TI1 MSP430F5227IRGCR Mixed-signal microcontroller Datasheet

Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
Reference
Design
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
MSP430F522x, MSP430F521x Mixed-Signal Microcontrollers
1 Device Overview
1.1
Features
1
• Dual-Supply Voltage Device
– Primary Supply (AVCC, DVCC):
• Powered From External Supply:
3.6 V Down to 1.8 V
• Up to 22 General-Purpose I/Os With up to
Four External Interrupts
– Low-Voltage Interface Supply (DVIO):
• Powered From Separate External Supply:
1.62 V to 1.98 V
• Up to 31 General-Purpose I/Os With up to
12 External Interrupts
• Serial Communications
• Ultra-Low Power Consumption
– Active Mode (AM):
All System Clocks Active
290 µA/MHz at 8 MHz, 3.0 V, Flash Program
Execution (Typical)
150 µA/MHz at 8 MHz, 3.0 V, RAM Program
Execution (Typical)
– Standby Mode (LPM3):
Real-Time Clock (RTC) With Crystal, Watchdog,
and Supply Supervisor Operational, Full RAM
Retention, Fast Wakeup:
1.9 µA at 2.2 V, 2.1 µA at 3.0 V (Typical)
Low-Power Oscillator (VLO), General-Purpose
Counter, Watchdog, and Supply Supervisor
Operational, Full RAM Retention, Fast Wakeup:
1.4 µA at 3.0 V (Typical)
– Off Mode (LPM4):
Full RAM Retention, Supply Supervisor
Operational, Fast Wakeup:
1.1 µA at 3.0 V (Typical)
– Shutdown Mode (LPM4.5):
0.18 µA at 3.0 V (Typical)
• Wake up From Standby Mode in 3.5 µs (Typical)
• 16-Bit RISC Architecture, Extended Memory, up to
25-MHz System Clock
• Flexible Power-Management System
– Fully Integrated LDO With Programmable
Regulated Core Supply Voltage
– Supply Voltage Supervision, Monitoring, and
Brownout
• Unified Clock System
– FLL Control Loop for Frequency Stabilization
– Low-Power Low-Frequency Internal Clock
Source (VLO)
– Low-Frequency Trimmed Internal Reference
Source (REFO)
– 32-kHz Watch Crystals (XT1)
– High-Frequency Crystals up to 32 MHz (XT2)
• 16-Bit Timer TA0, Timer_A With Five
Capture/Compare Registers
• 16-Bit Timer TA1, Timer_A With Three
Capture/Compare Registers
• 16-Bit Timer TA2, Timer_A With Three
Capture/Compare Registers
• 16-Bit Timer TB0, Timer_B With Seven
Capture/Compare Shadow Registers
• Two Universal Serial Communication Interfaces
– USCI_A0 and USCI_A1 Each Support:
• Enhanced UART With Automatic Baud Rate
Detection
• IrDA Encoder and Decoder
• Synchronous SPI
– USCI_B0 and USCI_B1 Each Support:
• I2C
• Synchronous SPI
• 10-Bit Analog-to-Digital Converter (ADC) With
Internal Reference, Sample-and-Hold
• Comparator
• Hardware Multiplier Supports 32-Bit Operations
• Serial Onboard Programming, No External
Programming Voltage Needed
• Three-Channel Internal DMA
• Basic Timer With RTC Feature
• Section 3 Summarizes Available Family Members
• For Complete Module Descriptions, See the
MSP430x5xx and MSP430x6xx Family User's
Guide (SLAU208)
• For Design Guidelines, See Designing With
MSP430F522x and MSP430F521x Devices
(SLAA558)
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
1.2
•
•
Applications
Analog and Digital Sensor Systems
Data Loggers
1.3
www.ti.com
•
General-Purpose Applications
Description
The TI MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different
sets of peripherals targeted for various applications. The architecture, combined with extensive low-power
modes, is optimized to achieve extended battery life in portable measurement applications. The device
features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to
maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from lowpower modes to active mode in 3.5 µs (typical).
The MSP430F522x series are microcontrollers with four 16-bit timers, a high-performance 10-bit ADC, two
universal serial communication interfaces (USCIs), a hardware multiplier, DMA, a comparator, and an
RTC module with alarm capabilities.
The MSP430F521x series include all of the peripherals of the MSP430F522x series with the exception of
the ADC.
All devices have a split I/O supply system that allows for a seamless interface to other devices that have a
nominal 1.8-V I/O interface without the need for external level translation.
Typical applications include analog and digital sensor systems, data loggers, and various general-purpose
applications.
Device Information (1)
PACKAGE
BODY SIZE (2)
MSP430F5229IRGC
VQFN (64)
9 mm × 9 mm
MSP430F5229IZQE
BGA (80)
5 mm × 5 mm
PART NUMBER
MSP430F5224IRGZ
VQFN (48)
7 mm × 7 mm
MSP430F5219IYFF
DSBGA (64)
See Section 8
(1)
(2)
2
For the most current part, package, and ordering information, see the Package Option Addendum in
Section 8, or see the TI website at www.ti.com.
The dimensions shown here are approximations. For the package dimensions with tolerances, see the
Mechanical Data in Section 8.
Device Overview
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
1.4
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Functional Block Diagrams
Figure 1-1 shows the functional block diagram for the MSP430F5229 and MSP430F5227 devices in
the RGC, ZQE, YFF packages.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
RSTDVCC RST/NMI BSLEN
ACLK
8KB
Power
Management
Flash
RAM
LDO
SVM/SVS
Brownout
PA
DVIO VCORE
P1.x
P2.x
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×8 I/Os
Watchdog
PA
1×16 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
DVCC AVCC
DVSS AVSS
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PD
P7.x PJ.x
P3
P4
P5
P6
P7
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os
PB
1×13 I/Os
PC
1×14 I/Os
USCI0,1
PD
PJ
1×6 I/Os 1×4 I/Os
I/O Ports
USCI_Ax:
UART,
IrDA, SPI
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
ADC10_A
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
RTC_A
CRC16
10 Bit
200 KSPS
12 Channels
(10 ext,2 int)
COMP_B
REF
8 Channels
I/O are supplied by DVIO
Figure 1-1. Functional Block Diagram – F5229, F5227 – RGC, ZQE, YFF Packages
Device Overview
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
3
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Figure 1-2 shows the functional block diagram for the MSP430F5224 and MSP430F5222 devices in the
RGZ package.
XIN XOUT
RSTDVCC RST/NMI BSLEN
DVCC AVCC
DVSS AVSS
PA
DVIO VCORE
P1.x
XT2IN
XT2OUT
Unified
Clock
System
ACLK
8KB
Power
Management
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×1 I/Os
Watchdog
PA
1×9 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
Flash
RAM
LDO
SVM,SVS
Brownout
P2.x
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PJ.x
P3
P4
P5
P6
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os
PB
1×12 I/Os
PC
1×12 I/Os
USCI0,1
PJ
1×4 I/Os
USCI_Ax:
UART,
IrDA, SPI
I/O Ports
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
ADC10_A
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
RTC_A
10 Bit
200 KSPS
CRC16
COMP_B
REF
6 Channels
10 Channels
(8 ext, 2 int)
I/O are supplied by DVIO
Figure 1-2. Functional Block Diagram – F5224, F5222 – RGZ Package
Figure 1-3 shows the functional block diagram for the MSP430F5219 and MSP430F5217 devices in the
RGC, ZQE, and YFF packages.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
RSTDVCC RST/NMI BSLEN
ACLK
8KB
Power
Management
Flash
RAM
LDO
SVM/SVS
Brownout
PA
DVIO VCORE
P1.x
P2.x
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×8 I/Os
Watchdog
PA
1×16 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
DVCC AVCC
DVSS AVSS
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PD
P7.x PJ.x
P3
P4
P5
P6
P7
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os
PB
1×13 I/Os
PC
1×14 I/Os
USCI0,1
PD
PJ
1×6 I/Os 1×4 I/Os
I/O Ports
USCI_Ax:
UART,
IrDA, SPI
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
COMP_B
RTC_A
CRC16
REF
8 Channels
I/O are supplied by DVIO
Figure 1-3. Functional Block Diagram – F5219, F5217 – RGC, ZQE, YFF Packages
4
Device Overview
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Figure 1-4 shows the functional block diagram for the MSP430F5214 and MSP430F5212 devices in the
RGZ package.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
RSTDVCC RST/NMI BSLEN
ACLK
8KB
Power
Management
Flash
RAM
LDO
SVM, SVS
Brownout
PA
DVIO VCORE
P1.x
P2.x
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×1 I/Os
Watchdog
PA
1×9 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
DVCC AVCC
DVSS AVSS
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PJ.x
P3
P4
P5
P6
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os
PB
1×12 I/Os
PC
1×12 I/Os
USCI0,1
PJ
1×4 I/Os
USCI_Ax:
UART,
IrDA, SPI
I/O Ports
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
JTAG,
SBW
Interface
TA1
TA2
TB0
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
TA0
MPY32
Timer_A
5 CC
Registers
COMP_B
RTC_A
CRC16
REF
6 Channels
I/O are supplied by DVIO
Figure 1-4. Functional Block Diagram – F5214, F5212 – RGZ Package
Device Overview
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
5
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table of Contents
1
2
3
4
5
Device Overview ......................................... 1
1.1
Features .............................................. 1
1.2
Applications ........................................... 2
1.3
Description ............................................ 2
1.4
Functional Block Diagrams ........................... 3
5.20
Revision History ......................................... 7
Device Comparison ..................................... 8
Terminal Configuration and Functions .............. 9
4.1
Pin Diagrams ......................................... 9
4.2
Signal Descriptions .................................. 15
5.21
Crystal Oscillator, XT1, Low-Frequency Mode ...... 32
5.22
5.23
Crystal Oscillator, XT2 .............................. 33
Internal Very-Low-Power Low-Frequency Oscillator
(VLO) ................................................ 34
Internal Reference, Low-Frequency Oscillator
(REFO) .............................................. 34
5.24
Specifications ........................................... 20
5.1
Absolute Maximum Ratings ......................... 20
5.25
DCO Frequency ..................................... 35
5.2
ESD Ratings
........................................
Recommended Operating Conditions ...............
5.26
PMM, Brown-Out Reset (BOR)
5.27
PMM, Core Voltage ................................. 36
5.28
PMM, SVS High Side
5.29
PMM, SVM High Side ............................... 38
5.30
PMM, SVS Low Side ................................ 38
5.31
5.32
PMM, SVM Low Side ............................... 39
Wake-up Times From Low-Power Modes and
Reset ................................................ 39
5.33
Timer_A
5.34
5.35
Timer_B ............................................. 40
USCI (UART Mode), Recommended Operating
Conditions ........................................... 41
5.36
5.37
USCI (UART Mode) ................................. 41
USCI (SPI Master Mode), Recommended Operating
Conditions ........................................... 41
5.38
USCI (SPI Master Mode)............................ 41
5.39
USCI (SPI Slave Mode) ............................. 43
5.40
5.41
USCI (I2C Mode) .................................... 45
10-Bit ADC, Power Supply and Input Range
Conditions ........................................... 46
5.42
10-Bit ADC, Timing Parameters
5.43
10-Bit ADC, Linearity Parameters................... 47
5.44
REF, External Reference
5.45
REF, Built-In Reference ............................. 48
5.46
Comparator_B ....................................... 49
5.47
Flash Memory ....................................... 50
5.48
JTAG and Spy-Bi-Wire Interface .................... 50
5.49
DVIO BSL Entry ..................................... 51
5.3
5.4
20
20
Active Mode Supply Current Into VCC Excluding
External Current ..................................... 23
Low-Power Mode Supply Currents (Into VCC)
Excluding External Current.......................... 24
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
6
5.19
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 29
Typical Characteristics – Outputs, Reduced Drive
Strength (PxDS.y = 0) ............................... 30
Typical Characteristics – Outputs, Full Drive
Strength (PxDS.y = 1) ............................... 31
Thermal Characteristics ............................ 25
Schmitt-Trigger Inputs – General-Purpose I/O
DVCC Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3, RSTDVCC) ................................... 26
Schmitt-Trigger Inputs – General-Purpose I/O DVIO
Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5, RST/NMI, BSLEN) ............. 26
Inputs – Interrupts DVCC Domain Port P1
(P1.0 to P1.3) ....................................... 26
Inputs – Interrupts DVIO Domain Ports P1 and P2
(P1.4 to P1.7, P2.0 to P2.7)......................... 26
Leakage Current – General-Purpose I/O DVCC
Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 27
Leakage Current – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 27
Outputs – General-Purpose I/O DVCC Domain (Full
Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 27
Outputs – General-Purpose I/O DVCC Domain
(Reduced Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 27
Outputs – General-Purpose I/O DVIO Domain (Full
Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 28
Outputs – General-Purpose I/O DVIO Domain
(Reduced Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 28
Output Frequency – General-Purpose I/O DVCC
Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 29
Output Frequency – General-Purpose I/O DVIO
Domain
Table of Contents
6
7
.....................
...............................
.............................................
....................
...........................
36
37
40
46
47
Detailed Description ................................... 52
6.1
CPU (Link to user's guide) .......................... 52
6.2
Operating Modes .................................... 53
6.3
Interrupt Vector Addresses.......................... 54
6.4
Memory Organization ............................... 55
6.5
Bootstrap Loader (BSL) ............................. 57
6.6
JTAG Operation ..................................... 58
6.7
Flash Memory (Link to user's guide) ................ 59
6.8
RAM (Link to user's guide) .......................... 59
..........................................
6.9
Peripherals
6.10
Input/Output Schematics ............................ 81
60
6.11
Device Descriptors .................................. 97
Device and Documentation Support .............. 103
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
7.1
Device Support..................................... 103
7.6
Electrostatic Discharge Caution
7.2
Documentation Support ............................ 106
7.7
Export Control Notice .............................. 107
7.3
Related Links
7.8
Glossary............................................ 107
7.4
Community Resources............................. 107
7.5
Trademarks ........................................ 107
......................................
106
8
...................
107
Mechanical, Packaging, and Orderable
Information ............................................. 107
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision E (May 2014) to Revision F
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Page
Added Section 1.4 and moved all functional block diagrams to it .............................................................. 3
Added shading in Figure 4-1 to show P7.0 to P7.5 on DVIO power rail ...................................................... 9
Added shading in Figure 4-3 to show P7.0 to P7.5 on DVIO power rail ..................................................... 11
Added shading in Figure 4-5 to show P7.0 to P7.5 on DVIO power rail ..................................................... 13
Figure 4-6, 64-Pin YFF Package – F5229, F5227, F5219, F5217: changed all pin assignments (rotated signal
names 90° relative to pin names); added shading on P7.0 to P7.5 to indicate DVIO power rail ......................... 14
Removed YFF package dimensions (refer to mechanical data in Section 8) .............................................. 14
Changed all pin numbers for the YFF package in Table 4-1, Terminal Functions ......................................... 15
Corrected Supply column for P7.0 to P7.5 (changed from DVCC to DVIO) ................................................ 18
Added Section 5.2, ESD Ratings.................................................................................................. 20
Added second note "Under certain condtions during the rising transition..." on Figure 5-1 ............................... 21
Added Section 5.6, Thermal Characteristics .................................................................................... 25
Updated Test Conditions for all parameters in Section 5.43, 10-Bit ADC, Linearity Parameters: removed "VREF–";
changed from "CVREF+ = 20 pF" to "CVeREF+ = 20 pF"; changed from "(VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–)" to
"1.4 V ≤ (VeREF+ – VeREF–)" .......................................................................................................... 47
Added "CVeREF+ = 20 pF" to EI Test Conditions.................................................................................. 47
Added "ADC10SREFx = 11b" to Test Conditions for EG and ET .............................................................. 47
Removed "VREF–" from Test Conditions for VeREF+, VeREF–, and (VeREF+ – VeREF–) parameters in Section 5.44,
REF, External Reference ........................................................................................................... 47
Corrected spelling of MRG bits in fMCLK,MRG parameter symbol and description ............................................ 50
Changed all YFF pin numbers in Table 6-11, TA0 Signal Connections ..................................................... 66
Changed all YFF pin numbers in Table 6-12, TA1 Signal Connections ..................................................... 67
Changed all YFF pin numbers in Table 6-13, TA2 Signal Connections ..................................................... 68
Changed all YFF pin numbers in Table 6-14, TB0 Signal Connections ..................................................... 69
Changed P5.3 schematic (added P5SEL.2 and XT2BYPASS inputs with AND and OR gates) ......................... 89
Changed P5SEL.3 column from X to 0 for "P5.3 (I/O)" rows .................................................................. 89
Changed P5.5 schematic (added P5SEL.5 input and OR gate) .............................................................. 91
Changed P5SEL.5 column from X to 0 for "P5.5 (I/O)" rows .................................................................. 91
Revision History
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
7
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
3 Device Comparison
Table 3-1 summarizes the available family members.
Table 3-1. Family Members (1) (2)
USCI
DEVICE
FLASH
(KB)
SRAM
(KB)
Timer_A (3)
Timer_B (4)
ADC10_A
(Ch)
Comp_B
(Ch)
I/O
DVCC (5)
I/O
DVIO (6)
PACKAGE
MSP430F5229
128
8
5, 3, 3
7
2
2
10 ext,
2 int
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5227
64
8
5, 3, 3
7
2
2
10 ext,
2 int
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5224
128
8
5, 3, 3
MSP430F5222
64
8
5, 3, 3
7
2
2
8 ext, 2 int
6
20
17
48 RGZ
7
2
2
8 ext, 2 int
6
20
17
48 RGZ
CHANNEL A: CHANNEL B:
UART, IrDA,
SPI, I2C
SPI
MSP430F5219
128
8
5, 3, 3
7
2
2
-
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5217
64
8
5, 3, 3
7
2
2
-
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5214
128
8
5, 3, 3
7
2
2
-
6
20
17
48 RGZ
MSP430F5212
64
8
5, 3, 3
7
2
2
-
6
20
17
48 RGZ
(1)
(2)
(3)
(4)
(5)
(6)
8
For the most current device, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website
at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/packaging.
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
All of these I/Os reside on a single voltage rail supplied by DVCC.
All of these I/Os reside on a single voltage rail supplied by DVIO.
Device Comparison
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
4 Terminal Configuration and Functions
4.1
Pin Diagrams
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
BSLEN
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
RSTDVCC/SBWTDIO
PJ.3/TCK
Figure 4-1 shows the pinout for the MSP430F5229 and MSP430F5227 devices in the 64-pin RGC
package.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
P6.0/A0/CB0
1
48
P4.7/PM_NONE
P6.1/A1/CB1
2
47
P4.6/PM_NONE
P6.2/A2/CB2
3
46
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/A3/CB3
4
45
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P6.4/A4/CB4
5
44
P4.3/PM_UCB1CLK/PM_UCA1STE
P6.5/A5/CB5
6
43
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P6.6/A6/CB6
7
42
P4.1/PM_UCB1SIMO/PM_UCB1SDA
MSP430F5229IRGC
41
P4.0/PM_UCB1STE/PM_UCA1CLK
MSP430F5227IRGC
40
DVIO
36
P3.2/UCB0CLK/UCA0STE
14
35
P3.1/UCB0SOMI/UCB0SCL
DVCC
15
34
P3.0/UCB0SIMO/UCB0SDA
DVSS
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P2.7/UCB0STE/UCA0CLK
P2.6/RTCCLK/DMAE0
P2.5/TA2.2
13
AVSS
P2.4/TA2.1
P5.5/XOUT
P2.3/TA2.0
P3.3/UCA0TXD/UCA0SIMO
P2.1/TA1.2
37
P2.2/TA2CLK/SMCLK
12
P2.0/TA1.1
P5.4/XIN
P1.7/TA1.0
P3.4/UCA0RXD/UCA0SOMI
P1.6/TA1CLK/CBOUT
38
P1.5/TA0.4
DVSS
11
P1.4/TA0.3
39
AVCC
P1.3/TA0.2
10
P1.2/TA0.1
P5.1/A9/VeREF-
P1.1/TA0.0
9
VCORE
8
P1.0/TA0CLK/ACLK
P6.7/A7/CB7
P5.0/A8/VeREF+
Supplied by DVIO
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-1. 64-Pin RGC Package – F5229, F5227
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
9
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
P5.2/XT2IN
RST/NMI
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
P6.0/A0/CB0
P6.1/A1/CB1
P6.2/A2/CB2
Figure 4-2 shows the pinout for the MSP430F5224 and MSP430F5222 devices in the 48-pin RGZ
package.
48 47 46 45 44 43 42 41 40 39 38 37
P6.3/A3/CB3
1
36
BSLEN
P6.4/A4/CB4
2
35
P4.6/PM_NONE
P6.5/A5/CB5
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P5.0/A8/VeREF+
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.1/A9/VeREF-
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
AVCC
6
MSP430F5224IRGZ
31
P4.2/PM_UCB1SOMI/PM_UCB1SCL
MSP430F5222IRGZ
27
DVSS
11
26
P3.4/UCA0RXD/UCA0SOMI
25
12
13 14 15 16 17 18 19 20 21 22 23 24
P3.3/UCA0TXD/UCA0SIMO
P1.0/TA0CLK/ACLK
VCORE
Supplied by DVIO
P3.2/UCB0CLK/UCA0STE
10
DVSS
P3.1/UCB0SOMI/UCB0SCL
DVCC
P2.7/UCB0STE/UCA0CLK
DVIO
P3.0/UCB0SIMO/UCB0SDA
28
P1.7/TA1.0
9
P1.5/TA0.4
AVSS
P1.6/TA1CLK/CBOUT
P4.0/PM_UCB1STE/PM_UCA1CLK
P1.4/TA0.3
P4.1/PM_UCB1SIMO/PM_UCB1SDA
29
P1.3/TA0.2
30
8
P1.2/TA0.1
7
P1.1/TA0.0
P5.4/XIN
P5.5/XOUT
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-2. 48-Pin RGZ Package – F5224, F5222
10
Terminal Configuration and Functions
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
BSLEN
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
Figure 4-3 shows the pinout for the MSP430F5219 and MSP430F5217 devices in the 64-pin RGC
package.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
P6.0/CB0
1
48
P4.7/PM_NONE
P6.1/CB1
2
47
P4.6/PM_NONE
P6.2/CB2
3
46
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/CB3
4
45
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P6.4/CB4
5
44
P4.3/PM_UCB1CLK/PM_UCA1STE
P6.5/CB5
6
43
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P6.6/CB6
7
42
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P6.7/CB7
8
MSP430F5219IRGC
41
P4.0/PM_UCB1STE/PM_UCA1CLK
P5.0
9
MSP430F5217IRGC
40
DVIO
P5.1
10
39
DVSS
AVCC
11
38
P3.4/UCA0RXD/UCA0SOMI
P2.7/UCB0STE/UCA0CLK
P2.6/RTCCLK/DMAE0
P2.5/TA2.2
P2.4/TA2.1
P2.3/TA2.0
P3.0/UCB0SIMO/UCB0SDA
P2.1/TA1.2
34
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P2.2/TA2CLK/SMCLK
15
DVSS
P2.0/TA1.1
DVCC
P1.7/TA1.0
P3.1/UCB0SOMI/UCB0SCL
P1.6/TA1CLK/CBOUT
35
P1.5/TA0.4
14
P1.4/TA0.3
AVSS
P1.3/TA0.2
P3.2/UCB0CLK/UCA0STE
P1.2/TA0.1
P3.3/UCA0TXD/UCA0SIMO
36
P1.1/TA0.0
37
13
VCORE
12
P1.0/TA0CLK/ACLK
P5.4/XIN
P5.5/XOUT
Supplied by DVIO
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-3. 64-Pin RGC Package – F5219, F5217
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
11
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
P6.0/CB0
P6.1/CB1
P6.2/CB2
Figure 4-4 shows the pinout for the MSP430F5214 and MSP430F5212 devices in the 48-pin RGZ
package.
