.08 [.200]
4X 0.25 [.010]
REF.
2X
8.15 [.321]
7.75 [.305]
1.02 [.040]
0.76 [.030]
2.13 [.084]
1.88 [.074]
0.83 [.032]
REF.
2X
3
2
1
2X
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
1.02 [.040]
0.76 [.030]
4.67 [.184]
4.42 [.174]
5.16 [203]
4.90 [.193]
TOP
2.19 [.086]
1.93 [.076]
3X
0.25 [.010]
REF.
BOTTOM
PAD ASSIGNMENT
1 = DRAIN
2 = GATE
3 = SOURCE
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 07/2013
www.irf.com
9
Similar pages