48 47 46 45 44 43 42 41 40 39 38 37
P6.3/CB3
1
36
BSLEN
P6.4/CB4
2
35
P4.6/PM_NONE
P6.5/CB5
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P5.0
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.1
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
AVCC
6
MSP430F5214IRGZ
31
P4.2/PM_UCB1SOMI/PM_UCB1SCL
MSP430F5212IRGZ
27
DVSS
11
26
P3.4/UCA0RXD/UCA0SOMI
12
25
13 14 15 16 17 18 19 20 21 22 23 24
P3.3/UCA0TXD/UCA0SIMO
P1.0/TA0CLK/ACLK
VCORE
Supplied by DVIO
P3.2/UCB0CLK/UCA0STE
10
DVSS
P3.1/UCB0SOMI/UCB0SCL
DVCC
P2.7/UCB0STE/UCA0CLK
DVIO
P3.0/UCB0SIMO/UCB0SDA
28
P1.7/TA1.0
9
P1.5/TA0.4
AVSS
P1.6/TA1CLK/CBOUT
P4.0/PM_UCB1STE/PM_UCA1CLK
P1.4/TA0.3
P4.1/PM_UCB1SIMO/PM_UCB1SDA
29
P1.3/TA0.2
30
8
P1.2/TA0.1
7
P1.1/TA0.0
P5.4/XIN
P5.5/XOUT
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-4. 48-Pin RGZ Package – F5214, F5212
12
Terminal Configuration and Functions
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Figure 4-5 shows the pinout for the MSP430F5229, MSP430F5227, MSP430F5219, and MSP430F5217
devices in the 80-pin ZQE package.
TEST RST/NMI P7.5
P7.4
P7.3
P7.1
A4
A5
A7
A8
A9
PJ.3
P5.3
P5.2
B3
B4
B5
P6.3
PJ.1
PJ.0
C2
C4
C5
C6
D4
D5
D6
P6.0 RSTDVCC PJ.2
A1
A2
A3
P6.2
P6.1
B1
B2
P6.4
C1
P6.6
P6.5
P6.7
D1
D2
D3
P5.0
P5.1
E1
E2
P5.4
AVCC
F1
F2
P5.5
AVSS
G1
G2
G3
DVCC
P1.0
H1
H2
J2
BSLEN P7.2
B6
P7.0
B7
B8
B9
P4.7
P4.6
P4.5
C7
C8
C9
P4.4
P4.3
P4.2
D7
D8
D9
P4.1
P4.0
DVIO
E3
E4
E5
E6
E7
E8
F3
F4
F5
F6
F7
F8
E9
F9
P1.3
P1.6
P2.1
P3.4
P3.2
P3.3
G4
G5
G6
G7
G8
G9
P1.1
P1.4
P1.7
P2.3
P2.7
P3.0
P3.1
H3
H4
H5
H6
H7
H8
H9
P1.5
P2.0
P2.2
P2.4
P2.5
P2.6
J4
J5
J6
J7
J8
J9
DVSS
DVSS VCORE P1.2
J1
A6
J3
Supplied by DVIO
Figure 4-5. 80-Pin ZQE Package – F5229, F5227, F5219, F5217
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
13
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Figure 4-6 shows the pinout for the MSP430F5229, MSP430F5227, MSP430F5219, and MSP430F5217
devices in the 64-pin YFF package.
Top View
D
Ball-Side View
H8
H7
H6
H5
H4
H3
H2
H1
H1
H2
H3
H4
H5
H6
H7
H8
P7.0
P7.3
P7.5
P5.2
P5.3
PJ.1
PJ.3
P6.1
P6.1
PJ.3
PJ.1
P5.3
P5.2
P7.5
P7.3
P7.0
G6
G5
G4
G4
G5
G6
G8
G7
P4.6
P7.1
F8
F7
P4.4
P4.7
P7.4 BSLEN PJ.0
F5
G3
G2
G1
G1
G2
G3
P6.0
P6.2
P6.4
P6.4
P6.2
P6.0
F3
F2
F1
F1
F2
F3
P7.2 RST/NMI PJ.2
P6.3
P6.5
P6.7
P6.7
P6.5
P6.3
E5
E3
F6
E8
E7
E6
P4.1
P4.3
P4.5
F4
E4
TEST RSTDVCC P6.6
E2
E1
P5.0
P5.1
D
E1
E2
P5.1
P5.0
E3
PJ.0 BSLEN P7.4
F5
F4
F6
PJ.2 RST/NMI P7.2
E5
E4
P6.6 RSTDVCC TEST
G7
G8
P7.1
P4.6
F7
F8
P4.7
P4.4
E6
E7
E8
P4.5
P4.3
P4.1
D8
D7
D6
D5
D4
D3
D2
D1
D1
D2
D3
D4
D5
D6
D7
D8
DVIO
P3.4
P4.0
P4.2
P2.1
P1.4
AVCC
P5.4
P5.4
AVCC
P1.4
P2.1
P4.2
P4.0
P3.4
DVIO
C8
C7
C6
C5
C4
C3
C2
C1
C1
C2
C3
C4
C5
C6
C7
C8
DVSS
P3.2
P2.7
P2.4
P1.7
P1.3
AVSS
P5.5
P5.5
AVSS
P1.3
P1.7
P2.4
P2.7
P3.2
DVSS
B8
B7
B6
B5
B4
B3
B2
B1
B1
B2
B3
B4
B5
B6
B7
B8
P3.3
P3.1
P2.5
P2.2
P1.6
P1.1
P1.0
DVCC
DVCC
P1.0
P1.1
P1.6
P2.2
P2.5
P3.1
P3.3
A3
A2
A1
A1
A2
A3
A8
A7
A6
A5
A4
P3.0
P2.6
P2.3
P2.0
P1.5
P1.2 VCORE DVSS
E
DVSS VCORE P1.2
A4
A5
A6
A7
A8
P1.5
P2.0
P2.3
P2.6
P3.0
E
Supplied by DVIO
Figure 4-6. 64-Pin YFF Package – F5229, F5227, F5219, F5217
14
Terminal Configuration and Functions
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
4.2
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Signal Descriptions
Table 4-1 describes the signals for all device variants and package options.
Table 4-1. Terminal Functions
TERMINAL
NAME
NO.
RGC
ZQE
YFF
RGZ
5
C1
G1
2
I/O (1)
SUPPLY
I/O
DVCC
DESCRIPTION
General-purpose digital I/O
P6.4/CB4/A4
Comparator_B input CB4
Analog input A4 for ADC (not available on all device types)
General-purpose digital I/O
P6.5/CB5/A5
6
D2
F2
3
I/O
DVCC
Comparator_B input CB5
Analog input A5 for ADC (not available on all device types)
General-purpose digital I/O (not available on all device types)
P6.6/CB6/A6
7
D1
E3
N/A
I/O
DVCC
Comparator_B input CB6 (not available on all device types)
Analog input A6 for ADC (not available on all device types)
General-purpose digital I/O (not available on all device types)
P6.7/CB7/A7
8
D3
F1
N/A
I/O
DVCC
Comparator_B input CB7 (not available on all device types)
Analog input A7 for ADC (not available on all device types)
General-purpose digital I/O
P5.0/A8/VeREF+
9
E1
E2
4
I/O
DVCC
Analog input A8 for ADC (not available on all device types)
Input for an external reference voltage to the ADC (not available
on all device types)
General-purpose digital I/O
Analog input A9 for ADC (not available on all device types)
P5.1/A9/VeREF-
10
E2
E1
5
I/O
DVCC
AVCC
11
F2
D2
6
P5.4/XIN
12
F1
D1
7
I/O
DVCC
P5.5/XOUT
13
G1
C1
8
I/O
DVCC
AVSS
14
G2
C2
9
Analog ground supply
DVCC
15
H1
B1
10
Digital power supply
DVSS
16
J1
A1
11
Digital ground supply
VCORE (3)
17
J2
A2
12
P1.0/TA0CLK/ACLK
18
H2
B2
13
Negative terminal for the ADC's reference voltage for an
external applied reference voltage (not available on all device
types)
Analog power supply
DVCC
General-purpose digital I/O
Input terminal for crystal oscillator XT1 (2)
General-purpose digital I/O
Output terminal of crystal oscillator XT1
Regulated core power supply output (internal use only, no
external current loading)
General-purpose digital I/O with port interrupt
I/O
DVCC
TA0 clock signal TA0CLK input
ACLK output (divided by 1, 2, 4, 8, 16, or 32)
General-purpose digital I/O with port interrupt
P1.1/TA0.0
19
H3
B3
14
I/O
DVCC
TA0 CCR0 capture: CCI0A input, compare: Out0 output
BSL transmit output
General-purpose digital I/O with port interrupt
P1.2/TA0.1
20
J3
A3
15
I/O
DVCC
TA0 CCR1 capture: CCI1A input, compare: Out1 output
BSL receive input
(1)
(2)
(3)
I = input, O = output, N/A = not available
When in crystal bypass mode, XIN can be configured so that it can support an input digital waveform with swing levels from DVSS to
DVCC or DVSS to DVIO. In this case, it is required that the pin be configured properly for the intended input swing.
VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
15
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
NO.
I/O (1)
SUPPLY
RGC
ZQE
YFF
RGZ
P1.3/TA0.2
21
G4
C3
16
I/O
DVCC
P1.4/TA0.3
22
H4
D3
17
I/O
DVIO (4)
P1.5/TA0.4
23
J4
A4
18
I/O
DVIO (4)
P1.6/TA1CLK/CBOUT
24
G5
B4
19
I/O
DVIO (4)
DESCRIPTION
General-purpose digital I/O with port interrupt
TA0 CCR2 capture: CCI2A input, compare: Out2 output
General-purpose digital I/O with port interrupt
TA0 CCR3 capture: CCI3A input compare: Out3 output
General-purpose digital I/O with port interrupt
TA0 CCR4 capture: CCI4A input, compare: Out4 output
General-purpose digital I/O with port interrupt
TA1 clock signal TA1CLK input
Comparator_B output
P1.7/TA1.0
P2.0/TA1.1
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
25
26
27
28
H5
J5
G6
J6
C4
A5
D4
B5
20
N/A
N/A
N/A
I/O
DVIO (4)
I/O
(4)
DVIO
TA1 CCR0 capture: CCI0A input, compare: Out0 output
General-purpose digital I/O with port interrupt (not available on
all device types)
TA1 CCR1 capture: CCI1A input, compare: Out1 output (not
available on all device types)
I/O
DVIO (4)
I/O
(4)
DVIO
General-purpose digital I/O with port interrupt
General-purpose digital I/O with port interrupt (not available on
all device types)
TA1 CCR2 capture: CCI2A input, compare: Out2 output (not
available on all device types)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA2 clock signal TA2CLK input
SMCLK output (not available on all device types)
P2.3/TA2.0
P2.4/TA2.1
P2.5/TA2.2
29
30
31
H6
J7
J8
A6
C5
B6
N/A
N/A
N/A
I/O
I/O
I/O
DVIO
(4)
DVIO
(4)
DVIO
(4)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA2 CCR0 capture: CCI0A input, compare: Out0 output (not
available on all device types)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA2 CCR1 capture: CCI1A input, compare: Out1 output (not
available on all device types)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA2 CCR2 capture: CCI2A input, compare: Out2 output (not
available on all device types)
General-purpose digital I/O with port interrupt (not available on
all device types)
P2.6/RTCCLK/DMAE0
32
J9
A7
N/A
I/O
DVIO (4)
RTC clock output for calibration (not available on all device
types)
DMA external trigger input (not available on all device types)
General-purpose digital I/O
P2.7/UCB0STE/
UCA0CLK
33
P3.0/UCB0SIMO/
UCB0SDA
34
H7
C6
21
I/O
DVIO (4)
Slave transmit enable – USCI_B0 SPI mode
Clock signal input – USCI_A0 SPI slave mode
Clock signal output – USCI_A0 SPI master mode
General-purpose digital I/O
(4)
16
H8
A8
22
I/O
DVIO (4)
Slave in, master out – USCI_B0 SPI mode
I2C data – USCI_B0 I2C mode
This pin function is supplied by DVIO. See Section 5.8 for input and output requirements.
Terminal Configuration and Functions
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
NO.
RGC
ZQE
YFF
RGZ
35
H9
B7
23
I/O (1)
SUPPLY
I/O
DVIO (4)
DESCRIPTION
General-purpose digital I/O
P3.1/UCB0SOMI/
UCB0SCL
Slave out, master in – USCI_B0 SPI mode
I2C clock – USCI_B0 I2C mode
General-purpose digital I/O
P3.2/UCB0CLK/
UCA0STE
36
G8
C7
24
I/O
DVIO (4)
Clock signal input – USCI_B0 SPI slave mode
Clock signal output – USCI_B0 SPI master mode
Slave transmit enable – USCI_A0 SPI mode
General-purpose digital I/O
P3.3/UCA0TXD/
UCA0SIMO
37
G9
B8
25
I/O
DVIO (4)
Transmit data – USCI_A0 UART mode
Slave in, master out – USCI_A0 SPI mode
General-purpose digital I/O
P3.4/UCA0RXD/
UCA0SOMI
38
G7
D7
26
DVSS
39
F9
C8
27
Digital ground supply
DVIO (5)
40
E9
D8
28
Digital I/O power supply
I/O
DVIO (4)
Receive data – USCI_A0 UART mode
Slave out, master in – USCI_A0 SPI mode
General-purpose digital I/O with reconfigurable port mapping
secondary function
P4.0/PM_UCB1STE/
PM_UCA1CLK
P4.1/PM_UCB1SIMO/
PM_UCB1SDA
41
E8
D6
29
I/O
DVIO (4)
Default mapping: Slave transmit enable – USCI_B1 SPI mode
Default mapping: Clock signal input – USCI_A1 SPI slave mode
Default mapping: Clock signal output – USCI_A1 SPI master
mode
42
E7
E8
30
I/O
DVIO (4)
General-purpose digital I/O with reconfigurable port mapping
secondary function
Default mapping: Slave in, master out – USCI_B1 SPI mode
Default mapping: I2C data – USCI_B1 I2C mode
P4.2/PM_UCB1SOMI/
PM_UCB1SCL
43
D9
D5
31
I/O
DVIO (4)
General-purpose digital I/O with reconfigurable port mapping
secondary function
Default mapping: Slave out, master in – USCI_B1 SPI mode
Default mapping: I2C clock – USCI_B1 I2C mode
General-purpose digital I/O with reconfigurable port mapping
secondary function
P4.3/PM_UCB1CLK/
PM_UCA1STE
44
D8
E7
32
I/O
DVIO (4)
Default mapping: Clock signal input – USCI_B1 SPI slave mode
Default mapping: Clock signal output – USCI_B1 SPI master
mode
Default mapping: Slave transmit enable – USCI_A1 SPI mode
P4.4/PM_UCA1TXD/
PM_UCA1SIMO
45
D7
F8
33
I/O
DVIO (4)
General-purpose digital I/O with reconfigurable port mapping
secondary function
Default mapping: Transmit data – USCI_A1 UART mode
Default mapping: Slave in, master out – USCI_A1 SPI mode
P4.5/PM_UCA1RXD/
PM_UCA1SOMI
46
C9
E6
34
I/O
DVIO (4)
General-purpose digital I/O with reconfigurable port mapping
secondary function
Default mapping: Receive data – USCI_A1 UART mode
Default mapping: Slave out, master in – USCI_A1 SPI mode
P4.6/PM_NONE
47
C8
G8
35
I/O
DVIO (4)
General-purpose digital I/O with reconfigurable port mapping
secondary function
Default mapping: no secondary function
(5)
The voltage on DVIO is not supervised or monitored.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
17
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
I/O (1)
NO.
RGC
ZQE
YFF
SUPPLY
DESCRIPTION
RGZ
(4)
General-purpose digital I/O with reconfigurable port mapping
secondary function (not available on all device types)
P4.7/PM_NONE
48
C7
F7
N/A
I/O
DVIO
P7.0/TB0.0
49
B8,
B9
H8
N/A
I/O
DVIO (4)
P7.1/TB0.1
50
A9
G7
N/A
I/O
DVIO (4)
P7.2/TB0.2
51
B7
F6
N/A
I/O
DVIO (4)
P7.3/TB0.3
52
A8
H7
N/A
I/O
DVIO (4)
P7.4/TB0.4
53
A7
G6
N/A
I/O
DVIO (4)
P7.5/TB0.5
54
A6
H6
N/A
I/O
DVIO (4)
TB0 CCR5 capture: CCI5A input, compare: Out5 output (not
available on all device types)
BSLEN
55
B6
G5
36
I
DVIO (4)
BSL enable with internal pulldown
RST/NMI
56
A5
F5
37
I
DVIO (4)
P5.2/XT2IN
57
B5
H5
38
I/O
DVCC
P5.3/XT2OUT
58
B4
H4
39
I/O
DVCC
TEST/SBWTCK (9)
59
A4
E5
40
I
DVCC
PJ.0/TDO (10)
60
C5
G4
41
I/O
DVCC
PJ.1/TDI/TCLK (10)
61
C4
H3
42
I/O
DVCC
PJ.2/TMS (10)
62
A3
F4
43
I/O
DVCC
PJ.3/TCK (10)
63
B3
H2
44
I/O
DVCC
Default mapping: no secondary function (not available on all
device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR0 capture: CCI0A input, compare: Out0 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR1 capture: CCI1A input, compare: Out1 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR2 capture: CCI2A input, compare: Out2 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR3 capture: CCI3A input, compare: Out3 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR4 capture: CCI4A input, compare: Out4 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
Reset input active low (6) (7)
Nonmaskable interrupt input (6)
General-purpose digital I/O
Input terminal for crystal oscillator XT2 (8)
General-purpose digital I/O
Output terminal of crystal oscillator XT2
Test mode pin – Selects four wire JTAG operation
Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated
General-purpose digital I/O
JTAG test data output port
General-purpose digital I/O
JTAG test data input or test clock input
General-purpose digital I/O
JTAG test mode select
General-purpose digital I/O
JTAG test clock
(6)
This pin is configurable as reset or NMI and resides on the DVIO supply domain. When driven from external, input swing levels from
DVSS to DVIO are required.
(7) When this pin is configured as reset, the internal pullup resistor is enabled by default.
(8) When in crystal bypass mode, XT2IN can be configured so that it can support an input digital waveform with swing levels from DVSS to
DVCC or DVSS to DVIO. In this case, it is required that the pin be configured properly for the intended input swing.
(9) See Section 6.5 and Section 6.6 for use with BSL and JTAG functions.
(10) See Section 6.6 for use with JTAG function.
18
Terminal Configuration and Functions
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
I/O (1)
NO.
RGC
ZQE
YFF
SUPPLY
DESCRIPTION
RGZ
Reset input, active-low (11)
RSTDVCC/
SBWTDIO (10)
64
A2
E4
45
I/O
DVCC
P6.0/CB0/A0
1
A1
G3
46
I/O
DVCC
Spy-Bi-Wire data input/output when Spy-Bi-Wire operation
activated
General-purpose digital I/O
Comparator_B input CB0
Analog input A0 for ADC (not available on all device types)
General-purpose digital I/O
P6.1/CB1/A1
2
B2
H1
47
I/O
DVCC
Comparator_B input CB1
Analog input A1 for ADC (not available on all device types)
General-purpose digital I/O
P6.2/CB2/A2
3
B1
G2
48
I/O
DVCC
Comparator_B input CB2
Analog input A2 for ADC (not available on all device types)
General-purpose digital I/O
P6.3/CB3/A3
4
C2
F3
1
I/O
DVCC
Comparator_B input CB3
Analog input A3 for ADC (not available on all device types)
Reserved
N/A
(12)
N/A
N/A
Reserved
QFN Pad
Pad
N/A
N/A
Pad
QFN thermal pad. TI recommends connecting to VSS.
(11) This nonconfigurable reset resides on the DVCC supply domain and has an internal pullup to DVCC. When driven from external, input
swing levels from DVSS to DVCC are required. This reset must be used for Spy-Bi-Wire communication and is not the same RST/NMI
reset as found on other devices in the MSP430 family. See Section 6.5 and Section 6.6 for details regarding the use of this pin.
(12) C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
19
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5 Specifications
Absolute Maximum Ratings (1)
5.1
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
Voltage applied at VCC to VSS
–0.3
4.1
V
Voltage applied at VIO to VSS
–0.3
2.2
V
Voltage applied to any pin (excluding VCORE and VIO pins) (2)
–0.3
VCC + 0.3
V
Voltage applied to VIO pins
–0.3
VIO + 0.2
Diode current at any device pin
Storage temperature, Tstg (3)
(1)
(2)
(3)
–55
UNIT
V
±2
mA
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.
Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
5.2
ESD Ratings
VALUE
V(ESD)
(1)
(2)
5.3
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001
(1)
UNIT
±1000
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)
V
±250
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±1000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V
may actually have higher performance.
Recommended Operating Conditions
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)
MIN
VCC
Supply voltage during program execution and flash
programming (AVCC = DVCC) (1) (2) (3)
VIO
Supply voltage applied to DVIO referenced to VSS (2)
VSS
Supply voltage (AVSS = DVSS)
TA
Operating free-air temperature
TJ
Operating junction temperature
Recommended capacitor at VCORE
CDVCC/
CVCORE
Capacitor ratio of DVCC to VCORE
(1)
(2)
(3)
(4)
20
MAX
1.8
3.6
PMMCOREVx = 0, 1
2.0
3.6
PMMCOREVx = 0, 1, 2
2.2
3.6
PMMCOREVx = 0, 1, 2, 3
CVCORE
NOM
PMMCOREVx = 0
UNIT
V
2.4
3.6
1.62
1.98
V
–40
85
°C
–40
85
°C
0
(4)
V
470
nF
10
TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
During VCC and VIO power up, it is required that VIO ≥ VCC during the ramp up phase of VIO. During VCC and VIO power down, it is
required that VIO ≥ VCC during the ramp down phase of VIO (see Figure 5-1).
The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 5.28 threshold parameters for
the exact values and further details.
A capacitor tolerance of ±20% or better is required.
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Recommended Operating Conditions (continued)
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)
MIN
fSYSTEM
(5)
Processor frequency (maximum MCLK frequency) (5)
(see Figure 5-3)
NOM
MAX
PMMCOREVx = 0
(default condition),
1.8 V ≤ VCC ≤ 3.6 V
0
8
PMMCOREVx = 1,
2.0 V ≤ VCC ≤ 3.6 V
0
12
PMMCOREVx = 2,
2.2 V ≤ VCC ≤ 3.6 V
0
20
PMMCOREVx = 3,
2.4 V ≤ VCC ≤ 3.6 V
0
25
UNIT
MHz
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
VCC
VIO
VIO,min
VSS
t
VCC ≤ VIO
while VIO < VIO,min
VIO ≤ VCC
VCC ≤ VIO
while VIO < VIO,min
NOTE: The device supports continuous operation with VCC = VSS while VIO is fully within its specification. During this time, the
general-purpose I/Os that reside on the VIO supply domain are configured as inputs and pulled down to VSS through
their internal pulldown resistors. RST/NMI is high impedance. BSLEN is configured as an input and is pulled down to
VSS through its internal pulldown resistor. When VCC reaches above the BOR threshold, the general-purpose I/Os
become high-impedance inputs (no pullup or pulldown enabled), RST/NMI becomes an input pulled up to VIO through
its internal pullup resistor, and BSLEN remains pulled down to VSS through its internal pulldown resistor.
NOTE: Under certain condtions during the rising transition of VCC, the general-purpose I/Os residing on the VIO supply
domain may actively transition high momentarily before settling to high-impedance inputs. These voltage transitions
are temporary (typically resolving to high-impedance inputs when VCC exceeds approximately 0.9 V) and are bounded
by the VIO supply.
Figure 5-1. VCC and VIO Power Sequencing
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
21
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
VCC
V(SVSH_+), min
tWAKE_UP_RESET
tWAKE_UP_RESET
DVCC
tWAKE_UP_RESET
VCC
VIT+
RSTDVCC
VCC ≥ VRSTDVCC
VRSTDVCC = VCC
VIO
tWAKE_UP_RESET
DVIO
tWAKE_UP_RESET
VIO
VIT+
RST
VIO ≥ VRST
VRST = VIO
t
NOTE: The device remains in reset based on the conditions of the RSTDVCC and RST pins and the voltage present on
DVCC voltage supply. If RSTDVCC or RST is held at a logic low or if DVCC is below the SVSH_+ minimum
threshold, the device remains in its reset condition; that is, these conditions form a logical OR with respect to device
reset.
Figure 5-2. Reset Timing
22
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
25
System Frequency - MHz
3
20
2
2, 3
1
1, 2
1, 2, 3
0, 1
0, 1, 2
0, 1, 2, 3
12
8
0
0
1.8
2.2
2.0
2.4
3.6
Supply Voltage - V
The numbers within the fields denote the supported PMMCOREVx settings.
Figure 5-3. Maximum System Frequency
5.4
Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted) (1)
(2) (3)
FREQUENCY (fDCO = fMCLK = fSMCLK)
PARAMETER
EXECUTION
MEMORY
VCC
PMMCOREVx
1 MHz
TYP
IAM,
IAM,
(1)
(2)
(3)
Flash
RAM
Flash
RAM
3.0 V
3.0 V
MAX
0.47
8 MHz
TYP
2.32
MAX
12 MHz
TYP
20 MHz
MAX
TYP
0
0.36
1
0.40
2.65
4.0
2
0.44
2.90
4.3
7.1
3
0.46
4.6
7.6
0
0.20
1
0.22
1.35
2.0
2
0.24
1.50
2.2
3.7
3
0.26
1.60
2.4
3.9
1.20
TYP
UNIT
MAX
2.60
3.10
0.29
25 MHz
MAX
4.4
mA
7.7
10.1
11.0
1.30
2.2
mA
4.2
5.3
6.2
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Characterized with program executing typical data processing.
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
23
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.5
www.ti.com
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
PARAMETER
ILPM0,1MHz
Low-power mode 0 (3) (4)
ILPM2
Low-power mode 2 (5) (4)
85°C
0
73
77
91
80
85
97
3.0 V
3
79
83
99
88
95
107
2.2 V
0
6.5
6.5
12
10
11
17
3.0 V
3
7.0
7.0
13
11
12
18
0
1.60
1.90
2,8
6.0
1
1.65
2.00
3.0
6.3
2
1.75
2.15
3.2
6.6
0
1.8
2.1
3.0
6.2
1
1.9
2.3
3.2
6.5
2
2.0
2.4
3.3
6.8
3
2.0
2.5
3.9
3.4
6.8
10.9
0
1.1
1.4
2.7
2.0
6.1
9.7
1
1.1
1.4
2.2
6.4
2
1.2
1.5
2.3
6.8
3
1.3
1.6
3.0
2.3
6.8
10.9
0
0.9
1.1
1.5
2.0
5.1
8.8
1
1.1
1.2
2.1
5.3
2
1.2
1.2
2.2
5.5
3.0 V
ILPM3,VLO
60°C
2.2 V
Low-power mode 3, crystal
mode (6) (4)
Low-power mode 3,
VLO mode (7) (4)
25°C
PMMCOREVx
2.2 V
ILPM3,XT1LF
–40°C
VCC
3.0 V
TYP
MAX
TYP
MAX
2.9
TYP
MAX
TYP
MAX
9.4
Low-power mode 4 (8) (4)
3.0 V
1.3
1.3
1.6
2.2
5.5
9.8
ILPM4.5
Low-power mode 4.5 (9)
3.0 V
0.15
0.18
0.35
0.26
0.5
1.0
IDVIO_START
Current supplied from
DVIO while
DVCC = AVCC = 0 V,
DVIO = 1.62 V to 1.98 V,
All DVIO I/O floating
including BSLEN and
RST/NMI
0V
1.8
1.8
1.8
1.8
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
24
µA
µA
µA
µA
ILPM4
3
UNIT
µA
µA
µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Current for the watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz
Current for brownout and high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)
disabled. High-side monitor (SVMH) disabled. RAM retention enabled.
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1
MHz operation, DCO bias generator enabled.)
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Internal regulator disabled. No data retention.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
5.6
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Thermal Characteristics
VALUE (1)
RθJA
Junction-to-ambient thermal resistance, still air
RθJC(TOP)
Junction-to-case (top) thermal resistance
RθJC(BOTTOM)
RθJB
ΨJT
ΨJB
(1)
(2)
Junction-to-case (bottom) thermal resistance
Junction-to-board thermal resistance
Junction-to-package-top thermal characterization parameter
Junction-to-board thermal characterization parameter
VQFN 48 (RGZ)
27.8
VQFN 64 (RGC)
29.6
DSBGA 64 (YFF)
44.3
BGA 80 (ZQE)
35.2
VQFN 48 (RGZ)
13.6
VQFN 64 (RGC)
14.8
DSBGA 64 (YFF)
0.2
BGA 80 (ZQE)
17.6
VQFN 48 (RGZ)
0.9
VQFN 64 (RGC)
1.4
DSBGA 64 (YFF)
N/A (2)
BGA 80 (ZQE)
N/A
VQFN 48 (RGZ)
4.7
VQFN 64 (RGC)
8.5
DSBGA 64 (YFF)
6.0
BGA 80 (ZQE)
16.7
VQFN 48 (RGZ)
0.2
VQFN 64 (RGC)
0.2
DSBGA 64 (YFF)
0.6
BGA 80 (ZQE)
0.3
VQFN 48 (RGZ)
4.7
VQFN 64 (RGC)
8.4
DSBGA 64 (YFF)
6.0
BGA 80 (ZQE)
9.6
UNIT
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
N/A = not applicable
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
25
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Schmitt-Trigger Inputs – General-Purpose I/O DVCC Domain (1)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RSTDVCC)
5.7
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup or pulldown resistor (2)
For pullup: VIN = VSS,
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
(1)
(2)
VCC
MIN
1.8 V
0.80
TYP
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.8
3V
0.4
1.0
20
35
MAX
50
5
UNIT
V
V
V
kΩ
pF
Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).
RSTDVCC has a fixed pullup resistor that cannot be disabled.
5.8
Schmitt-Trigger Inputs – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5, RST/NMI, BSLEN)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VCC = 3.0 V
VIT–
Negative-going input threshold voltage
VCC = 3.0 V
Vhys
Input voltage hysteresis (VIT+ – VIT–)
VCC = 3.0 V
RPull
Pullup or pulldown resistor (1)
For pullup: VIN = VSS,
For pulldown: VIN = VIO
CI
Input capacitance
VIN = VSS or VIO
(1)
5.9
VIO
MIN
1.62 V
0.8
TYP
1.25
1.98 V
1.1
1.40
1.62 V
0.3
0.7
1.98 V
0.5
1.0
1.62 V to 1.98 V
0.3
0.8
V
50
kΩ
20
MAX
35
5
UNIT
V
V
pF
Also applies to RST pin when pullup or pulldown resistor is enabled.
Inputs – Interrupts DVCC Domain Port P1
(P1.0 to P1.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
t(int)
(1)
External interrupt timing
TEST CONDITIONS
(1)
VCC
External trigger pulse duration to set interrupt flag
1.8 V, 3 V
MIN
MAX
20
UNIT
ns
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
5.10 Inputs – Interrupts DVIO Domain Ports P1 and P2
(P1.4 to P1.7, P2.0 to P2.7)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
t(int)
(1)
(2)
26
External interrupt timing (2)
VIO (1)
TEST CONDITIONS
External trigger pulse duration to set interrupt flag,
VCC = 1.8 V or 3.0 V
1.62 V to 1.98 V
MIN
MAX
20
UNIT
ns
In all test conditions, VIO ≤ VCC.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.11 Leakage Current – General-Purpose I/O DVCC Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
High-impedance leakage current
TEST CONDITIONS
(1) (2)
VCC
MIN
MAX
1.8 V, 3 V
–50
50
UNIT
nA
The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
5.12 Leakage Current – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
(3)
High-impedance leakage current
TEST CONDITIONS
(2) (3)
VIO
(1)
1.62 V to 1.98 V
MIN
MAX
–50
50
UNIT
nA
In all test conditions, VIO ≤ VCC.
The leakage current is measured with VSS or VIO applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
5.13 Outputs – General-Purpose I/O DVCC Domain (Full Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –3 mA (1)
VOH
High-level output voltage
I(OHmax) = –10 mA (2)
VCC
1.8 V
I(OHmax) = –5 mA (1)
3V
I(OHmax) = –15 mA (2)
I(OLmax) = 3 mA
VOL
Low-level output voltage
(2)
MAX
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
(1)
1.8 V
I(OLmax) = 10 mA (2)
I(OLmax) = 5 mA (1)
3V
I(OLmax) = 15 mA (2)
(1)
MIN
VCC – 0.25
UNIT
V
V
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage
drop specified.
5.14 Outputs – General-Purpose I/O DVCC Domain (Reduced Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
I(OHmax) = –1 mA
VOH
High-level output voltage
I(OHmax) = –3 mA (3)
I(OHmax) = –2 mA (2)
I(OHmax) = –6 mA (3)
I(OLmax) = 1 mA
VOL
Low-level output voltage
(3)
1.8 V
3.0 V
(2)
I(OLmax) = 3 mA (3)
I(OLmax) = 2 mA (2)
I(OLmax) = 6 mA (3)
(1)
(2)
VCC
(2)
1.8 V
3.0 V
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
UNIT
V
V
Selecting reduced drive strength may reduce EMI.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
27
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.15 Outputs – General-Purpose I/O DVIO Domain (Full Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VOH
High-level output voltage
VOL
Low-level output voltage
(1)
(2)
TEST CONDITIONS
I(OHmax) = –3 mA
VIO (1)
(2)
I(OHmax) = –6 mA (2)
I(OLmax) = 3 mA (2)
I(OLmax) = 6 mA (2)
1.62 V to 1.98 V
MIN
MAX
VIO – 0.25
VIO
VIO – 0.50
VIO
VSS VSS + 0.25
1.62 V to 1.98 V
VSS VSS + 0.50
UNIT
V
V
In all test conditions, VIO ≤ VCC.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
5.16 Outputs – General-Purpose I/O DVIO Domain (Reduced Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
VOH
High-level output voltage
VOL
Low-level output voltage
(1)
(2)
(3)
28
TEST CONDITIONS
I(OHmax) = –1 mA
VIO (2)
(3)
I(OHmax) = –2 mA (3)
I(OLmax) = 1 mA (3)
I(OLmax) = 2 mA (3)
1.62 V to 1.98 V
1.62 V to 1.98 V
MIN
MAX
VIO – 0.25
VIO
VIO – 0.50
VIO
VSS VSS + 0.25
VSS VSS + 0.50
UNIT
V
V
Selecting reduced drive strength may reduce EMI.
In all test conditions, VIO ≤ VCC.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.17 Output Frequency – General-Purpose I/O DVCC Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Port output frequency
(with load)
fPx.y
fPort_CLK
(1)
(2)
Clock output frequency
TEST CONDITIONS
(1) (2)
ACLK, SMCLK, or MCLK,
CL = 20 pF (2)
MIN
MAX
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
UNIT
MHz
MHz
A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
5.18 Output Frequency – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Port output frequency
(with load)
fPx.y
fPort_CLK
(1)
(2)
(3)
Clock output frequency
TEST CONDITIONS
(1) (2)
ACLK, SMCLK, or MCLK,
CL = 20 pF (2)
MIN
MAX
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 0
16
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 3
25
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 0
16
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 3
25
UNIT
MHz
MHz
A resistive divider with 2 × R1 between VIO and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS.
The output voltage reaches at least 10% and 90% VIO at the specified toggle frequency.
In all test conditions, VIO ≤ VCC.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
29
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.19 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
8.0
VCC = 3.0 V
Px.y
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
25.0
TA = 25°C
20.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VOL – Low-Level Output Voltage – V
Figure 5-4. Typical Low-Level Output Current vs Low-Level
Output Voltage
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
-5.0
-10.0
TA = 85°C
TA = 25°C
3.0
2.0
1.0
0.5
1.0
1.5
2.0
VCC = 1.8 V
Px.y
-1.0
-2.0
-3.0
-4.0
TA = 85°C
-5.0
-6.0
TA = 25°C
-7.0
-8.0
-25.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 5-6. Typical High-Level Output Current vs High-Level
Output Voltage
30
4.0
0.0
VCC = 3.0 V
Px.y
-20.0
5.0
VOL – Low-Level Output Voltage – V
Figure 5-5. Typical Low-Level Output Current vs Low-Level
Output Voltage
0.0
-15.0
TA = 85°C
6.0
0.0
0.0
3.5
TA = 25°C
VCC = 1.8 V
Px.y
7.0
Specifications
0.0
0.5
1.0
1.5
2.0
VOH – High-Level Output Voltage – V
Figure 5-7. Typical High-Level Output Current vs High-Level
Output Voltage
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.20 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TA = 25°C
VCC = 3.0 V
Px.y
55.0
50.0
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
60.0
TA = 85°C
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
-10.0
-15.0
-20.0
-25.0
-30.0
-35.0
-40.0
-45.0
TA = 85°C
-55.0
TA = 25°C
-60.0
0.0
TA = 85°C
16
12
8
4
0.5
1.0
1.5
2.0
0
VCC = 3.0 V
Px.y
-50.0
TA = 25°C
20
VOL – Low-Level Output Voltage – V
Figure 5-9. Typical Low-Level Output Current vs Low-Level
Output Voltage
0.0
-5.0
VCC = 1.8 V
Px.y
0
0.0
3.5
VOL – Low-Level Output Voltage – V
Figure 5-8. Typical Low-Level Output Current vs Low-Level
Output Voltage
24
0.5
VCC = 1.8 V
Px.y
-4
-8
-12
TA = 85°C
-16
TA = 25°C
-20
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 5-10. Typical High-Level Output Current vs High-Level
Output Voltage
0.0
0.5
1.0
1.5
VOH – High-Level Output Voltage – V
Figure 5-11. Typical High-Level Output Current vs High-Level
Output Voltage
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
2.0
31
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.21 Crystal Oscillator, XT1, Low-Frequency Mode
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
TA = 25°C
ΔIDVCC.LF
Differential XT1 oscillator crystal
current consumption from lowest
drive setting, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 2,
TA = 25°C
0.170
32768
XTS = 0, XT1BYPASS = 0
fXT1,LF,SW
XT1 oscillator logic-level squarewave input frequency, LF mode
XTS = 0, XT1BYPASS = 1 (2) (3)
XT1BYPASSLV = 0 or 1
OALF
3.0 V
0.290
XT1 oscillator crystal frequency,
LF mode
10
CL,eff
fFault,LF
tSTART,LF
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
32
32.768
XTS = 0, XT1BYPASS = 0,
XT1DRIVEx = 0,
fXT1,LF = 32768 Hz, CL,eff = 6 pF
210
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,LF = 32768 Hz, CL,eff = 12 pF
300
µA
Hz
50
5.5
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
12.0
pF
Duty cycle, LF mode
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
30%
70%
Oscillator fault frequency,
LF mode (7)
XTS = 0, XT1BYPASS = 1 (8),
XT1BYPASSLV = 0 or 1
10
10000
Start-up time, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C, CL,eff = 12 pF
kHz
1
XTS = 0, XCAPx = 1
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C, CL,eff = 6 pF
UNIT
kΩ
XTS = 0, XCAPx = 0 (6)
Integrated effective load
capacitance, LF mode (5)
MAX
0.075
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C
fXT1,LF0
Oscillation allowance for
LF crystals (4)
TYP
Hz
1000
3.0 V
ms
500
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
• Keep the trace between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-Trigger Inputs section of this data sheet. When in crystal bypass mode, XIN can be configured so that it can support an
input digital waveform with swing levels from DVSS to DVCC (XT1BYPASSLV = 0) or DVSS to DVIO (XT1BYPASSLV = 1). In this case,
the pin must be configured properly for the intended input swing.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but each application should be evaluated based on the actual crystal selected:
• For XT1DRIVEx = 0, CL,eff ≤ 6 pF
• For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF
• For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF
• For XT1DRIVEx = 3, CL,eff ≥ 6 pF
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a
correct setup, the effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.22 Crystal Oscillator, XT2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 4 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 0,
TA = 25°C
IDVCC.XT2
XT2 oscillator crystal current
consumption
fOSC = 12 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 1,
TA = 25°C
fOSC = 20 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 2,
TA = 25°C
TYP
MAX
UNIT
200
260
3.0 V
µA
325
fOSC = 32 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 3,
TA = 25°C
450
fXT2,HF0
XT2 oscillator crystal frequency,
mode 0
XT2DRIVEx = 0, XT2BYPASS = 0 (3)
4
8
MHz
fXT2,HF1
XT2 oscillator crystal frequency,
mode 1
XT2DRIVEx = 1, XT2BYPASS = 0 (3)
8
16
MHz
fXT2,HF2
XT2 oscillator crystal frequency,
mode 2
XT2DRIVEx = 2, XT2BYPASS = 0 (3)
16
24
MHz
fXT2,HF3
XT2 oscillator crystal frequency,
mode 3
XT2DRIVEx = 3, XT2BYPASS = 0 (3)
24
32
MHz
fXT2,HF,SW
XT2 oscillator logic-level squarewave input frequency, bypass
mode
XT2BYPASS = 1 (4) (3)
XT2BYPASSLV = 0 or 1
0.7
32
MHz
OAHF
tSTART,HF
CL,eff
Oscillation allowance for
HF crystals (5)
Start-up time
Integrated effective load
capacitance, HF mode (6)
(3)
(4)
(5)
(6)
450
XT2DRIVEx = 1, XT2BYPASS = 0,
fXT2,HF1 = 12 MHz, CL,eff = 15 pF
320
XT2DRIVEx = 2, XT2BYPASS = 0,
fXT2,HF2 = 20 MHz, CL,eff = 15 pF
200
XT2DRIVEx = 3, XT2BYPASS = 0,
fXT2,HF3 = 32 MHz, CL,eff = 15 pF
200
fOSC = 6 MHz,
XT2BYPASS = 0, XT2DRIVEx = 0,
TA = 25°C, CL,eff = 15 pF
0.5
fOSC = 20 MHz,
XT2BYPASS = 0, XT2DRIVEx = 2,
TA = 25°C, CL,eff = 15 pF
Ω
3.0 V
ms
0.3
1
(1)
Duty cycle
(1)
(2)
XT2DRIVEx = 0, XT2BYPASS = 0,
fXT2,HF0 = 6 MHz, CL,eff = 15 pF
Measured at ACLK, fXT2,HF2 = 20 MHz
40%
50%
pF
60%
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
To improve EMI on the XT2 oscillator the following guidelines should be observed.
• Keep the traces between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
• Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.
When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined
in the Schmitt-trigger Inputs section of this data sheet. When in crystal bypass mode, XT2IN can be configured so that it can support an
input digital waveform with swing levels from DVSS to DVCC (XT2BYPASSLV = 0) or DVSS to DVIO (XT2BYPASSLV = 1). In this case,
it is required that the pin be configured properly for the intended input swing.
Oscillation allowance is based on a safety factor of 5 for recommended crystals.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a
correct setup, the effective load capacitance should always match the specification of the used crystal.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
33
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Crystal Oscillator, XT2 (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)
PARAMETER
fFault,HF
(7)
(8)
Oscillator fault frequency
TEST CONDITIONS
(7)
VCC
XT2BYPASS = 1 (8),
XT2BYPASSLV = 0 or 1
MIN
TYP
30
MAX
UNIT
300
kHz
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals. In general, an effective load capacitance of up to
18 pF can be supported.
5.23 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
6
9.4
14
UNIT
fVLO
VLO frequency
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dT
VLO frequency temperature drift
Measured at ACLK (1)
1.8 V to 3.6 V
0.5
%/°C
Measured at ACLK (2)
1.8 V to 3.6 V
4
%/V
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dVCC VLO frequency supply voltage drift
Duty cycle
(1)
(2)
40%
50%
kHz
60%
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
5.24 Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IREFO
fREFO
TEST CONDITIONS
VCC
MIN
TYP
REFO oscillator current consumption TA = 25°C
1.8 V to 3.6 V
3
REFO frequency
Measured at ACLK
1.8 V to 3.6 V
32768
Full temperature range
1.8 V to 3.6 V
–3.5%
3.5%
3V
–1.5%
1.5%
REFO absolute tolerance
TA = 25°C
(1)
dfREFO/dT
REFO frequency temperature drift
Measured at ACLK
1.8 V to 3.6 V
0.01
dfREFO/dVCC
REFO frequency supply voltage drift
Measured at ACLK (2)
1.8 V to 3.6 V
1.0
Duty cycle
Measured at ACLK
1.8 V to 3.6 V
REFO start-up time
40%/60% duty cycle
1.8 V to 3.6 V
tSTART
(1)
(2)
34
MAX
40%
50%
UNIT
µA
Hz
%/°C
%/V
60%
25
µs
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.25 DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
(1)
MIN
TYP
MAX
UNIT
fDCO(0,0)
DCO frequency (0, 0)
DCORSELx = 0, DCOx = 0, MODx = 0
0.07
0.20
MHz
fDCO(0,31)
DCO frequency (0, 31) (1)
DCORSELx = 0, DCOx = 31, MODx = 0
0.70
1.70
MHz
fDCO(1,0)
DCO frequency (1, 0) (1)
DCORSELx = 1, DCOx = 0, MODx = 0
0.15
0.36
MHz
fDCO(1,31)
DCO frequency (1, 31) (1)
DCORSELx = 1, DCOx = 31, MODx = 0
1.47
3.45
MHz
(1)
fDCO(2,0)
DCO frequency (2, 0)
DCORSELx = 2, DCOx = 0, MODx = 0
0.32
0.75
MHz
fDCO(2,31)
DCO frequency (2, 31) (1)
DCORSELx = 2, DCOx = 31, MODx = 0
3.17
7.38
MHz
fDCO(3,0)
DCO frequency (3, 0) (1)
DCORSELx = 3, DCOx = 0, MODx = 0
0.64
1.51
MHz
(1)
fDCO(3,31)
DCO frequency (3, 31)
DCORSELx = 3, DCOx = 31, MODx = 0
6.07
14.0
MHz
fDCO(4,0)
DCO frequency (4, 0) (1)
DCORSELx = 4, DCOx = 0, MODx = 0
1.3
3.2
MHz
fDCO(4,31)
DCO frequency (4, 31) (1)
DCORSELx = 4, DCOx = 31, MODx = 0
12.3
28.2
MHz
(1)
fDCO(5,0)
DCO frequency (5, 0)
DCORSELx = 5, DCOx = 0, MODx = 0
2.5
6.0
MHz
fDCO(5,31)
DCO frequency (5, 31) (1)
DCORSELx = 5, DCOx = 31, MODx = 0
23.7
54.1
MHz
fDCO(6,0)
DCO frequency (6, 0) (1)
DCORSELx = 6, DCOx = 0, MODx = 0
4.6
10.7
MHz
fDCO(6,31)
DCO frequency (6, 31) (1)
DCORSELx = 6, DCOx = 31, MODx = 0
39.0
88.0
MHz
(1)
fDCO(7,0)
DCO frequency (7, 0)
DCORSELx = 7, DCOx = 0, MODx = 0
8.5
19.6
MHz
fDCO(7,31)
DCO frequency (7, 31) (1)
DCORSELx = 7, DCOx = 31, MODx = 0
60
135
MHz
SDCORSEL
Frequency step between range
DCORSEL and DCORSEL + 1
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
1.2
2.3
ratio
SDCO
Frequency step between tap
DCO and DCO + 1
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.02
1.12
ratio
Duty cycle
Measured at SMCLK
40%
DCO frequency temperature
drift (2)
dfDCO/dT
dfDCO/dVCC
(1)
(2)
(3)
DCO frequency voltage drift
(3)
50%
60%
fDCO = 1 MHz
0.1
%/°C
fDCO = 1 MHz
1.9
%/V
When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx
= 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO
frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the
selected range is at its minimum or maximum tap setting.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
Typical DCO Frequency, VCC = 3.0 V, TA = 25°C
100
fDCO – MHz
10
DCOx = 31
1
0.1
DCOx = 0
0
1
2
3
4
5
6
7
DCORSEL
Figure 5-12. Typical DCO frequency
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
35
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.26 PMM, Brown-Out Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VDVCC_BOR_IT–
BORH on voltage, DVCC falling level
| dDVCC/dt | < 3 V/s
VDVCC_BOR_IT+
BORH off voltage, DVCC rising level
| dDVCC/dt | < 3 V/s
VDVCC_BOR_hys
BORH hysteresis
tRESET
Pulse duration required at RST/NMI pin to accept
a reset
MIN
TYP
0.80
1.30
60
MAX
UNIT
1.45
V
1.50
V
250
mV
2
µs
5.27 PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE3(AM)
Core voltage, active mode,
PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.90
V
VCORE2(AM)
Core voltage, active mode,
PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.80
V
VCORE1(AM)
Core voltage, active mode,
PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.60
V
VCORE0(AM)
Core voltage, active mode,
PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.40
V
VCORE3(LPM)
Core voltage, low-current mode,
PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.94
V
VCORE2(LPM)
Core voltage, low-current mode,
PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.84
V
VCORE1(LPM)
Core voltage, low-current mode,
PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.64
V
VCORE0(LPM)
Core voltage, low-current mode,
PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.44
V
36
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.28 PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSHE = 0, DVCC = 3.6 V
I(SVSH)
SVS current consumption
V(SVSH_IT+)
tpd(SVSH)
t(SVSH)
dVDVCC/dt
(1)
SVSH on voltage level (1)
SVSH off voltage level (1)
SVSH propagation delay
SVSH on or off delay time
MAX
0
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0
1.5
µA
SVSHE = 1, SVSHRVL = 0
1.57
1.68
1.78
SVSHE = 1, SVSHRVL = 1
1.79
1.88
1.98
SVSHE = 1, SVSHRVL = 2
1.98
2.08
2.21
SVSHE = 1, SVSHRVL = 3
2.10
2.18
2.31
SVSHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVSHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVSHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVSHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVSHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVSHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVSHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVSHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVSHE = 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
2.5
SVSHE = 1, dVDVCC/dt = 1 mV/µs,
SVSHFP = 0
20
V
V
µs
SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
12.5
SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs,
SVSHFP = 0
100
DVCC rise time
UNIT
nA
200
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1
V(SVSH_IT–)
TYP
µs
0
1000
V/s
The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and use.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
37
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.29 PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVMHE = 0, DVCC = 3.6 V
I(SVMH)
SVMH current consumption
0
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0
V(SVMH)
SVMH on or off voltage level
1.5
tpd(SVMH)
t(SVMH)
(1)
SVMH propagation delay
SVMH on or off delay time
µA
SVMHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVMHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVMHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVMHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVMHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVMHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVMHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVMHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVMHE = 1, SVMHOVPE = 1
UNIT
nA
200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1
(1)
MAX
V
3.75
SVMHE = 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
2.5
SVMHE = 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
20
µs
SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
12.5
SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
100
µs
The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and use.
5.30 PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSLE = 0, PMMCOREV = 2
I(SVSL)
SVSL current consumption
tpd(SVSL)
t(SVSL)
38
SVSL propagation delay
SVSL on or off delay time
Specifications
TYP
MAX
0
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0
200
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1
1.5
SVSLE = 1, dVCORE/dt = 10 mV/µs,
SVSLFP = 1
2.5
SVSLE = 1, dVCORE/dt = 1 mV/µs,
SVSLFP = 0
20
UNIT
nA
µA
µs
SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs,
SVSLFP = 1
12.5
SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs,
SVSLFP = 0
100
µs
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.31 PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVMLE = 0, PMMCOREV = 2
I(SVML)
tpd(SVML)
t(SVML)
SVML current consumption
SVML propagation delay
SVML on or off delay time
TYP
MAX
0
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0
200
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1
1.5
SVMLE = 1, dVCORE/dt = 10 mV/µs,
SVMLFP = 1
2.5
SVMLE = 1, dVCORE/dt = 1 mV/µs,
SVMLFP = 0
20
UNIT
nA
µA
µs
SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs,
SVMLFP = 1
12.5
SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs,
SVMLFP = 0
100
µs
5.32 Wake-up Times From Low-Power Modes and Reset
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP
MAX
fMCLK ≥ 4.0 MHz
MIN
3.5
7.5
UNIT
1.0 MHz < fMCLK <
4.0 MHz
4.5
9
150
175
µs
tWAKE-UP-FAST
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode (1)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 1
tWAKE-UP-SLOW
Wake-up time from LPM2,
LPM3 or LPM4 to active
mode (2)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 0
tWAKE-UP-LPM5
Wake-up time from LPM4.5
to active mode (3)
2
3
ms
tWAKE-UP-RESET
Wake-up time from RST or
BOR event to active mode (3)
2
3
ms
(1)
(2)
(3)
µs
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low side supervisor (SVSL) and low side monitor (SVML). Fastest wake-up times are possible with SVSLand SVML in full
performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while
operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx
and MSP430x6xx Family User's Guide (SLAU208).
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVML are in normal mode (low current)
mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and
LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's
Guide (SLAU208).
This value represents the time from the wake-up event to the reset vector execution.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
39
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.33 Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
VIO
MIN
TYP
MAX UNIT
1.62 V to 1.8 V
25
Timer_A input clock frequency
Internal: SMCLK, ACLK
External: TACLK
Duty cycle = 50% ± 10%
1.8 V
fTA
3.0 V
1.62 V to 1.98 V
25
Timer_A capture timing (1)
All capture inputs,
Minimum pulse duration
required for capture
1.8 V
1.62 V to 1.8 V
20
tTA,cap
3.0 V
1.62 V to 1.98 V
20
(1)
MHz
ns
The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter
than tTA,cap.
5.34 Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
VIO
MIN
TYP
MAX UNIT
1.62 V to 1.8 V
25
Timer_B input clock frequency
Internal: SMCLK, ACLK
External: TBCLK
Duty cycle = 50% ± 10%
1.8 V
fTB
3.0 V
1.62 V to 1.98 V
25
Timer_B capture timing (1)
All capture inputs,
Minimum pulse duration
required for capture
1.8 V
1.62 V to 1.8 V
20
tTB,cap
3.0 V
1.62 V to 1.98 V
20
(1)
40
MHz
ns
The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter
than tTB,cap.
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.35 USCI (UART Mode), Recommended Operating Conditions
PARAMETER
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals baud rate in MBaud)
CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
1
MHz
MAX
UNIT
5.36 USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
UART receive deglitch time (1)
tτ
(1)
TEST CONDITIONS
VCC
VIO
1.8 V
1.62 V to 1.80 V
MIN
50
TYP
600
3.0 V
1.62 V to 1.98 V
50
600
ns
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
5.37 USCI (SPI Master Mode), Recommended Operating Conditions
PARAMETER
fUSCI
CONDITIONS
VCC
MIN
TYP
Internal: SMCLK or ACLK,
Duty cycle = 50% ± 10%
USCI input clock frequency
MAX
UNIT
fSYSTEM
MHz
MAX
UNIT
fSYSTEM
MHz
5.38 USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Note (1), Figure 5-13 and Figure 5-14)
PARAMETER
fUSCI
USCI input clock frequency
TEST CONDITIONS
PMMCOREV = 0
tSU,MI
SOMI input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,MI
SOMI input data hold time
PMMCOREV = 3
tVALID,MO
tHD,MO
(1)
(2)
(3)
SIMO output data valid
time (2)
SIMO output data hold
time (3)
VCC
VIO
MIN
SMCLK or ACLK,
Duty cycle = 50% ± 10%
1.8 V
1.62 V to 1.80 V
55
3.0 V
1.62 V to 1.98 V
55
2.4 V
1.62 V to 1.98 V
35
3.0 V
1.62 V to 1.98 V
35
1.8 V
1.62 V to 1.80 V
0
3.0 V
1.62 V to 1.98 V
0
2.4 V
1.62 V to 1.98 V
0
0
TYP
ns
ns
3.0 V
1.62 V to 1.98 V
UCLK edge to SIMO valid,
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
20
3.0 V
1.62 V to 1.98 V
20
UCLK edge to SIMO valid,
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
16
3.0 V
1.62 V to 1.98 V
16
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
–10
3.0 V
1.62 V to 1.98 V
–10
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
–10
3.0 V
1.62 V to 1.98 V
–10
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-13 and Figure 5-14.
Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 513 and Figure 5-14.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
41
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 5-13. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tHD,MI
tSU,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 5-14. SPI Master Mode, CKPH = 1
42
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.39 USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Note (1), Figure 5-15 and Figure 5-16)
PARAMETER
TEST CONDITIONS
PMMCOREV = 0
tSTE,LEAD
STE lead time, STE low to clock
PMMCOREV = 3
PMMCOREV = 0
tSTE,LAG
STE lag time, Last clock to STE
high
PMMCOREV = 3
PMMCOREV = 0
tSTE,ACC
STE access time, STE low to
SOMI data out
PMMCOREV = 3
PMMCOREV = 0
tSTE,DIS
STE disable time, STE high to
SOMI high impedance
PMMCOREV = 3
PMMCOREV = 0
tSU,SI
SIMO input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,SI
SIMO input data hold time
PMMCOREV = 3
tVALID,SO
tHD,SO
(1)
(2)
(3)
SOMI output data valid time (2)
SOMI output data hold time (3)
VCC
VIO
1.8 V
1.62 V to 1.80 V
MIN
12
TYP
MAX
3.0 V
1.62 V to 1.98 V
12
2.4 V
1.62 V to 1.98 V
10
3.0 V
1.62 V to 1.98 V
10
1.8 V
1.62 V to 1.80 V
6
3.0 V
1.62 V to 1.98 V
6
2.4 V
1.62 V to 1.98 V
6
3.0 V
1.62 V to 1.98 V
6
1.8 V
1.62 V to 1.80 V
65
3.0 V
1.62 V to 1.98 V
65
2.4 V
1.62 V to 1.98 V
45
3.0 V
1.62 V to 1.98 V
45
1.8 V
1.62 V to 1.80 V
35
3.0 V
1.62 V to 1.98 V
35
2.4 V
1.62 V to 1.98 V
25
3.0 V
1.62 V to 1.98 V
1.8 V
1.62 V to 1.80 V
5
3.0 V
1.62 V to 1.98 V
5
2.4 V
1.62 V to 1.98 V
5
3.0 V
1.62 V to 1.98 V
5
1.8 V
1.62 V to 1.80 V
5
3.0 V
1.62 V to 1.98 V
5
2.4 V
1.62 V to 1.98 V
5
5
UNIT
ns
ns
ns
ns
25
ns
ns
3.0 V
1.62 V to 1.98 V
UCLK edge to SOMI valid,
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
75
3.0 V
1.62 V to 1.98 V
75
UCLK edge to SOMI valid,
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
50
3.0 V
1.62 V to 1.98 V
50
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
18
3.0 V
1.62 V to 1.98 V
18
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
10
3.0 V
1.62 V to 1.98 V
10
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).
For the master parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-13 and Figure 5-14.
Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13
and Figure 5-14.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
43
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tSU,SI
tLO/HI
tHD,SI
SIMO
tHD,SO
tVALID,SO
tSTE,ACC
tSTE,DIS
SOMI
Figure 5-15. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tHD,SI
tSU,SI
SIMO
tSTE,ACC
tHD,MO
tVALID,SO
tSTE,DIS
SOMI
Figure 5-16. SPI Slave Mode, CKPH = 1
44
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.40 USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)
PARAMETER
TEST CONDITIONS
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated
START
tHD,DAT
tSU,DAT
MIN
TYP
Internal: SMCLK or ACLK,
External: UCLK
Duty cycle = 50% ± 10%
UNIT
fSYSTEM
MHz
400
kHz
1.62 V to 1.98 V
2.2 V, 3 V
1.62 V to 1.98 V
2.2 V, 3 V
1.62 V to 1.98 V
Data hold time
2.2 V, 3 V
1.62 V to 1.98 V
0
ns
Data setup time
2.2 V, 3 V
1.62 V to 1.98 V
250
ns
fSCL ≤ 100 kHz
fSCL > 100 kHz
fSCL ≤ 100 kHz
fSCL > 100 kHz
fSCL ≤ 100 kHz
Setup time for STOP
tSP
Pulse duration of spikes
suppressed by input filter
fSCL > 100 kHz
2.2 V, 3 V
1.62 V to 1.98 V
2.2 V, 3 V
1.62 V to 1.98 V
0
MAX
2.2 V, 3 V
tSU,STO
(1)
VIO (1)
VCC
4.0
µs
0.6
4.7
µs
0.6
4.0
µs
0.6
50
600
ns
In all test conditions, VIO ≤ VCC
tSU,STA
tHD,STA
tHD,STA
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 5-17. I2C Mode Timing
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
45
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.41 10-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
AVCC
Analog supply voltage
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
V(Ax)
Analog input voltage range (2)
All ADC10_A pins: P1.0 to P1.5 and P3.6 and
P3.7 terminals
Operating supply current into
AVCC terminal, REF module
and reference buffer off
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 00
Operating supply current into
AVCC terminal, REF module
on, reference buffer on
VCC
MIN
TYP
MAX
1.8
3.6
V
0
AVCC
V
2.2 V
60
100
3V
75
110
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 1, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 01
3V
113
150
Operating supply current into
AVCC terminal, REF module
off, reference buffer on
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 10,
VEREF = 2.5 V
3V
105
140
Operating supply current into
AVCC terminal, REF module
off, reference buffer off
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 11,
VEREF = 2.5 V
3V
70
110
CI
Input capacitance
Only one terminal Ax can be selected at one
time from the pad to the ADC10_A capacitor
array including wiring and pad
2.2 V
3.5
RI
Input MUX ON resistance
IADC10_A
(1)
(2)
UNIT
µA
pF
AVCC > 2 V, 0 V ≤ VAx ≤ AVCC
36
1.8 V < AVCC < 2 V, 0 V ≤ VAx ≤ AVCC
96
kΩ
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external
reference voltage requires decoupling capacitors. See ().
5.42 10-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
2.2 V, 3 V
0.45
5
5.5
MHz
4.8
5.4
MHz
fADC10CLK
Input clock frequency
For specified performance of ADC10_A linearity
parameters
fADC10OSC
Internal ADC10_A
oscillator (1)
ADC10DIV = 0, fADC10CLK = fADC10OSC
2.2 V, 3 V
4.2
2.2 V, 3 V
2.4
Conversion time
REFON = 0, Internal oscillator, 12 ADC10CLK
cycles, 10-bit mode
fADC10OSC = 4 MHz to 5 MHz
tCONVERT
µs
External fADC10CLK from ACLK, MCLK or SMCLK,
ADC10SSEL ≠ 0
tADC10ON
Turn on settling time of
the ADC
See
tSample
Sampling time
RS = 1000 Ω, RI = 96 k Ω, CI = 3.5 pF (4)
(1)
(2)
(3)
(4)
46
3.0
(2)
(3)
100
ns
1.8 V
3
µs
3.0 V
1
µs
The ADC10OSC is sourced directly from MODOSC inside the UCS.
12 × ADC10DIV × 1/fADC10CLK
The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
Approximately eight Tau (τ) are needed to get an error of less than ±0.5 LSB
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.43 10-Bit ADC, Linearity Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ – VeREF–) ≤ 1.6 V, CVeREF+ = 20 pF
VCC
MIN
TYP
MAX
±1.0
UNIT
EI
Integral
linearity error
ED
Differential
linearity error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
2.2 V, 3 V
±1.0
LSB
EO
Offset error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
Internal impedance of source RS < 100 Ω
2.2 V, 3 V
±1.0
LSB
EG
Gain error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±1.0
LSB
ET
Total unadjusted
error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±2.0
LSB
MAX
UNIT
1.6 V < (VeREF+ – VeREF–) ≤ VAVCC, CVeREF+ = 20 pF
2.2 V, 3 V
±1.0
±1.0
LSB
5.44 REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
VeREF+
Positive external
reference voltage input
VeREF–
(VeREF+ –
VeREF–)
IVeREF+,
IVeREF–
CVREF+,
CVREF(1)
(2)
(3)
(4)
(5)
TEST CONDITIONS
VCC
MIN
TYP
VeREF+ > VeREF–
(2)
1.4
AVCC
V
Negative external
reference voltage input
VeREF+ > VeREF–
(3)
0
1.2
V
Differential external
reference voltage input
VeREF+ > VeREF–
(4)
1.4
AVCC
V
Static input current
Capacitance at VeREF+
or VeREF- terminal
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,
Conversion rate 200 ksps
2.2 V, 3 V
–26
26
µA
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,
Conversion rate 20 ksps
2.2 V, 3 V
–1
1
µA
(5)
10
µF
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
47
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.45 REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
Positive built-in reference
voltage
VREF+
AVCC minimum voltage,
Positive built-in reference
active
AVCC(min)
Operating supply current
into AVCC terminal (2)
IREF+
TEST CONDITIONS
VCC
MIN
TYP
MAX
REFVSEL = {2} for 2.5 V
REFON = 1
3V
2.472
2.51
2.548
REFVSEL = {1} for 2.0 V
REFON = 1
3V
1.96
1.99
2.02
REFVSEL = {0} for 1.5 V
REFON = 1
2.2 V, 3 V
1.472
1.495
1.518
REFVSEL = {0} for 1.5 V
1.8
REFVSEL = {1} for 2.0 V
2.2
REFVSEL = {2} for 2.5 V
2.7
UNIT
V
V
fADC10CLK = 5.0 MHz
REFON = 1, REFBURST = 0,
REFVSEL = {2} for 2.5 V
3V
18
24
fADC10CLK = 5.0 MHz
REFON = 1, REFBURST = 0,
REFVSEL = {1} for 2.0 V
3V
15.5
21
fADC10CLK = 5.0 MHz
REFON = 1, REFBURST = 0,
REFVSEL = {0} for 1.5 V
3V
13.5
21
30
50
µA
TCREF+
Temperature coefficient of
built-in reference (3)
IVREF+ = 0 A
REFVSEL = (0, 1, 2}, REFON = 1
ISENSOR
Operating supply current
into AVCC terminal (4)
REFON = 0, INCH = 0Ah,
ADC10ON = N A, TA = 30°C
2.2 V
20
22
3V
20
22
VSENSOR
See
ADC10ON = 1, INCH = 0Ah,
TA = 30°C
2.2 V
770
3V
770
VMID
AVCC divider at channel 11
ADC10ON = 1, INCH = 0Bh,
VMID ≈ 0.5 × VAVCC
2.2 V
1.06
1.1
1.14
3V
1.46
1.5
1.54
tSENSOR(sample)
Sample time required if
channel 10 is selected (6)
ADC10ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
30
µs
tVMID(sample)
Sample time required if
channel 11 is selected (7)
ADC10ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
1
µs
PSRR_DC
Power supply rejection ratio
(dc)
AVCC = AVCC (min) - AVCC(max),
TA = 25°C,
REFVSEL = {0, 1, 2}, REFON = 1
120
µV/V
PSRR_AC
Power supply rejection ratio
(ac)
AVCC = AVCC (min) - AVCC(max),
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV
REFVSEL = {0, 1, 2}, REFON = 1
6.4
mV/V
tSETTLE
Settling time of reference
voltage (8)
AVCC = AVCC (min) - AVCC(max)
REFVSEL = {0, 1, 2}, REFON = 0 → 1
75
µs
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
48
(5)
ppm/
°C
µA
mV
V
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The internal reference current is supplied from terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).
The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is
high). When REFON = 1, ISENSOR is already included in IREF+.
The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in
temperature sensor.
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.46 Comparator_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
TEST CONDITIONS
VCC
Supply voltage
MIN
TYP
1.8
3.6
1.8 V
IAVCC_COMP
VREF
IAVCC_REF
CBPWRMD = 00, CBON = 1, CBRSx = 00
Comparator operating
supply current into
AVCC, Excludes
CBPWRMD = 01, CBON = 1, CBRSx = 00
reference resistor ladder
Reference voltage level
Quiescent current of
resistor ladder into
AVCC, Including REF
module current
VIC
Common mode input
range
VOFFSET
Input offset voltage
CIN
Input capacitance
RSIN
tPD
tPD,filter
Series input resistance
Propagation delay,
response time
Propagation delay with
filter active
MAX
V
38
2.2 V
31
38
3V
32
39
2.2 V,
3V
10
17
CBPWRMD = 10, CBON = 1, CBRSx = 00
2.2 V,
3V
0.2
0.85
CBREFLx = 01, CBREFACC = 0
≥ 1.8V
1.44
±2.5%
CBREFLx = 10, CBREFACC = 0
≥ 2.2V
1.92
±2.5%
CBREFLx = 11, CBREFACC = 0
≥ 3.0V
2.39
±2.5%
CBREFACC = 1, CBREFLx = 01, CBRSx = 10,
REFON = 0, CBON = 0
2.2 V,
3V
17
22
CBREFACC = 0, CBREFLx = 01, CBRSx = 10,
REFON = 0, CBON = 0
2.2 V,
3V
33
40
µA
V
µA
0
VCC – 1
CBPWRMD = 00
–20
20
CBPWRMD = 01, 10
–10
10
5
ON - switch closed
OFF - switch opened
UNIT
3
V
mV
pF
4
50
kΩ
MΩ
CBPWRMD = 00, CBF = 0
450
CBPWRMD = 01, CBF = 0
600
CBPWRMD = 10, CBF = 0
50
ns
µs
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 00
0.35
0.6
1.5
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 01
0.6
1.0
1.8
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 10
1.0
1.8
3.4
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 11
1.8
3.4
6.5
1
2
µs
1.0
1.5
µs
50
ppm/
°C
tEN_CMP
Comparator enable time
CBON = 0 to CBON = 1, CBPWRMD = 00, 01
tEN_REF
Resistor reference
enable time
CBON = 0 to CBON = 1
TCCB_REF
Temperature coefficient
reference of VCB_REF
VCB_REF
Reference voltage for a
given tap
VIN = reference into resistor ladder,
n = 0 to 31
µs
VIN ×
(n+0.5)
/ 32
VIN ×
(n+1)
/ 32
VIN ×
(n+1.5)
/ 32
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
V
49
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
5.47 Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
DVCC(PGM/ERASE) Program and erase supply voltage
MIN
TYP
1.8
MAX
3.6
UNIT
V
IPGM
Average supply current from DVCC during program
3
5
mA
IERASE
Average supply current from DVCC during erase
6
11
mA
IMERASE, IBANK
Average supply current from DVCC during mass erase or bank
erase
6
11
mA
16
ms
tCPT
Cumulative program time
See
(1)
4
Program and erase endurance
10
5
10
cycles
tRetention
Data retention duration
TJ = 25°C
tWord
Word or byte program time
See
(2)
64
85
µs
tBlock,
0
Block program time for first byte or word
See
(2)
49
65
µs
tBlock,
1–(N–1)
Block program time for each additional byte or word, except for last
byte or word
See
(2)
37
49
µs
Block program time for last byte or word
See
(2)
55
73
µs
tErase
Erase time for segment, mass erase, and bank erase when
available
See
(2)
23
32
ms
fMCLK,MRG
MCLK frequency in marginal read mode
(FCTL4.MRG0 = 1 or FCTL4. MRG1 = 1)
0
1
MHz
tBlock,
(1)
(2)
N
100
years
The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming
methods: individual word or byte write mode and block write mode.
These values are hardwired into the flash controller state machine.
5.48 JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
VIO
MIN
TYP
MAX
UNIT
fSBW
Spy-Bi-Wire input frequency
2.2 V, 3 V
1.62 V to
1.98 V
0
20
MHz
tSBW,Low
Spy-Bi-Wire low clock pulse duration
2.2 V, 3 V
1.62 V to
1.98 V
0.025
15
µs
tSBW, En
Spy-Bi-Wire enable time (TEST high to acceptance of first clock
edge) (1)
2.2 V, 3 V
1.62 V to
1.98 V
1
µs
tSBW,Rst
Spy-Bi-Wire return to normal operation time
2.2 V, 3 V
1.62 V to
1.98 V
15
100
µs
2.2 V
1.62 V to
1.98 V
0
5
MHz
3V
1.62 V to
1.98 V
0
10
MHz
2.2 V, 3 V
1.62 V to
1.98 V
45
80
kΩ
fTCK
TCK input frequency for 4-wire JTAG
Rinternal
(1)
(2)
50
(2)
Internal pulldown resistance on TEST
60
Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the
first SBWTCK clock edge.
fTCK may be restricted to meet the timing requirements of the module selected.
Specifications
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
5.49 DVIO BSL Entry
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
VIO
MIN
TYP
MAX
UNIT
tSU, BSLEN
Setup time BSLEN to RST/NMI (1)
2.2 V, 3 V
1.62 V to
1.98 V
100
ns
tHO,
Hold time BSLEN to RST/NMI (2)
2.2 V, 3 V
1.62 V to
1.98 V
350
µs
(1)
(2)
BSLEN
AVCC, DVCC, DVIO stable and within specification.
BSLEN must remain logically high long enough for the boot code to detect its level and enter the BSL sequence. After the minimum hold
time is achieved, BSLEN is a don't care.
BSLEN
VIT+
VITtHO,BSLEN
VIT+
VITRST/NMI
(DVIO domain)
tSU,BSLEN
t
Figure 5-18. DVIO BSL Entry Timing
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
51
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6 Detailed Description
6.1
CPU (Link to user's guide)
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All
operations, other than program-flow instructions, are performed as register operations in conjunction with
seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and
constant generator, respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses and can be handled with all
instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes
and additional instructions for the expanded address range. Each instruction can operate on word and
byte data.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
Constant Generator
52
Detailed Description
SR/CG1/R2
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.2
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Operating Modes
The MSP430 has one active mode and six software selectable low-power modes of operation. An interrupt
event can wake up the device from any of the low-power modes, service the request, and restore back to
the low-power mode on return from the interrupt program.
The following seven operating modes can be configured by software:
• Active mode (AM)
– All clocks are active
• Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– FLL loop control remains active
• Low-power mode 1 (LPM1)
– CPU is disabled
– FLL loop control is disabled
– ACLK and SMCLK remain active, MCLK is disabled
• Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO dc-generator remains enabled
– ACLK remains active
• Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO dc generator is disabled
– ACLK remains active
• Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO dc generator is disabled
– Crystal oscillator is stopped
– Complete data retention
• Low-power mode 4.5 (LPM4.5)
– Internal regulator disabled
– No data retention
– Wakeup from RST/NMI, P1, and P2
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
53
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.3
www.ti.com
Interrupt Vector Addresses
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h.
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 6-1. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
System Reset
Power-Up
External Reset
Watchdog Time-out, Password
Violation
Flash Memory Password Violation
PMM Password Violation
WDTIFG, KEYV (SYSRSTIV) (1) (2)
Reset
0FFFEh
63, highest
System NMI
PMM
Vacant Memory Access
JTAG Mailbox
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,
JMBOUTIFG (SYSSNIV) (1)
(Non)maskable
0FFFCh
62
User NMI
NMI
Oscillator Fault
Flash Memory Access Violation
NMIIFG, OFIFG, ACCVIFG, BUSIFG
(SYSUNIV) (1) (2)
(Non)maskable
0FFFAh
61
COMP_B
Comparator B interrupt flags (CBIV) (1) (3)
Maskable
0FFF8h
60
TB0
Maskable
0FFF6h
59
TB0
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,
TB0IFG (TB0IV) (1) (3)
Maskable
0FFF4h
58
Watchdog Timer_A Interval Timer
Mode
WDTIFG
Maskable
0FFF2h
57
USCI_A0 Receive or Transmit
UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (3)
Maskable
0FFF0h
56
USCI_B0 Receive or Transmit
UCB0RXIFG, UCB0TXIFG (UCB0IV) (1) (3)
Maskable
0FFEEh
55
ADC10_A
(3)
(4)
54
ADC10IFG0
(1) (3) (4)
Maskable
0FFECh
54
TA0
TA0CCR0 CCIFG0 (3)
Maskable
0FFEAh
53
TA0
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,
TA0IFG (TA0IV) (1) (3)
Maskable
0FFE8h
52
Reserved
Reserved
Maskable
0FFE6h
51
DMA
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (3)
Maskable
0FFE4h
50
TA1
TA1CCR0 CCIFG0 (3)
Maskable
0FFE2h
49
TA1
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1IFG (TA1IV) (1) (3)
Maskable
0FFE0h
48
I/O Port P1
(1)
(2)
TB0CCR0 CCIFG0
(3)
P1IFG.0 to P1IFG.7 (P1IV)
(1) (3)
Maskable
0FFDEh
47
USCI_A1 Receive or Transmit
UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) (3)
Maskable
0FFDCh
46
USCI_B1 Receive or Transmit
(1) (3)
Maskable
0FFDAh
45
TA2
UCB1RXIFG, UCB1TXIFG (UCB1IV)
TA2CCR0 CCIFG0 (3)
Maskable
0FFD8h
44
TA2
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,
TA2IFG (TA2IV) (1) (3)
Maskable
0FFD6h
43
I/O Port P2
P2IFG.0 to P2IFG.7 (P2IV) (1) (3)
Maskable
0FFD4h
42
RTC_A
RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RT0PSIFG, RT1PSIFG (RTCIV) (1) (3)
Maskable
0FFD2h
41
Multiple source flags
A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
Interrupt flags are located in the module.
Only on devices with ADC, otherwise reserved
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-1. Interrupt Sources, Flags, and Vectors (continued)
(5)
INTERRUPT SOURCE
INTERRUPT FLAG
Reserved
Reserved (5)
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
0FFD0h
40
⋮
⋮
0FF80h
0, lowest
Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain
compatibility with other devices, TI recommends reserving these locations.
6.4
Memory Organization
Table 6-2. Memory Organization (1)
Memory (flash)
Main: interrupt vector
MSP430F5227
MSP430F5222
MSP430F5217
MSP430F5212
MSP430F5229
MSP430F5224
MSP430F5219
MSP430F5214
64KB
00FFFFh–00FF80h
128KB
00FFFFh–00FF80h
N/A
32KB
0243FFh–01C400h
N/A
32KB
01C3FFh–014400h
Bank B
32KB
0143FFh–00C400h
32KB
0143FFh–00C400h
Bank A
32KB
00C3FFh–004400h
32KB
00C3FFh–004400h
Sector 3
2KB
0043FFh–003C00h
2KB
0043FFh–003C00h
Sector 2
2KB
003BFFh–003400h
2KB
003BFFh–003400h
Sector 1
2KB
0033FFh–002C00h
2KB
0033FFh–002C00h
Sector 0
2KB
002BFFh–002400h
2KB
002BFFh–002400h
A
128 B
001BFFh–001B80h
128 B
001BFFh–001B80h
B
128 B
001B7Fh–001B00h
128 B
001B7Fh–001B00h
C
128 B
001AFFh–001A80h
128 B
001AFFh–001A80h
D
128 B
001A7Fh–001A00h
128 B
001A7Fh–001A00h
Info A
128 B
0019FFh–001980h
128 B
0019FFh–001980h
Info B
128 B
00197Fh–001900h
128 B
00197Fh–001900h
Info C
128 B
0018FFh–001880h
128 B
0018FFh–001880h
Info D
128 B
00187Fh–001800h
128 B
00187Fh–001800h
Total Size
Bank D
Bank C
Main: code memory
RAM
TI factory memory (ROM)
Information memory (flash)
(1)
N/A = Not available
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
55
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-2. Memory Organization(1) (continued)
Bootstrap loader (BSL) memory (flash)
Peripherals
56
Detailed Description
MSP430F5227
MSP430F5222
MSP430F5217
MSP430F5212
MSP430F5229
MSP430F5224
MSP430F5219
MSP430F5214
BSL 3
512 B
0017FFh–001600h
512 B
0017FFh–001600h
BSL 2
512 B
0015FFh–001400h
512 B
0015FFh–001400h
BSL 1
512 B
0013FFh–001200h
512 B
0013FFh–001200h
BSL 0
512 B
0011FFh–001000h
512 B
0011FFh–001000h
4KB
000FFFh–0h
4KB
000FFFh–0h
Size
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.5
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Bootstrap Loader (BSL)
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the
device memory by the BSL is protected by an user-defined password. Because the F522x and F521x
have split I/O power domains, it is possible to interface with the BSL from either the DVCC or DVIO supply
domains. This is useful when the MSP430 is interfacing to a host on the DVIO supply domain. The BSL
interface on the DVIO supply domain (see Table 6-3) uses the USCI_A0 module configured as a UART.
The BSL interface on the DVCC supply domain (see Table 6-4) uses a timer-based UART.
NOTE
Devices from TI come factory programmed with the timer-based UART BSL only. If the
USCI-based BSL is preferred, it is also available, but it must be programmed by the user.
When using the DVIO supply domain for the BSL, entry to the BSL requires a specific sequence on the
RST/NMI and BSLEN pins. Table 6-3 shows the required pins and their functions. For further details on
interfacing to development tools and device programmers, see the MSP430™ Hardware Tools User's
Guide (SLAU278). For a complete description of the features of the BSL and its implementation, see the
MSP430™ Programming Via the Bootstrap Loader User's Guide (SLAU319). The BSL on the DVIO
supply domain uses the USCI_A0 module configured as a UART.
NOTE
To invoke the BSL from the DVIO domain, the RST/NMI and BSLEN pins must be used for
the entry sequence (see Section 5.49). It is critical not to confuse the RST/NMI pin with the
RSTDVCC/SBWTDIO pin. In other MSP430 devices, SBWTDIO is shared with the RST/NMI
pin and RSTDVCC does not exist. Additional information can be found in Designing With
MSP430F522x and MSP430F521x Devices (SLAA558).
Table 6-3. DVIO BSL Pin Requirements and Functions
DEVICE SIGNAL
BSL FUNCTION
RST/NMI
External reset
BSLEN
Enable BSL
P3.3
Data transmit
P3.4
Data receive
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
For applications in which it is desirable to have BSL communication based on the DVCC supply domain,
entry to the BSL requires a specific sequence on the RSTDVCC/SBWTDIO and TEST/SBWTCK pins.
Table 6-4 shows the required pins and their function.
NOTE
To invoke the BSL from the DVCC domain, the RSTDVCC/SBWTDIO and TEST/SBWTCK
pins must be used for the entry sequence. It is critical not to confuse the RST/NMI pin with
the RSTDVCC/SBWTDIO pin. In other MSP430 devices, SBWTDIO is shared with the
RST/NMI pin and RSTDVCC does not exist. Additional information can be found in
Designing With MSP430F522x and MSP430F521x Devices (SLAA558).
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
57
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-4. DVCC BSL Pin Requirements and Functions
6.6
6.6.1
DEVICE SIGNAL
BSL FUNCTION
RSTDVCC/SBWTDIO
External reset
TEST/SBWTCK
Enable BSL
P1.1
Data transmit
P1.2
Data receive
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
JTAG Operation
JTAG Standard Interface
The MSP430 family supports the standard JTAG interface which requires four signals for sending and
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to
enable the JTAG signals. In addition to these signals, the RSTDVCC/SBWTDIO is required to interface
with MSP430 development tools and device programmers. The JTAG pin requirements are shown in
Table 6-5. For further details on interfacing to development tools and device programmers, see the
MSP430™ Hardware Tools User's Guide (SLAU278). For a complete description of the features of the
JTAG interface and its implementation, see MSP430™ Programming Via the JTAG Interface (SLAU320).
Additional information can be found in Designing With MSP430F522x and MSP430F521x Devices
(SLAA558).
NOTE
All JTAG I/O pins are supplied by DVCC.
NOTE
On other MSP430 devices, the RST/NMI pin has been used for SBWTDIO, so care must be
taken not to mistakenly use the incorrect pin. On the F522x and F521x series of devices,
RSTDVCC is used for SBWTDIO as shown in Table 6-5. Additional information can be found
in Designing With MSP430F522x and MSP430F521x Devices (SLAA558).
Table 6-5. JTAG Pin Requirements and Functions
58
DEVICE SIGNAL
DIRECTION
FUNCTION
PJ.3/TCK
IN
JTAG clock input
PJ.2/TMS
IN
JTAG state control
PJ.1/TDI/TCLK
IN
JTAG data input, TCLK input
PJ.0/TDO
OUT
JTAG data output
TEST/SBWTCK
IN
Enable JTAG pins
RSTDVCC/SBWTDIO
IN
Detailed Description
External reset
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.6.2
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface.
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The SpyBi-Wire interface pin requirements are shown in Table 6-6. For further details on interfacing to
development tools and device programmers, see the MSP430™ Hardware Tools User's Guide
(SLAU278). For a complete description of the features of the JTAG interface and its implementation, see
MSP430 Programming Via the JTAG Interface (SLAU320).Additional information can be found in
Designing With MSP430F522x and MSP430F521x Devices (SLAA558).
NOTE
All SBW I/O pins are supplied by DVCC.
NOTE
On other MSP430 devices, the RST/NMI pin has been used for SBWTDIO, so care must be
taken not to mistakenly use the incorrect pin. On the F522x and F521x series of devices,
RSTDVCC is used for SBWTDIO as shown in Table 6-6. Additional information can be found
in Designing With MSP430F522x and MSP430F521x Devices (SLAA558).
Table 6-6. Spy-Bi-Wire Pin Requirements and Functions
DEVICE SIGNAL
6.7
DIRECTION
FUNCTION
TEST/SBWTCK
IN
Spy-Bi-Wire clock input
RSTDVCC/SBWTDIO
IN, OUT
Spy-Bi-Wire data input/output
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
Flash Memory (Link to user's guide)
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system
by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory.
Features of the flash memory include:
• Flash memory has n segments of main memory and four segments of information memory (A to D) of
128 bytes each. Each segment in main memory is 512 bytes in size.
• Segments 0 to n may be erased in one step, or each segment may be individually erased.
• Segments A to D can be erased individually. Segments A to D are also called information memory.
• Segment A can be locked separately.
6.8
RAM (Link to user's guide)
The RAM is made up of n sectors. Each sector can be completely powered down to reduce leakage;
however, all data is lost during power down. Features of the RAM include:
• RAM has n sectors. The sizes of the sectors can be found in Section 6.4.
• Each sector 0 to n can be complete disabled; however, all data in a sector is lost when it is disabled.
• Each sector 0 to n automatically enters low-power retention mode when possible.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
59
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.9
www.ti.com
Peripherals
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be
managed using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx
Family User's Guide (SLAU208).
6.9.1
Digital I/O (Link to user's guide)
•
•
•
•
•
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Pullup or pulldown on all ports is programmable.
Drive strength on all ports is programmable.
Edge-selectable interrupt and LPM4.5 wakeup input capability is available for all bits of ports P1 and
P2.
Read and write access to port-control registers is supported by all instructions.
Ports can be accessed byte-wise or word-wise in pairs.
•
•
6.9.2
Port Mapping Controller (Link to user's guide)
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4.
Table 6-7. Port Mapping Mnemonics and Functions
VALUE
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
0
PM_NONE
None
DVSS
PM_CBOUT0
-
COMP_B output
PM_TB0CLK
TB0 clock input
PM_ADC10CLK
-
PM_DMAE0
DMAE0 input
1
2
PM_SVMOUT
-
PM_TB0OUTH
TB0 high-impedance input TB0OUTH
4
PM_TB0CCR0A
TB0 CCR0 capture input CCI0A
TB0 CCR0 compare output Out0
5
PM_TB0CCR1A
TB0 CCR1 capture input CCI1A
TB0 CCR1 compare output Out1
6
PM_TB0CCR2A
TB0 CCR2 capture input CCI2A
TB0 CCR2 compare output Out2
7
PM_TB0CCR3A
TB0 CCR3 capture input CCI3A
TB0 CCR3 compare output Out3
8
PM_TB0CCR4A
TB0 CCR4 capture input CCI4A
TB0 CCR4 compare output Out4
9
PM_TB0CCR5A
TB0 CCR5 capture input CCI5A
TB0 CCR5 compare output Out5
10
PM_TB0CCR6A
TB0 CCR6 capture input CCI6A
TB0 CCR6 compare output Out6
3
11
12
13
14
15
16
17
60
ADC10CLK
SVM output
PM_UCA1RXD
USCI_A1 UART RXD (direction controlled by USCI - input)
PM_UCA1SOMI
USCI_A1 SPI slave out master in (direction controlled by USCI)
PM_UCA1TXD
USCI_A1 UART TXD (direction controlled by USCI - output)
PM_UCA1SIMO
USCI_A1 SPI slave in master out (direction controlled by USCI)
PM_UCA1CLK
USCI_A1 clock input/output (direction controlled by USCI)
PM_UCB1STE
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
PM_UCB1SOMI
USCI_B1 SPI slave out master in (direction controlled by USCI)
PM_UCB1SCL
USCI_B1 I2C clock (open drain and direction controlled by USCI)
PM_UCB1SIMO
USCI_B1 SPI slave in master out (direction controlled by USCI)
PM_UCB1SDA
USCI_B1 I2C data (open drain and direction controlled by USCI)
PM_UCB1CLK
USCI_B1 clock input/output (direction controlled by USCI)
PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
PM_CBOUT1
None
18
PM_MCLK
None
MCLK
19
PM_RTCCLK
None
RTCCLK output
Detailed Description
COMP_B output
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-7. Port Mapping Mnemonics and Functions (continued)
VALUE
20
21
22
23
24
25
PxMAPy MNEMONIC
OUTPUT PIN FUNCTION
USCI_A0 UART RXD (direction controlled by USCI - input)
PM_UCA0SOMI
USCI_A0 SPI slave out master in (direction controlled by USCI)
PM_UCA0TXD
USCI_A0 UART TXD (direction controlled by USCI - output)
PM_UCA0SIMO
USCI_A0 SPI slave in master out (direction controlled by USCI)
PM_UCA0CLK
USCI_A0 clock input/output (direction controlled by USCI)
PM_UCB0STE
USCI_B0 SPI slave transmit enable (direction controlled by USCI)
PM_UCB0SOMI
USCI_B0 SPI slave out master in (direction controlled by USCI)
PM_UCB0SCL
USCI_B0 I2C clock (open drain and direction controlled by USCI)
PM_UCB0SIMO
USCI_B0 SPI slave in master out (direction controlled by USCI)
PM_UCB0SDA
USCI_B0 I2C data (open drain and direction controlled by USCI)
PM_UCB0CLK
USCI_B0 clock input/output (direction controlled by USCI)
PM_UCA0STE
USCI_A0 SPI slave transmit enable (direction controlled by USCI)
26 - 30
Reserved
31 (0FFh) (1)
(1)
INPUT PIN FUNCTION
PM_UCA0RXD
None
DVSS
Disables the output driver and the input Schmitt trigger to prevent parasitic
cross currents when applying analog signals
PM_ANALOG
The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored
resulting in a read out value of 31.
Table 6-8. Default Mapping
(1)
PIN
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
P4.0/P4MAP0
PM_UCB1STE/PM_UCA1CLK
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
USCI_A1 clock input/output (direction controlled by USCI)
P4.1/P4MAP1
PM_UCB1SIMO/PM_UCB1SDA
USCI_B1 SPI slave in master out (direction controlled by USCI)
USCI_B1 I2C data (open drain and direction controlled by USCI)
P4.2/P4MAP2
PM_UCB1SOMI/PM_UCB1SCL
USCI_B1 SPI slave out master in (direction controlled by USCI)
USCI_B1 I2C clock (open drain and direction controlled by USCI)
P4.3/P4MAP3
PM_UCB1CLK/PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
USCI_B1 clock input/output (direction controlled by USCI)
P4.4/P4MAP4
PM_UCA1TXD/PM_UCA1SIMO
USCI_A1 UART TXD (Direction controlled by USCI - output)
USCI_A1 SPI slave in master out (direction controlled by USCI)
P4.5/P4MAP5
PM_UCA1RXD/PM_UCA1SOMI
USCI_A1 UART RXD (Direction controlled by USCI - input)
USCI_A1 SPI slave out master in (direction controlled by USCI)
P4.6/P4MAP6
PM_NONE
None
DVSS
P4.7/P4MAP7 (1)
PM_NONE
None
DVSS
Not available on all devices
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
61
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.9.3
www.ti.com
Oscillator and System Clock (Link to user's guide)
The clock system in the MSP430F522x and MSP430F521x family of devices is supported by the Unified
Clock System (UCS) module, which includes support for a 32-kHz watch crystal oscillator (XT1 LF mode)
(XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal
trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a
high-frequency crystal oscillator (XT2). The UCS module is designed to meet the requirements of both low
system cost and low power consumption. The UCS module features digital frequency locked loop (FLL)
hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable
multiple of the selected FLL reference frequency. The internal DCO provides a fast turnon clock source
and stabilizes in 3.5 µs (typical). The UCS module provides the following clock signals:
• Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal
digitally controlled oscillator DCO.
• Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made
available to ACLK.
• Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be
sourced by same sources made available to ACLK.
• ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.
6.9.4
Power-Management Module (PMM) (Link to user's guide)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and
contains programmable output levels to provide for power optimization. The PMM also includes supply
voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, and brownout protection. The
brownout circuit is implemented to provide the proper internal reset signal to the device during power-on
and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable
level and supports both supply voltage supervision (the device is automatically reset) and supply voltage
monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary
supply and core supply.
6.9.5
Hardware Multiplier (Link to user's guide)
The multiplication operation is supported by a dedicated peripheral module. The module performs
operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and
unsigned multiplication as well as signed and unsigned multiply and accumulate operations.
6.9.6
Real-Time Clock (RTC_A) (Link to user's guide)
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated
real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit
timers that can be cascaded to form a 16-bit timer or counter. Both timers can be read and written by
software. Calendar mode integrates an internal calendar that compensates for months with less than
31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offsetcalibration hardware.
6.9.7
Watchdog Timer (WDT_A) (Link to user's guide)
The primary function of the WDT_A module is to perform a controlled system restart after a software
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function
is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
62
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.9.8
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
System Module (SYS) (Link to user's guide)
The SYS module handles many of the system functions within the device. These include power-on reset
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector
generators, bootstrap loader (BSL) entry mechanisms, and configuration management (device
descriptors). It also includes a data exchange mechanism when using JTAG that is called a JTAG mailbox
and that can be used in the application.
Table 6-9. System Module Interrupt Vector Registers
INTERRUPT VECTOR REGISTER
SYSRSTIV, System Reset
SYSSNIV, System NMI
SYSUNIV, User NMI
ADDRESS
019Eh
019Ch
019Ah
INTERRUPT EVENT
VALUE
No interrupt pending
00h
Brownout (BOR)
02h
RST/NMI (BOR)
04h
PMMSWBOR (BOR)
06h
Wakeup from LPMx.5
08h
Security violation (BOR)
0Ah
SVSL (POR)
0Ch
SVSH (POR)
0Eh
SVML_OVP (POR)
10h
SVMH_OVP (POR)
12h
PMMSWPOR (POR)
14h
WDT time-out (PUC)
16h
WDT password violation (PUC)
18h
KEYV flash password violation (PUC)
1Ah
Reserved
1Ch
Peripheral area fetch (PUC)
1Eh
PMM password violation (PUC)
20h
Reserved
22h to 3Eh
No interrupt pending
00h
SVMLIFG
02h
SVMHIFG
04h
SVSMLDLYIFG
06h
SVSMHDLYIFG
08h
VMAIFG
0Ah
JMBINIFG
0Ch
JMBOUTIFG
0Eh
SVMLVLRIFG
10h
SVMHVLRIFG
12h
Reserved
14h to 1Eh
No interrupt pending
00h
NMIIFG
02h
OFIFG
04h
ACCVIFG
06h
Reserved
08h
Reserved
0Ah to 1Eh
PRIORITY
Highest
Lowest
Highest
Lowest
Highest
Lowest
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
63
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.9.9
www.ti.com
DMA Controller (Link to user's guide)
The DMA controller allows movement of data from one memory address to another without CPU
intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without
having to awaken to move data to or from a peripheral.
Table 6-10. DMA Trigger Assignments (1)
TRIGGER
(1)
(2)
64
CHANNEL
0
1
2
0
DMAREQ
DMAREQ
DMAREQ
1
TA0CCR0 CCIFG
TA0CCR0 CCIFG
TA0CCR0 CCIFG
2
TA0CCR2 CCIFG
TA0CCR2 CCIFG
TA0CCR2 CCIFG
3
TA1CCR0 CCIFG
TA1CCR0 CCIFG
TA1CCR0 CCIFG
4
TA1CCR2 CCIFG
TA1CCR2 CCIFG
TA1CCR2 CCIFG
5
TA2CCR0 CCIFG
TA2CCR0 CCIFG
TA2CCR0 CCIFG
6
TA2CCR2 CCIFG
TA2CCR2 CCIFG
TA2CCR2 CCIFG
7
TB0CCR0 CCIFG
TB0CCR0 CCIFG
TB0CCR0 CCIFG
8
TB0CCR2 CCIFG
TB0CCR2 CCIFG
TB0CCR2 CCIFG
9
Reserved
Reserved
Reserved
10
Reserved
Reserved
Reserved
11
Reserved
Reserved
Reserved
12
Reserved
Reserved
Reserved
13
Reserved
Reserved
Reserved
14
Reserved
Reserved
Reserved
15
Reserved
Reserved
Reserved
16
UCA0RXIFG
UCA0RXIFG
UCA0RXIFG
17
UCA0TXIFG
UCA0TXIFG
UCA0TXIFG
18
UCB0RXIFG
UCB0RXIFG
UCB0RXIFG
19
UCB0TXIFG
UCB0TXIFG
UCB0TXIFG
20
UCA1RXIFG
UCA1RXIFG
UCA1RXIFG
21
UCA1TXIFG
UCA1TXIFG
UCA1TXIFG
22
UCB1RXIFG
UCB1RXIFG
UCB1RXIFG
23
UCB1TXIFG
UCB1TXIFG
UCB1TXIFG
(2)
ADC10IFG0
(2)
ADC10IFG0 (2)
24
ADC10IFG0
25
Reserved
Reserved
Reserved
26
Reserved
Reserved
Reserved
27
Reserved
Reserved
Reserved
28
Reserved
Reserved
Reserved
29
MPY ready
MPY ready
MPY ready
30
DMA2IFG
DMA0IFG
DMA1IFG
31
DMAE0
DMAE0
DMAE0
If a reserved trigger source is selected, no trigger is generated.
Only on devices with ADC; reserved on devices without ADC
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.9.10 Universal Serial Communication Interface (USCI) (Links to user's guide: UART
Mode, SPI Mode, I2C Mode)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols
such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module
contains two portions, A and B.
The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA.
The USCI_Bn module provides support for SPI (3-pin or 4-pin) or I2C.
The MSP430F522x and MSP430F521x series include two complete USCI modules (n = 0, 1).
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
65
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.9.11 TA0 (Link to user's guide)
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple
captures or compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Table 6-11. TA0 Signal Connections
INPUT PIN NUMBER
RGC, ZQE,
YFF
18, H2, B2P1.0
RGZ
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
13-P1.0
TA0CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
18, H2, B2P1.0
13-P1.0
TA0CLK
TACLK
19, H3, B3P1.1
14-P1.1
TA0.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
TA0.1
CCI1A
CBOUT
(internal)
CCI1B
20, J3, A3P1.2
21, G4, C3P1.3
22, H4, D3P1.4
23, J4, A4P1.5
66
15-P1.2
16-P1.3
17-P1.4
18-P1.5
Detailed Description
DVSS
GND
DVCC
VCC
TA0.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
TA0.3
CCI3A
DVSS
CCI3B
DVSS
GND
DVCC
VCC
TA0.4
CCI4A
DVSS
CCI4B
DVSS
GND
DVCC
VCC
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
CCR2
CCR3
CCR4
TA0
TA1
TA2
TA3
TA4
OUTPUT PIN NUMBER
RGC, ZQE, YFF
RGZ
19, H3, B3-P1.1
14-P1.1
20, J3, A3-P1.2
15-P1.2
ADC10 (internal)
ADC10SHSx =
{1}
ADC10 (internal)
ADC10SHSx =
{1}
21, G4, C3-P1.3
16-P1.3
22, H4, D3-P1.4
17-P1.4
23, J4, A4-P1.5
18-P1.5
TA0.0
TA0.1
TA0.2
TA0.3
TA0.4
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.9.12 TA1 (Link to user's guide)
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support
multiple captures or compares, PWM outputs, and interval timing. It also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Table 6-12. TA1 Signal Connections
INPUT PIN NUMBER
RGC, ZQE,
YFF
24, G5, B4P1.6
RGZ
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
19-P1.6
TA1CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
24, G5, B4P1.6
19-P1.6
TA1CLK
TACLK
25, H5, C4P1.7
20-P1.7
TA1.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
TA1.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA1.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
26, J5, A5P2.0
27, G6, D4P2.1
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
TA0
OUTPUT PIN NUMBER
RGC, ZQE,
YFF
RGZ
25, H5, C4P1.7
20-P1.7
TA1.0
26, J5, A5P2.0
CCR1
TA1
TA1.1
27, G6, D4P2.1
CCR2
TA2
TA1.2
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
67
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.9.13 TA2 (Link to user's guide)
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 can support
multiple captures or compares, PWM outputs, and interval timing. It also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Table 6-13. TA2 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TA2CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
28, J6, B5P2.2
TA2CLK
TACLK
29, H6, A6P2.3
TA2.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
TA2.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA2.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
RGC, ZQE,
YFF
RGZ
28, J6, B5P2.2
30, J7, C5P2.4
31, J8, B6P2.5
68
Detailed Description
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
OUTPUT PIN NUMBER
RGC, ZQE,
YFF
RGZ
29, H6, A6P2.3
CCR0
TA0
TA2.0
30, J7, C5P2.4
CCR1
TA1
TA2.1
31, J8, B6P2.5
CCR2
TA2
TA2.2
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.9.14 TB0 (Link to user's guide)
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 can support
multiple captures or compares, PWM outputs, and interval timing. It also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Table 6-14. TB0 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TB0CLK
TBCLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
(1)
TB0CLK
TBCLK
49, B8(9), H8P7.0 (1)
(1)
TB0.0
CCI0A
49, B8(9), H8P7.0 (1)
(1)
TB0.0
CCI0B
RGC, ZQE,
YFF
(1)
RGZ
(1)
(1)
50, A9, G7P7.1 (1)
(1)
DVSS
GND
DVCC
VCC
TB0.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
51, B7, F6P7.2 (1)
(1)
TB0.2
CCI2A
51, B7, F6P7.2 (1)
(1)
TB0.2
CCI2B
DVSS
GND
DVCC
VCC
52, A8, H7P7.3 (1)
(1)
TB0.3
CCI3A
52, A8, H7P7.3 (1)
(1)
TB0.3
CCI3B
DVSS
GND
DVCC
VCC
53, A7, G6P7.4 (1)
(1)
TB0.4
CCI4A
53, A7, G6P7.4 (1)
(1)
TB0.4
CCI4B
GND
VCC
54, A6, H6P7.5 (1)
(1)
TB0.5
CCI5A
54, A6, H6P7.5 (1)
(1)
TB0.5
CCI5B
DVSS
GND
(1)
(1)
DVSS
DVCC
(1)
DVCC
VCC
TB0.6
CCI6A
ACLK
(internal)
CCI6B
DVSS
GND
DVCC
VCC
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
CCR2
CCR3
CCR4
CCR5
CCR6
TB0
TB1
TB2
TB3
TB4
TB5
TB6
TB0.0
TB0.1
OUTPUT PIN NUMBER
RGC, ZQE, YFF
RGZ
49, B8(9), H8P7.0 (1)
(1)
ADC10 (internal)
ADC10SHSx = {2}
ADC10 (internal)
ADC10SHSx = {2}
50, A9, G7-P7.1 (1)
(1)
ADC10 (internal)
ADC10SHSx = {3}
ADC10 (internal)
ADC10SHSx = {3}
51, B7, F6-P7.2 (1)
(1)
52, A8, H7-P7.3 (1)
(1)
53, A7, G6-P7.4 (1)
(1)
54, A6, H6-P7.5 (1)
(1)
(1)
(1)
TB0.2
TB0.3
TB0.4
TB0.5
TB0.6
Timer functions can be assigned by the port mapping controller.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
69
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.9.15 Comparator_B (Link to user's guide)
The primary function of the Comparator_B module is to support precision slope analog-to-digital
conversions, battery voltage supervision, and monitoring of external analog signals.
6.9.16 ADC10_A (Link to user's guide)
The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit
SAR core, sample select control, reference generator, and a conversion result buffer. A window
comparator with lower and upper limits allows CPU-independent result monitoring with three window
comparator interrupt flags.
6.9.17 CRC16 (Link to user's guide)
The CRC16 module produces a signature based on a sequence of entered data values and can be used
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
6.9.18 REF Voltage Reference (Link to user's guide)
The REF is responsible for generation of all critical reference voltages that can be used by the various
analog peripherals in the device.
6.9.19 Embedded Emulation Module (EEM) (S Version) (Link to user's guide)
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:
• Three hardware triggers or breakpoints on memory access
• One hardware trigger or breakpoint on CPU register write access
• Up to four hardware triggers can be combined to form complex triggers or breakpoints
• One cycle counter
• Clock control on module level
70
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.9.20 Peripheral File Map
Table 6-15. Peripherals
MODULE NAME
BASE ADDRESS
OFFSET ADDRESS
RANGE
Special Functions (see Table 6-16)
0100h
000h-01Fh
PMM (see Table 6-17)
0120h
000h-010h
Flash Control (see Table 6-18)
0140h
000h-00Fh
CRC16 (see Table 6-19)
0150h
000h-007h
RAM Control (see Table 6-20)
0158h
000h-001h
Watchdog (see Table 6-21)
015Ch
000h-001h
UCS (see Table 6-22)
0160h
000h-01Fh
SYS (see Table 6-23)
0180h
000h-01Fh
Shared Reference (see Table 6-24)
01B0h
000h-001h
Port Mapping Control (see Table 6-25)
01C0h
000h-002h
Port Mapping Port P4 (see Table 6-25)
01E0h
000h-007h
Port P1, P2 (see Table 6-26)
0200h
000h-01Fh
Port P3, P4 (see Table 6-27)
0220h
000h-00Bh
Port P5, P6 (see Table 6-28)
0240h
000h-00Bh
Port P7 (see Table 6-29)
0260h
000h-00Bh
Port PJ (see Table 6-30)
0320h
000h-01Fh
TA0 (see Table 6-31)
0340h
000h-02Eh
TA1 (see Table 6-32)
0380h
000h-02Eh
TB0 (see Table 6-33)
03C0h
000h-02Eh
TA2 (see Table 6-34)
0400h
000h-02Eh
Real-Time Clock (RTC_A) (see Table 6-35)
04A0h
000h-01Bh
32-Bit Hardware Multiplier (see Table 6-36)
04C0h
000h-02Fh
DMA General Control (see Table 6-37)
0500h
000h-00Fh
DMA Channel 0 (see Table 6-37)
0510h
000h-00Ah
DMA Channel 1 (see Table 6-37)
0520h
000h-00Ah
DMA Channel 2 (see Table 6-37)
0530h
000h-00Ah
USCI_A0 (see Table 6-38)
05C0h
000h-01Fh
USCI_B0 (see Table 6-39)
05E0h
000h-01Fh
USCI_A1 (see Table 6-40)
0600h
000h-01Fh
USCI_B1 (see Table 6-41)
0620h
000h-01Fh
ADC10_A (see Table 6-42)
0740h
000h-01Fh
Comparator_B (see Table 6-43)
08C0h
000h-00Fh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
71
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-16. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION
REGISTER
OFFSET
SFR interrupt enable
SFRIE1
00h
SFR interrupt flag
SFRIFG1
02h
SFR reset pin control
SFRRPCR
04h
Table 6-17. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PMM Control 0
PMMCTL0
00h
PMM control 1
PMMCTL1
02h
SVS high side control
SVSMHCTL
04h
SVS low side control
SVSMLCTL
06h
PMM interrupt flags
PMMIFG
0Ch
PMM interrupt enable
PMMIE
0Eh
PMM power mode 5 control
PM5CTL0
10h
Table 6-18. Flash Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Flash control 1
FCTL1
00h
Flash control 3
FCTL3
04h
Flash control 4
FCTL4
06h
Table 6-19. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION
REGISTER
OFFSET
CRC data input
CRC16DI
00h
CRC data input reverse byte
CRCDIRB
02h
CRC initialization and result
CRCINIRES
04h
CRC result reverse byte
CRCRESR
06h
Table 6-20. RAM Control Registers (Base Address: 0158h)
REGISTER DESCRIPTION
RAM control 0
REGISTER
RCCTL0
OFFSET
00h
Table 6-21. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION
Watchdog timer control
REGISTER
WDTCTL
OFFSET
00h
Table 6-22. UCS Registers (Base Address: 0160h)
REGISTER DESCRIPTION
REGISTER
OFFSET
UCS control 0
UCSCTL0
00h
UCS control 1
UCSCTL1
02h
UCS control 2
UCSCTL2
04h
UCS control 3
UCSCTL3
06h
UCS control 4
UCSCTL4
08h
UCS control 5
UCSCTL5
0Ah
UCS control 6
UCSCTL6
0Ch
UCS control 7
UCSCTL7
0Eh
72
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-22. UCS Registers (Base Address: 0160h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
UCS control 8
UCSCTL8
10h
UCS control 9
UCSCTL9
12h
Table 6-23. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION
REGISTER
OFFSET
System control
SYSCTL
00h
Bootstrap loader configuration area
SYSBSLC
02h
JTAG mailbox control
SYSJMBC
06h
JTAG mailbox input 0
SYSJMBI0
08h
JTAG mailbox input 1
SYSJMBI1
0Ah
JTAG mailbox output 0
SYSJMBO0
0Ch
JTAG mailbox output 1
SYSJMBO1
0Eh
User NMI vector generator
SYSUNIV
1Ah
System NMI vector generator
SYSSNIV
1Ch
Reset vector generator
SYSRSTIV
1Eh
Table 6-24. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION
Shared reference control
REGISTER
REFCTL
OFFSET
00h
Table 6-25. Port Mapping Registers
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port mapping key/ID register
PMAPKEYID
00h
Port mapping control register
PMAPCTL
02h
Port P4.0 mapping register
P4MAP0
00h
Port P4.1 mapping register
P4MAP1
01h
Port P4.2 mapping register
P4MAP2
02h
Port P4.3 mapping register
P4MAP3
03h
Port P4.4 mapping register
P4MAP4
04h
Port P4.5 mapping register
P4MAP5
05h
Port P4.6 mapping register
P4MAP6
06h
Port P4.7 mapping register
P4MAP7
07h
Table 6-26. Port P1, P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P1 input
P1IN
00h
Port P1 output
P1OUT
02h
Port P1 direction
P1DIR
04h
Port P1 pullup or pulldown enable
P1REN
06h
Port P1 drive strength
P1DS
08h
Port P1 selection
P1SEL
0Ah
Port P1 interrupt vector word
P1IV
0Eh
Port P1 interrupt edge select
P1IES
18h
Port P1 interrupt enable
P1IE
1Ah
Port P1 interrupt flag
P1IFG
1Ch
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
73
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-26. Port P1, P2 Registers (Base Address: 0200h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P2 input
P2IN
01h
Port P2 output
P2OUT
03h
Port P2 direction
P2DIR
05h
Port P2 pullup or pulldown enable
P2REN
07h
Port P2 drive strength
P2DS
09h
Port P2 selection
P2SEL
0Bh
Port P2 interrupt vector word
P2IV
1Eh
Port P2 interrupt edge select
P2IES
19h
Port P2 interrupt enable
P2IE
1Bh
Port P2 interrupt flag
P2IFG
1Dh
Table 6-27. Port P3, P4 Registers (Base Address: 0220h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P3 input
P3IN
00h
Port P3 output
P3OUT
02h
Port P3 direction
P3DIR
04h
Port P3 pullup or pulldown enable
P3REN
06h
Port P3 drive strength
P3DS
08h
Port P3 selection
P3SEL
0Ah
Port P4 input
P4IN
01h
Port P4 output
P4OUT
03h
Port P4 direction
P4DIR
05h
Port P4 pullup or pulldown enable
P4REN
07h
Port P4 drive strength
P4DS
09h
Port P4 selection
P4SEL
0Bh
Table 6-28. Port P5, P6 Registers (Base Address: 0240h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P5 input
P5IN
00h
Port P5 output
P5OUT
02h
Port P5 direction
P5DIR
04h
Port P5 pullup or pulldown enable
P5REN
06h
Port P5 drive strength
P5DS
08h
Port P5 selection
P5SEL
0Ah
Port P6 input
P6IN
01h
Port P6 output
P6OUT
03h
Port P6 direction
P6DIR
05h
Port P6 pullup or pulldown enable
P6REN
07h
Port P6 drive strength
P6DS
09h
Port P6 selection
P6SEL
0Bh
Table 6-29. Port P7 Registers (Base Address: 0260h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P7 input
P7IN
00h
Port P7 output
P7OUT
02h
Port P7 direction
P7DIR
04h
74
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-29. Port P7 Registers (Base Address: 0260h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P7 pullup or pulldown enable
P7REN
06h
Port P7 drive strength
P7DS
08h
Port P7 selection
P7SEL
0Ah
Table 6-30. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port PJ input
PJIN
00h
Port PJ output
PJOUT
02h
Port PJ direction
PJDIR
04h
Port PJ pullup or pulldown enable
PJREN
06h
Port PJ drive strength
PJDS
08h
Table 6-31. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA0 control
TA0CTL
00h
Capture/compare control 0
TA0CCTL0
02h
Capture/compare control 1
TA0CCTL1
04h
Capture/compare control 2
TA0CCTL2
06h
Capture/compare control 3
TA0CCTL3
08h
Capture/compare control 4
TA0CCTL4
0Ah
TA0 counter register
TA0R
10h
Capture/compare register 0
TA0CCR0
12h
Capture/compare register 1
TA0CCR1
14h
Capture/compare register 2
TA0CCR2
16h
Capture/compare register 3
TA0CCR3
18h
Capture/compare register 4
TA0CCR4
1Ah
TA0 expansion register 0
TA0EX0
20h
TA0 interrupt vector
TA0IV
2Eh
Table 6-32. TA1 Registers (Base Address: 0380h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA1 control
TA1CTL
00h
Capture/compare control 0
TA1CCTL0
02h
Capture/compare control 1
TA1CCTL1
04h
Capture/compare control 2
TA1CCTL2
06h
TA1 counter register
TA1R
10h
Capture/compare register 0
TA1CCR0
12h
Capture/compare register 1
TA1CCR1
14h
Capture/compare register 2
TA1CCR2
16h
TA1 expansion register 0
TA1EX0
20h
TA1 interrupt vector
TA1IV
2Eh
Table 6-33. TB0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TB0 control
TB0CTL
00h
Capture/compare control 0
TB0CCTL0
02h
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
75
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-33. TB0 Registers (Base Address: 03C0h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
Capture/compare control 1
TB0CCTL1
04h
Capture/compare control 2
TB0CCTL2
06h
Capture/compare control 3
TB0CCTL3
08h
Capture/compare control 4
TB0CCTL4
0Ah
Capture/compare control 5
TB0CCTL5
0Ch
Capture/compare control 6
TB0CCTL6
0Eh
TB0 register
TB0R
10h
Capture/compare register 0
TB0CCR0
12h
Capture/compare register 1
TB0CCR1
14h
Capture/compare register 2
TB0CCR2
16h
Capture/compare register 3
TB0CCR3
18h
Capture/compare register 4
TB0CCR4
1Ah
Capture/compare register 5
TB0CCR5
1Ch
Capture/compare register 6
TB0CCR6
1Eh
TB0 expansion register 0
TB0EX0
20h
TB0 interrupt vector
TB0IV
2Eh
Table 6-34. TA2 Registers (Base Address: 0400h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA2 control
TA2CTL
00h
Capture/compare control 0
TA2CCTL0
02h
Capture/compare control 1
TA2CCTL1
04h
Capture/compare control 2
TA2CCTL2
06h
TA2 counter register
TA2R
10h
Capture/compare register 0
TA2CCR0
12h
Capture/compare register 1
TA2CCR1
14h
Capture/compare register 2
TA2CCR2
16h
TA2 expansion register 0
TA2EX0
20h
TA2 interrupt vector
TA2IV
2Eh
Table 6-35. Real-Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
RTC control 0
RTCCTL0
00h
RTC control 1
RTCCTL1
01h
RTC control 2
RTCCTL2
02h
RTC control 3
RTCCTL3
03h
RTC prescaler 0 control
RTCPS0CTL
08h
RTC prescaler 1 control
RTCPS1CTL
0Ah
RTC prescaler 0
RTCPS0
0Ch
RTC prescaler 1
RTCPS1
0Dh
RTC interrupt vector word
RTCIV
0Eh
RTC seconds/counter register 1
RTCSEC/RTCNT1
10h
RTC minutes/counter register 2
RTCMIN/RTCNT2
11h
RTC hours/counter register 3
RTCHOUR/RTCNT3
12h
RTC day of week/counter register 4
RTCDOW/RTCNT4
13h
RTC days
RTCDAY
14h
RTC month
RTCMON
15h
76
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-35. Real-Time Clock Registers (Base Address: 04A0h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
RTC year low
RTCYEARL
16h
RTC year high
RTCYEARH
17h
RTC alarm minutes
RTCAMIN
18h
RTC alarm hours
RTCAHOUR
19h
RTC alarm day of week
RTCADOW
1Ah
RTC alarm days
RTCADAY
1Bh
Table 6-36. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
16-bit operand 1 – multiply
MPY
00h
16-bit operand 1 – signed multiply
MPYS
02h
16-bit operand 1 – multiply accumulate
MAC
04h
16-bit operand 1 – signed multiply accumulate
MACS
06h
16-bit operand 2
OP2
08h
16 × 16 result low word
RESLO
0Ah
16 × 16 result high word
RESHI
0Ch
16 × 16 sum extension register
SUMEXT
0Eh
32-bit operand 1 – multiply low word
MPY32L
10h
32-bit operand 1 – multiply high word
MPY32H
12h
32-bit operand 1 – signed multiply low word
MPYS32L
14h
32-bit operand 1 – signed multiply high word
MPYS32H
16h
32-bit operand 1 – multiply accumulate low word
MAC32L
18h
32-bit operand 1 – multiply accumulate high word
MAC32H
1Ah
32-bit operand 1 – signed multiply accumulate low word
MACS32L
1Ch
32-bit operand 1 – signed multiply accumulate high word
MACS32H
1Eh
32-bit operand 2 – low word
OP2L
20h
32-bit operand 2 – high word
OP2H
22h
32 × 32 result 0 – least significant word
RES0
24h
32 × 32 result 1
RES1
26h
32 × 32 result 2
RES2
28h
32 × 32 result 3 – most significant word
RES3
2Ah
MPY32 control register 0
MPY32CTL0
2Ch
Table 6-37. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 0 control
DMA0CTL
00h
DMA channel 0 source address low
DMA0SAL
02h
DMA channel 0 source address high
DMA0SAH
04h
DMA channel 0 destination address low
DMA0DAL
06h
DMA channel 0 destination address high
DMA0DAH
08h
DMA channel 0 transfer size
DMA0SZ
0Ah
DMA channel 1 control
DMA1CTL
00h
DMA channel 1 source address low
DMA1SAL
02h
DMA channel 1 source address high
DMA1SAH
04h
DMA channel 1 destination address low
DMA1DAL
06h
DMA channel 1 destination address high
DMA1DAH
08h
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
77
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-37. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 1 transfer size
DMA1SZ
0Ah
DMA channel 2 control
DMA2CTL
00h
DMA channel 2 source address low
DMA2SAL
02h
DMA channel 2 source address high
DMA2SAH
04h
DMA channel 2 destination address low
DMA2DAL
06h
DMA channel 2 destination address high
DMA2DAH
08h
DMA channel 2 transfer size
DMA2SZ
0Ah
DMA module control 0
DMACTL0
00h
DMA module control 1
DMACTL1
02h
DMA module control 2
DMACTL2
04h
DMA module control 3
DMACTL3
06h
DMA module control 4
DMACTL4
08h
DMA interrupt vector
DMAIV
0Eh
Table 6-38. USCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA0CTL1
00h
USCI control 0
UCA0CTL0
01h
USCI baud rate 0
UCA0BR0
06h
USCI baud rate 1
UCA0BR1
07h
USCI modulation control
UCA0MCTL
08h
USCI status
UCA0STAT
0Ah
USCI receive buffer
UCA0RXBUF
0Ch
USCI transmit buffer
UCA0TXBUF
0Eh
USCI LIN control
UCA0ABCTL
10h
USCI IrDA transmit control
UCA0IRTCTL
12h
USCI IrDA receive control
UCA0IRRCTL
13h
USCI interrupt enable
UCA0IE
1Ch
USCI interrupt flags
UCA0IFG
1Dh
USCI interrupt vector word
UCA0IV
1Eh
Table 6-39. USCI_B0 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB0CTL1
00h
USCI synchronous control 0
UCB0CTL0
01h
USCI synchronous bit rate 0
UCB0BR0
06h
USCI synchronous bit rate 1
UCB0BR1
07h
USCI synchronous status
UCB0STAT
0Ah
USCI synchronous receive buffer
UCB0RXBUF
0Ch
USCI synchronous transmit buffer
UCB0TXBUF
0Eh
USCI I2C own address
UCB0I2COA
10h
USCI I2C slave address
UCB0I2CSA
12h
USCI interrupt enable
UCB0IE
1Ch
USCI interrupt flags
UCB0IFG
1Dh
USCI interrupt vector word
UCB0IV
1Eh
78
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-40. USCI_A1 Registers (Base Address: 0600h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA1CTL1
00h
USCI control 0
UCA1CTL0
01h
USCI baud rate 0
UCA1BR0
06h
USCI baud rate 1
UCA1BR1
07h
USCI modulation control
UCA1MCTL
08h
USCI status
UCA1STAT
0Ah
USCI receive buffer
UCA1RXBUF
0Ch
USCI transmit buffer
UCA1TXBUF
0Eh
USCI LIN control
UCA1ABCTL
10h
USCI IrDA transmit control
UCA1IRTCTL
12h
USCI IrDA receive control
UCA1IRRCTL
13h
USCI interrupt enable
UCA1IE
1Ch
USCI interrupt flags
UCA1IFG
1Dh
USCI interrupt vector word
UCA1IV
1Eh
Table 6-41. USCI_B1 Registers (Base Address: 0620h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB1CTL1
00h
USCI synchronous control 0
UCB1CTL0
01h
USCI synchronous bit rate 0
UCB1BR0
06h
USCI synchronous bit rate 1
UCB1BR1
07h
USCI synchronous status
UCB1STAT
0Ah
USCI synchronous receive buffer
UCB1RXBUF
0Ch
USCI synchronous transmit buffer
UCB1TXBUF
0Eh
USCI I2C own address
UCB1I2COA
10h
USCI I2C slave address
UCB1I2CSA
12h
USCI interrupt enable
UCB1IE
1Ch
USCI interrupt flags
UCB1IFG
1Dh
USCI interrupt vector word
UCB1IV
1Eh
Table 6-42. ADC10_A Registers (Base Address: 0740h)
REGISTER DESCRIPTION
REGISTER
OFFSET
ADC10_A Control register 0
ADC10CTL0
00h
ADC10_A Control register 1
ADC10CTL1
02h
ADC10_A Control register 2
ADC10CTL2
04h
ADC10_A Window Comparator Low Threshold
ADC10LO
06h
ADC10_A Window Comparator High Threshold
ADC10HI
08h
ADC10_A Memory Control Register 0
ADC10MCTL0
0Ah
ADC10_A Conversion Memory Register
ADC10MEM0
12h
ADC10_A Interrupt Enable
ADC10IE
1Ah
ADC10_A Interrupt Flags
ADC10IGH
1Ch
ADC10_A Interrupt Vector Word
ADC10IV
1Eh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
79
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-43. Comparator_B Registers (Base Address: 08C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Comp_B control register 0
CBCTL0
00h
Comp_B control register 1
CBCTL1
02h
Comp_B control register 2
CBCTL2
04h
Comp_B control register 3
CBCTL3
06h
Comp_B interrupt register
CBINT
0Ch
Comp_B interrupt vector word
CBIV
0Eh
80
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.10 Input/Output Schematics
6.10.1 Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger
Pad Logic
P1REN.x
P1DIR.x
0
From module
1
P1OUT.x
0
From module
1
0
(P1.0 to P1.3) DVCC
(P1.4 to P1.7) DVIO
1
1
Direction
0: Input
1: Output
P1DS.x
0: Low drive
1: High drive
P1SEL.x
P1IN.x
EN
To module
DVSS
P1.0/TA0CLK/ACLK
P1.1/TA0.0
P1.2/TA0.1
P1.3/TA0.2
P1.4/TA0.3
P1.5/TA0.4
P1.6/TA1CLK/CBOUT
P1.7/TA1.0
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
81
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-44. Port P1 (P1.0 to P1.7) Pin Functions
PIN NAME (P1.x)
P1.0/TA0CLK/ACLK
x
0
FUNCTION
P1DIR.x
P1SEL.x
P1.0 (I/O)
I: 0; O: 1
0
TA0CLK
0
1
ACLK
P1.1/TA0.0
1
P1.1 (I/O)
TA0.CCI0A
TA0.0
P1.2/TA0.1
2
P1.2 (I/O)
TA0.CCI1A
TA0.1
P1.3/TA0.2
P1.4/TA0.3
P1.5/TA0.4
P1.6/TA1CLK/CBOUT
P1.7/TA1.0
82
Detailed Description
3
4
5
6
7
CONTROL BITS OR SIGNALS
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
TA0.CCI2A
0
1
TA0.2
1
1
P1.3 (I/O)
P1.4 (I/O)
I: 0; O: 1
0
TA0.CCI3A
0
1
TA0.3
1
1
P1.5 (I/O)
I: 0; O: 1
0
TA0.CCI4A
0
1
TA0.4
1
1
P1.6 (I/O)
I: 0; O: 1
0
TA1CLK
0
1
CBOUT comparator B
1
1
I: 0; O: 1
0
TA1.CCI0A
0
1
TA1.0
1
1
P1.7 (I/O)
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.10.2 Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger
Pad Logic
P2REN.x
P2DIR.x
0
From module
1
P2OUT.x
0
From module
1
0
DVIO
1
1
Direction
0: Input
1: Output
P2DS.x
0: Low drive
1: High drive
P2SEL.x
P2IN.x
EN
To module
DVSS
P2.0/TA1.1
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
P2.3/TA2.0
P2.4/TA2.1
P2.5/TA2.2
P2.6/RTCCLK/DMAE0
P2.7/UB0STE/UCA0CLK
D
P2IE.x
EN
To module
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
83
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-45. Port P2 (P2.0 to P2.7) Pin Functions
PIN NAME (P2.x)
P2.0/TA1.1 (2)
x
0
FUNCTION
P2.0 (I/O)
TA1.CCI1A
TA1.1
P2.1/TA1.2 (2)
1
P2.1 (I/O)
TA1.CCI2A
TA1.2
P2.2/TA2CLK/SMCLK (2)
2
P2.4/TA2.1
P2.5/TA2.2
3
(2)
4
(2)
P2.6/RTCCLK/DMAE0
5
(2)
P2.7/UCB0STE/UCA0CLK
6
7
84
P2SEL.x
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
TA2CLK
0
1
1
1
I: 0; O: 1
0
TA2.CCI0A
0
1
TA2.0
1
1
P2.3 (I/O)
P2.4 (I/O)
I: 0; O: 1
0
TA2.CCI1A
0
1
TA2.1
1
1
P2.5 (I/O)
I: 0; O: 1
0
TA2.CCI2A
0
1
TA2.2
1
1
P2.6 (I/O)
I: 0; O: 1
0
DMAE0
0
1
RTCCLK
1
1
P2.7 (I/O)
I: 0; O: 1
0
X
1
UCB0STE/UCA0CLK
(1)
(2)
(3)
(4)
P2DIR.x
I: 0; O: 1
P2.2 (I/O)
SMCLK
P2.3/TA2.0 (2)
CONTROL BITS OR SIGNALS (1)
(3) (4)
X = Don't care
Not available on RGZ package types.
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.10.3 Port P3, P3.0 to P3.4, Input/Output With Schmitt Trigger
Pad Logic
P3REN.x
P3DIR.x
0
From module
1
P3OUT.x
0
From module
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
P3.0/UCB0SIMO/UCB0SDA
P3.1/UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
P3.3/UCA0TXD/UCA0SIMO
P3.4/UCA0RXD/UCA0SOMI
EN
To module
D
Table 6-46. Port P3 (P3.0 to P3.4) Pin Functions
PIN NAME (P3.x)
x
P3.0/UCB0SIMO/UCB0SDA
0
FUNCTION
P3.0 (I/O)
UCB0SIMO/UCB0SDA (2)
P3.1/UCB0SOMI/UCB0SCL
1
P3.1 (I/O)
UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
2
(2) (3)
P3.2 (I/O)
UCB0CLK/UCA0STE (2)
P3.3/UCA0TXD/UCA0SIMO
3
4
(4)
P3.3 (I/O)
UCA0TXD/UCA0SIMO
P3.4/UCA0RXD/UCA0SOMI
(2)
P3.4 (I/O)
UCA0RXD/UCA0SOMI (2)
(1)
(2)
(3)
(4)
(3)
CONTROL BITS OR SIGNALS (1)
P3DIR.x
P3SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
X = Don't care
The pin direction is controlled by the USCI module.
If the I2C functionality is selected, the output drives only the logical 0 to VSS level.
UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
85
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.10.4 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger
Pad Logic
P4REN.x
P4DIR.x
0
from Port Mapping Control
1
P4OUT.x
0
from Port Mapping Control
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P4.0/P4MAP0
P4.1/P4MAP1
P4.2/P4MAP2
P4.3/P4MAP3
P4.4/P4MAP4
P4.5/P4MAP5
P4.6/P4MAP6
P4.7/P4MAP7
P4DS.x
0: Low drive
1: High drive
P4SEL.x
P4IN.x
EN
D
to Port Mapping Control
Table 6-47. Port P4 (P4.0 to P4.7) Pin Functions
PIN NAME (P4.x)
P4.0/P4MAP0
x
0
FUNCTION
P4.0 (I/O)
Mapped secondary digital function
P4.1/P4MAP1
1
P4.1 (I/O)
Mapped secondary digital function
P4.2/P4MAP2
2
P4.3/P4MAP3
3
P4.2 (I/O)
Mapped secondary digital function
P4.3 (I/O)
Mapped secondary digital function
P4.4/P4MAP4
4
P4.4 (I/O)
Mapped secondary digital function
P4.5/P4MAP5
5
P4.5 (I/O)
Mapped secondary digital function
P4.6/P4MAP6
6
P4.6 (I/O)
Mapped secondary digital function
P4.7/P4MAP7 (3)
7
P4.7 (I/O)
Mapped secondary digital function
(1)
(2)
(3)
86
CONTROL BITS OR SIGNALS (1)
P4DIR.x (2)
P4SEL.x
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
≤ 30
P4MAPx
X
1
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
X = Don't care
The direction of some mapped secondary functions are controlled directly by the module. See Table 6-7 for specific direction control
information of mapped secondary functions.
Not available on RGZ package types.
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.10.5 Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger
Pad Logic
to/from Reference
(n/a MSP430F521x)
(n/a MSPF430F521x)
to ADC10
(n/a MSPF430F521x)
INCHx = x
P5REN.x
P5DIR.x
DVSS
0
DVCC
1
1
0
1
P5OUT.x
0
From module
1
P5.0/(A8/VeREF+)
P5.1/(A9/VeREF–)
P5DS.x
0: Low drive
1: High drive
P5SEL.x
P5IN.x
Bus
Keeper
EN
To module
D
Table 6-48. Port P5 (P5.0 and P5.1) Pin Functions
PIN NAME (P5.x)
P5.0/A8/VeREF+
x
0
FUNCTION
P5.0 (I/O)
(3)
A8/VeREF+ (4)
P5.1/A9/VeREF–
1
P5.1 (I/O)
(3)
A9/VeREF– (5)
(1)
(2)
(3)
(4)
(5)
CONTROL BITS OR SIGNALS (1)
P5DIR.x
P5SEL.x
REFOUT (2)
I: 0; O: 1
0
X
X
1
0
I: 0; O: 1
0
X
X
1
0
X = Don't care
REFOUT resides in the REF module.
Default condition
Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A. Channel A8, when selected with
the INCHx bits, is connected to the VeREF+ pin.
Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A. Channel A9, when selected with the
INCHx bits, is connected to the VeREF- pin.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
87
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.10.6 Port P5, P5.2, Input/Output With Schmitt Trigger
Pad Logic
To XT2
P5REN.2
P5DIR.2
DVSS
0
DVCC
1
1
0
1
P5OUT.2
0
Module X OUT
1
P5DS.2
0: Low drive
1: High drive
P5SEL.2
P5.2/XT2IN
P5IN.2
EN
Module X IN
88
Detailed Description
Bus
Keeper
D
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.10.7 Port P5, P5.3, Input/Output With Schmitt Trigger
Pad Logic
To XT2
P5REN.3
P5DIR.3
DVSS
0
DVCC
1
1
0
1
P5OUT.3
0
Module X OUT
1
P5SEL.2
P5.3/XT2OUT
P5DS.3
0: Low drive
1: High drive
XT2BYPASS
P5SEL.3
P5IN.3
Bus
Keeper
EN
Module X IN
D
Table 6-49. Port P5 (P5.2 and P5.3) Pin Functions
PIN NAME (P5.x)
P5.2/XT2IN
x
2
FUNCTION
P5DIR.x
P5SEL.2
P5SEL.3
XT2BYPASS
I: 0; O: 1
0
X
X
X
1
X
0
X
1
X
1
I: 0; O: 1
0
0
X
XT2OUT crystal mode (3)
X
1
X
0
P5.3 (I/O) (3)
X
1
0
1
P5.2 (I/O)
XT2IN crystal mode
(2)
XT2IN bypass mode (2)
P5.3/XT2OUT
(1)
(2)
(3)
3
CONTROL BITS OR SIGNALS (1)
P5.3 (I/O)
X = Don't care
Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal
mode or bypass mode.
Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as
general-purpose I/O.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
89
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.10.8 Port P5, P5.4 and P5.5 Input/Output With Schmitt Trigger
Pad Logic
to XT1
P5REN.4
P5DIR.4
DVSS
0
DVCC
1
1
0
1
P5OUT.4
0
Module X OUT
1
P5DS.4
0: Low drive
1: High drive
P5SEL.4
P5.4/XIN
P5IN.4
EN
Module X IN
90
Detailed Description
Bus
Keeper
D
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Pad Logic
to XT1
P5REN.5
P5DIR.5
DVSS
0
DVCC
1
1
0
1
P5OUT.5
0
Module X OUT
1
P5.5/XOUT
P5SEL.4
P5DS.5
0: Low drive
1: High drive
XT1BYPASS
P5SEL.5
P5IN.5
Bus
Keeper
EN
Module X IN
D
Table 6-50. Port P5 (P5.4 and P5.5) Pin Functions
PIN NAME (P5.x)
P5.4/XIN
4
P5.5/XOUT
(1)
(2)
(3)
x
5
FUNCTION
P5.4 (I/O)
CONTROL BITS OR SIGNALS (1)
P5DIR.x
P5SEL.4
P5SEL.5
XT1BYPASS
I: 0; O: 1
0
X
X
XIN crystal mode (2)
X
1
X
0
XIN bypass mode (2)
X
1
X
1
P5.5 (I/O)
I: 0; O: 1
0
0
X
XOUT crystal mode (3)
X
1
X
0
P5.5 (I/O) (3)
X
1
0
1
X = Don't care
Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal
mode or bypass mode.
Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as
general-purpose I/O.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
91
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.10.9 Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger
Pad Logic
to ADC10
(n/a MSPF430F521x)
INCHx = x
(n/a MSPF430F521x)
to Comparator_B
from Comparator_B
CBPD.x
P6REN.x
P6DIR.x
0
0
From module
1
0
DVCC
1
P6DS.x
0: Low drive
1: High drive
P6SEL.x
P6IN.x
EN
To module
92
Detailed Description
1
Direction
0: Input
1: Output
1
P6OUT.x
DVSS
D
Bus
Keeper
P6.0/CB0/(A0)
P6.1/CB1/(A1)
P6.2/CB2/(A2)
P6.3/CB3/(A3)
P6.4/CB4/(A4)
P6.5/CB5/(A5)
P6.6/CB6/(A6)
P6.7/CB7/(A7)
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-51. Port P6 (P6.0 to P6.7) Pin Functions
PIN NAME (P6.x)
P6.0/CB0/(A0)
x
0
FUNCTION
P6.0 (I/O)
A0
CB0 (1)
P6.1/CB1/(A1)
1
P6.1 (I/O)
A1
CB1 (1)
P6.2/CB2/(A2)
2
P6.2 (I/O)
A2
CB2 (1)
P6.3/CB3/(A3)
3
P6.4/CB4/(A4)
4
P6.5/CB5/(A5)
P6.6/CB6/(A6)
5
(2)
6
(1)
(2)
0
CBPD
0
X
1
X
1
X
X
I: 0; O: 1
0
0
X
1
X
1
X
X
I: 0; O: 1
0
0
X
1
X
1
X
X
0
0
A3
X
1
X
CB3 (1)
X
X
1
P6.4 (I/O)
I: 0; O: 1
0
0
A4
X
1
X
CB4 (1)
X
X
1
P6.5 (I/O)
I: 0; O: 1
0
0
A5
X
1
X
CB5 (1)
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
P6.6 (I/O)
CB6 (1)
7
P6SEL.x
I: 0; O: 1
I: 0; O: 1
P6.3 (I/O)
A6
P6.7/CB7/(A7) (2)
CONTROL BITS OR SIGNALS
P6DIR.x
P6.7 (I/O)
A7
X
1
X
CB7 (1)
X
X
1
Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer
for that pin, regardless of the state of the associated CBPD.x bit.
Not available on RGZ package types.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
93
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
6.10.10 Port P7, P7.0 to P7.5, Input/Output With Schmitt Trigger
Pad Logic
P7REN.x
P7DIR.x
0
From module
1
P7OUT.x
0
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
1
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
P7DS.x
0: Low drive
1: High drive
P7SEL.x
P7IN.x
EN
D
To module
Table 6-52. Port P7 (P7.0 to P7.5) Pin Functions
PIN NAME (P7.x)
P7.0/TB0.0 (1)
x
0
FUNCTION
P7.0 (I/O)
TB0.CCI0A
TB0.0
P7.1/TB0.1 (1)
1
P7.1 (I/O)
TB0.CCI1A
TB0.1
P7.2/TB0.2 (1)
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
(1)
94
(1)
(1)
(1)
2
3
4
5
CONTROL BITS OR SIGNALS
P7DIR.x
P7SEL.x
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
TB0.CCI2A
0
1
TB0.2
1
1
P7.2 (I/O)
P7.3 (I/O)
I: 0; O: 1
0
TB0.CCI3A
0
1
TB0.3
1
1
P7.4 (I/O)
I: 0; O: 1
0
TB0.CCI4A
0
1
TB0.4
1
1
P7.5 (I/O)
I: 0; O: 1
0
TB0.CCI5A
0
1
TB0.5
1
1
Not available on RGZ package types.
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.10.11 Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output
Pad Logic
PJREN.0
PJDIR.0
0
DVCC
1
PJOUT.0
0
From JTAG
1
DVSS
0
DVCC
1
1
PJ.0/TDO
PJDS.0
0: Low drive
1: High drive
From JTAG
PJIN.0
EN
D
6.10.12 Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt
Trigger or Output
Pad Logic
PJREN.x
PJDIR.x
0
DVSS
1
PJOUT.x
0
From JTAG
1
DVSS
0
DVCC
1
PJDS.x
0: Low drive
1: High drive
From JTAG
1
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
PJIN.x
EN
To JTAG
D
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
95
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-53. Port PJ (PJ.0 to PJ.3) Pin Functions
PIN NAME (PJ.x)
x
CONTROL BITS OR
SIGNALS (1)
FUNCTION
PJDIR.x
PJ.0/TDO
0
PJ.0 (I/O) (2)
I: 0; O: 1
TDO (3)
PJ.1/TDI/TCLK
1
X
PJ.1 (I/O) (2)
TDI/TCLK (3)
PJ.2/TMS
2
PJ.2 (I/O)
TMS (3)
PJ.3/TCK
3
96
(4)
X
(2)
I: 0; O: 1
(4)
X
PJ.3 (I/O) (2)
TCK (3)
(1)
(2)
(3)
(4)
I: 0; O: 1
I: 0; O: 1
(4)
X
X = Don't care
Default condition
The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
6.11 Device Descriptors
Table 6-54 and Table 6-55 list the complete contents of the device descriptor tag-length-value (TLV)
structure for each device type.
Table 6-54. MSP430F522x Device Descriptor Table (1)
Info Block
Die Record
ADC10
Calibration
REF Calibration
Peripheral
Descriptor
(1)
DESCRIPTION
ADDRESS
SIZE
(BYTES)
F5229
F5227
F5224
F5222
VALUE
VALUE
VALUE
VALUE
Info length
01A00h
1
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
CRC value
01A02h
2
per unit
per unit
per unit
per unit
Device ID
01A04h
1
51h
4Fh
4Ch
4Ah
Device ID
01A05h
1
81h
81h
81h
81h
Hardware revision
01A06h
1
per unit
per unit
per unit
per unit
Firmware revision
01A07h
1
per unit
per unit
per unit
per unit
Die Record Tag
01A08h
1
08h
08h
08h
08h
Die Record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
Lot/Wafer ID
01A0Ah
4
per unit
per unit
per unit
per unit
Die X position
01A0Eh
2
per unit
per unit
per unit
per unit
Die Y position
01A10h
2
per unit
per unit
per unit
per unit
Test results
01A12h
2
per unit
per unit
per unit
per unit
ADC10 Calibration Tag
01A14h
1
13h
13h
13h
13h
ADC10 Calibration length
01A15h
1
10h
10h
10h
10h
ADC Gain Factor
01A16h
2
per unit
per unit
per unit
per unit
ADC Offset
01A18h
2
per unit
per unit
per unit
per unit
ADC 1.5-V Reference
Temp. Sensor 30°C
01A1Ah
2
per unit
per unit
per unit
per unit
ADC 1.5-V Reference
Temp. Sensor 85°C
01A1Ch
2
per unit
per unit
per unit
per unit
ADC 2.0-V Reference
Temp. Sensor 30°C
01A1Eh
2
per unit
per unit
per unit
per unit
ADC 2.0-V Reference
Temp. Sensor 85°C
01A20h
2
per unit
per unit
per unit
per unit
ADC 2.5-V Reference
Temp. Sensor 30°C
01A22h
2
per unit
per unit
per unit
per unit
ADC 2.5-V Reference
Temp. Sensor 85°C
01A24h
2
per unit
per unit
per unit
per unit
REF Calibration Tag
01A26h
1
12h
12h
12h
12h
REF Calibration length
01A27h
1
06h
06h
06h
06h
REF 1.5-V Reference Factor
01A28h
2
per unit
per unit
per unit
per unit
REF 2.0-V Reference Factor
01A2Ah
2
per unit
per unit
per unit
per unit
REF 2.5-V Reference Factor
01A2Ch
2
per unit
per unit
per unit
per unit
Peripheral Descriptor Tag
01A2Eh
1
02h
02h
02h
02h
Peripheral Descriptor Length
01A2Fh
1
5Fh
5Fh
5Dh
5Dh
Memory 1
2
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
Memory 2
2
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
Memory 3
2
12h
2Eh
12h
2Eh
12h
2Eh
12h
2Eh
NA = Not applicable, blank = unused and reads FFh.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
97
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-54. MSP430F522x Device Descriptor Table(1) (continued)
DESCRIPTION
98
Detailed Description
ADDRESS
SIZE
(BYTES)
F5229
F5227
F5224
F5222
VALUE
VALUE
VALUE
VALUE
Memory 4
2
22h
96h
22h
94h
22h
96h
22h
94h
Memory 5
2
N/A
N/A
N/A
N/A
Memory 6
1/2
N/A
N/A
N/A
N/A
delimiter
1
00h
00h
00h
00h
Peripheral count
1
20h
20h
1Fh
1Fh
MSP430CPUXV2
2
00h
23h
00h
23h
00h
23h
00h
23h
JTAG
2
00h
09h
00h
09h
00h
09h
00h
09h
SBW
2
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
EEM-S
2
00h
03h
00h
03h
00h
03h
00h
05h
TI BSL
2
00h
FCh
00h
FCh
00h
FCh
00h
FCh
SFR
2
10h
41h
10h
41h
10h
41h
10h
41h
PMM
2
02h
30h
02h
30h
02h
30h
02h
30h
FCTL
2
02h
38h
02h
38h
02h
38h
02h
38h
CRC16
2
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
CRC16_RB
2
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
RAMCTL
2
00h
44h
00h
44h
00h
44h
00h
44h
WDT_A
2
00h
40h
00h
40h
00h
40h
00h
40h
UCS
2
01h
48h
01h
48h
01h
48h
01h
48h
SYS
2
02h
42h
02h
42h
02h
42h
02h
42h
REF
2
03h
A0h
03h
A0h
03h
A0h
03h
A0h
Port Mapping
2
01h
10h
01h
10h
01h
10h
01h
10h
Port 1/2
2
04h
51h
04h
51h
04h
51h
04h
51h
Port 3/4
2
02h
52h
02h
52h
02h
52h
02h
52h
Port 5/6
2
02h
53h
02h
53h
02h
53h
02h
53h
Port 7/8
2
02h
54h
02h
54h
N/A
N/A
JTAG
2
0Ch
5Fh
0Ch
5Fh
0Eh
5Fh
0Eh
5Fh
TA0
2
02h
62h
02h
62h
02h
62h
02h
62h
TA1
2
04h
61h
04h
61h
04h
61h
04h
61h
TB0
2
04h
67h
04h
67h
04h
67h
04h
67h
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-54. MSP430F522x Device Descriptor Table(1) (continued)
DESCRIPTION
Interrupts
ADDRESS
SIZE
(BYTES)
F5229
F5227
F5224
F5222
VALUE
VALUE
VALUE
VALUE
TA2
2
04h
61h
04h
61h
04h
61h
04h
61h
RTC
2
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
MPY32
2
02h
85h
02h
85h
02h
85h
02h
85h
DMA-3
2
04h
47h
04h
47h
04h
47h
04h
47h
USCI_A/B
2
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
USCI_A/B
2
04h
90h
04h
90h
04h
90h
04h
90h
ADC10_A
2
14h
D3h
14h
D3h
14h
D3h
14h
D3h
COMP_B
2
18h
A8h
18h
A8h
18h
A8h
18h
A8h
COMP_B
1
A8h
A8h
A8h
A8h
TB0.CCIFG0
1
64h
64h
64h
64h
TB0.CCIFG1..6
1
65h
65h
65h
65h
WDTIFG
1
40h
40h
40h
40h
USCI_A0
1
90h
90h
90h
90h
USCI_B0
1
91h
91h
91h
91h
ADC10_A
1
D0h
D0h
D0h
D0h
TA0.CCIFG0
1
60h
60h
60h
60h
TA0.CCIFG1..4
1
61h
61h
61h
61h
Reserved
1
01h
01h
01h
01h
DMA
1
46h
46h
46h
46h
TA1.CCIFG0
1
62h
62h
62h
62h
TA1.CCIFG1..2
1
63h
63h
63h
63h
P1
1
50h
50h
50h
50h
USCI_A1
1
92h
92h
92h
92h
USCI_B1
1
93h
93h
93h
93h
TA1.CCIFG0
1
66h
66h
66h
66h
TA1.CCIFG1..2
1
67h
67h
67h
67h
P2
1
51h
51h
51h
51h
RTC_A
1
68h
68h
68h
68h
delimiter
1
00h
00h
00h
00h
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
99
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-55. MSP430F521x Device Descriptor Table (1)
Info Block
REF Calibration
Peripheral
Descriptor
(1)
100
ADDRESS
SIZE
(BYTES)
F5219
F5217
F5214
F5212
VALUE
VALUE
VALUE
VALUE
Info length
01A00h
1
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
CRC value
01A02h
2
per unit
per unit
per unit
per unit
Device ID
01A04h
1
47h
45h
42h
40h
Device ID
01A05h
1
81h
81h
81h
81h
Hardware revision
01A06h
1
per unit
per unit
per unit
per unit
Firmware revision
01A07h
1
per unit
per unit
per unit
per unit
Die Record Tag
01A08h
1
08h
08h
08h
08h
Die Record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
Lot/Wafer ID
01A0Ah
4
per unit
per unit
per unit
per unit
Die X position
01A0Eh
2
per unit
per unit
per unit
per unit
Die Y position
01A10h
2
per unit
per unit
per unit
per unit
Test results
01A12h
2
per unit
per unit
per unit
per unit
ADC10 Calibration Tag
01A14h
1
13h
13h
13h
13h
ADC10 Calibration length
01A15h
1
10h
10h
10h
10h
ADC Gain Factor
01A16h
2
blank
blank
blank
blank
Die Record
ADC10
Calibration
DESCRIPTION
ADC Offset
01A18h
2
blank
blank
blank
blank
ADC 1.5-V Reference
Temp. Sensor 30°C
01A1Ah
2
blank
blank
blank
blank
ADC 1.5-V Reference
Temp. Sensor 85°C
01A1Ch
2
blank
blank
blank
blank
ADC 2.0-V Reference
Temp. Sensor 30°C
01A1Eh
2
blank
blank
blank
blank
ADC 2.0-V Reference
Temp. Sensor 85°C
01A20h
2
blank
blank
blank
blank
ADC 2.5-V Reference
Temp. Sensor 30°C
01A22h
2
blank
blank
blank
blank
ADC 2.5-V Reference
Temp. Sensor 85°C
01A24h
2
blank
blank
blank
blank
12h
REF Calibration Tag
01A26h
1
12h
12h
12h
REF Calibration length
01A27h
1
06h
06h
06h
06h
REF 1.5-V Reference Factor
01A28h
2
per unit
per unit
per unit
per unit
REF 2.0-V Reference Factor
01A2Ah
2
per unit
per unit
per unit
per unit
REF 2.5-V Reference Factor
01A2Ch
2
per unit
per unit
per unit
per unit
Peripheral Descriptor Tag
01A2Eh
1
02h
02h
02h
02h
Peripheral Descriptor Length
01A2Fh
1
5Dh
5Dh
5Bh
5Bh
Memory 1
2
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
Memory 2
2
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
Memory 3
2
12h
2Eh
12h
2Eh
12h
2Eh
12h
2Eh
Memory 4
2
22h
96h
22h
94h
22h
96h
22h
94h
Memory 5
2
N/A
N/A
N/A
N/A
Memory 6
1/2
N/A
N/A
N/A
N/A
delimiter
1
00h
00h
00h
00h
NA = Not applicable, blank = unused and reads FFh.
Detailed Description
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Table 6-55. MSP430F521x Device Descriptor Table(1) (continued)
SIZE
(BYTES)
F5219
F5217
F5214
F5212
VALUE
VALUE
VALUE
VALUE
1
1Fh
1Fh
1Eh
1Eh
MSP430CPUXV2
2
00h
23h
00h
23h
00h
23h
00h
23h
JTAG
2
00h
09h
00h
09h
00h
09h
00h
09h
SBW
2
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
EEM-S
2
00h
03h
00h
03h
00h
03h
00h
05h
TI BSL
2
00h
FCh
00h
FCh
00h
FCh
00h
FCh
SFR
2
10h
41h
10h
41h
10h
41h
10h
41h
PMM
2
02h
30h
02h
30h
02h
30h
02h
30h
FCTL
2
02h
38h
02h
38h
02h
38h
02h
38h
CRC16
2
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
CRC16_RB
2
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
RAMCTL
2
00h
44h
00h
44h
00h
44h
00h
44h
WDT_A
2
00h
40h
00h
40h
00h
40h
00h
40h
UCS
2
01h
48h
01h
48h
01h
48h
01h
48h
SYS
2
02h
42h
02h
42h
02h
42h
02h
42h
REF
2
03h
A0h
03h
A0h
03h
A0h
03h
A0h
Port Mapping
2
01h
10h
01h
10h
01h
10h
01h
10h
Port 1/2
2
04h
51h
04h
51h
04h
51h
04h
51h
Port 3/4
2
02h
52h
02h
52h
02h
52h
02h
52h
Port 5/6
2
02h
53h
02h
53h
02h
53h
02h
53h
Port 7/8
2
02h
54h
02h
54h
N/A
N/A
JTAG
2
0Ch
5Fh
0Ch
5Fh
0Eh
5Fh
0Eh
5Fh
TA0
2
02h
62h
02h
62h
02h
62h
02h
62h
TA1
2
04h
61h
04h
61h
04h
61h
04h
61h
TB0
2
04h
67h
04h
67h
04h
67h
04h
67h
TA2
2
04h
61h
04h
61h
04h
61h
04h
61h
RTC
2
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
MPY32
2
02h
85h
02h
85h
02h
85h
02h
85h
DESCRIPTION
Peripheral count
ADDRESS
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
101
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
Table 6-55. MSP430F521x Device Descriptor Table(1) (continued)
DESCRIPTION
Interrupts
102
Detailed Description
ADDRESS
SIZE
(BYTES)
F5219
F5217
F5214
F5212
VALUE
VALUE
VALUE
VALUE
DMA-3
2
04h
47h
04h
47h
04h
47h
04h
47h
USCI_A/B
2
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
USCI_A/B
2
04h
90h
04h
90h
04h
90h
04h
90h
ADC10_A
2
N/A
N/A
N/A
N/A
COMP_B
2
2Ch
A8h
2Ch
A8h
2Ch
A8h
2Ch
A8h
COMP_B
1
A8h
A8h
A8h
A8h
TB0.CCIFG0
1
64h
64h
64h
64h
TB0.CCIFG1..6
1
65h
65h
65h
65h
WDTIFG
1
40h
40h
40h
40h
USCI_A0
1
90h
90h
90h
90h
USCI_B0
1
91h
91h
91h
91h
Reserved
1
01h
01h
01h
01h
TA0.CCIFG0
1
60h
60h
60h
60h
TA0.CCIFG1..4
1
61h
61h
61h
61h
Reserved
1
01h
01h
01h
01h
DMA
1
46h
46h
46h
46h
TA1.CCIFG0
1
62h
62h
62h
62h
TA1.CCIFG1..2
1
63h
63h
63h
63h
P1
1
50h
50h
50h
50h
USCI_A1
1
92h
92h
92h
92h
USCI_B1
1
93h
93h
93h
93h
TA2.CCIFG0
1
66h
66h
66h
66h
TA2.CCIFG1..2
1
67h
67h
67h
67h
P2
1
51h
51h
51h
51h
RTC_A
1
68h
68h
68h
68h
delimiter
1
00h
00h
00h
00h
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
7 Device and Documentation Support
7.1
Device Support
7.1.1
Getting Started
For more information on the MSP430™ family of devices and the tools and libraries that are available to
help with your development, visit the Getting Started page.
7.1.2
Development Tools Support
All MSP430™ microcontrollers are supported by a wide variety of software and hardware development
tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.
7.1.2.1
Hardware Features
See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.
MSP430
Architecture
4-Wire
JTAG
2-Wire
JTAG
Breakpoints
(N)
Range
Breakpoints
Clock
Control
State
Sequencer
Trace
Buffer
LPMx.5
Debugging
Support
MSP430Xv2
Yes
Yes
8
Yes
Yes
Yes
Yes
No
7.1.2.2
Recommended Hardware Options
7.1.2.2.1 Target Socket Boards
The target socket boards allow easy programming and debugging of the device using JTAG. They also
feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the
JTAG programmer and debugger included. The following table shows the compatible target boards and
the supported packages.
Package
Target Board and Programmer Bundle
Target Board Only
64-pin VQFN (RGC)
MSP-FET430U64C
MSP-TS430RGC64C
7.1.2.2.2 Experimenter Boards
Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature
additional hardware components and connectivity for full system evaluation and prototyping. See
www.ti.com/msp430tools for details.
7.1.2.2.3 Debugging and Programming Tools
Hardware programming and debugging tools are available from TI and from its third party suppliers. See
the full list of available tools at www.ti.com/msp430tools.
7.1.2.2.4 Production Programmers
The production programmers expedite loading firmware to devices by programming several devices
simultaneously.
Part Number
PC Port
MSP-GANG
Serial and USB
7.1.2.3
Features
Program up to eight devices at a time. Works with PC or standalone.
Provider
Texas Instruments
Recommended Software Options
7.1.2.3.1 Integrated Development Environments
Software development tools are available from TI or from third parties. Open source solutions are also
available.
This device is supported by Code Composer Studio™ IDE (CCS).
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
103
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
www.ti.com
7.1.2.3.2 MSP430Ware
MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430
devices delivered in a convenient package. In addition to providing a complete collection of existing
MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library.
This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of
CCS or as a standalone package.
7.1.2.3.3 SYS/BIOS
SYS/BIOS is an advanced real-time operating system for the MSP430 microcontrollers. It features
preemptive deterministic multi-tasking, hardware abstraction, memory management, and real-time
analysis. SYS/BIOS is available free of charge and is provided with full source code.
7.1.2.3.4 Command-Line Programmer
MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers
through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher
can be used to download binary files (.txt or .hex) files directly to the MSP430 microcontroller without the
need for an IDE.
7.1.3
Device and Development Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of
three prefixes: MSP, PMS, or XMS (for example, MSP430F5438A). TI recommends two of three possible
prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of
product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully
qualified production devices and tools (with MSP for devices and MSP for tools).
Device development evolutionary flow:
XMS – Experimental device that is not necessarily representative of the electrical specifications for the
final device
PMS – Final silicon die that conforms to the electrical specifications for the device but has not completed
quality and reliability verification
MSP – Fully qualified production device
Support tool development evolutionary flow:
MSPX – Development-support product that has not yet completed TI's internal qualification testing.
MSP – Fully-qualified development-support product
XMS and PMS devices and MSPX development-support tools are shipped against the following
disclaimer:
"Developmental product is intended for internal evaluation purposes."
MSP devices and MSP development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard
production devices. TI recommends that these devices not be used in any production system because
their expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, PZP) and temperature range (for example, T). Figure 7-1 provides a legend
for reading the complete device name for any family member.
104
Device and Documentation Support
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
MSP 430 F 5 438 A I ZQW T -EP
Processor Family
Optional: Additional Features
MCU Platform
Optional: Tape and Reel
Device Type
Packaging
Series
Feature Set
Processor Family
Optional: Temperature Range
Optional: A = Revision
CC = Embedded RF Radio
MSP = Mixed-Signal Processor
XMS = Experimental Silicon
PMS = Prototype Device
430 = MSP430 low-power microcontroller platform
MCU Platform
Device Type
Memory Type
C = ROM
F = Flash
FR = FRAM
G = Flash or FRAM (Value Line)
L = No Nonvolatile Memory
Series
1 Series = Up to 8 MHz
2 Series = Up to 16 MHz
3 Series = Legacy
4 Series = Up to 16 MHz with LCD
Feature Set
Various Levels of Integration Within a Series
Optional: A = Revision
N/A
Specialized Application
AFE = Analog Front End
BT = Preprogrammed with Bluetooth
BQ = Contactless Power
CG = ROM Medical
FE = Flash Energy Meter
FG = Flash Medical
FW = Flash Electronic Flow Meter
5 Series = Up to 25 MHz
6 Series = Up to 25 MHz with LCD
0 = Low-Voltage Series
Optional: Temperature Range S = 0°C to 50°C
C = 0°C to 70°C
I = –40°C to 85°C
T = –40°C to 105°C
Packaging
http://www.ti.com/packaging
Optional: Tape and Reel
T = Small Reel
R = Large Reel
No Markings = Tube or Tray
Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C)
-HT = Extreme Temperature Parts (–55°C to 150°C)
-Q1 = Automotive Q100 Qualified
Figure 7-1. Device Nomenclature
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
105
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
7.2
www.ti.com
Documentation Support
The following documents describe the MSP430F522x and MSP430F521x devices. Copies of these
documents are available on the Internet at www.ti.com.
7.3
SLAU208
MSP430x5xx and MSP430x6xx Family User's Guide .Detailed information on the modules
and peripherals available in this device family.
SLAZ263
MSP430F5229 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5229 device.
SLAZ261
MSP430F5227 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5227 device.
SLAZ260
MSP430F5224 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5224 device.
SLAZ258
MSP430F5222 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5222 device.
SLAZ257
MSP430F5219 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5219 device.
SLAZ255
MSP430F5217 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5217 device.
SLAZ254
MSP430F5214 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5214 device.
SLAZ252
MSP430F5212 Device Erratasheet. Describes the known exceptions to the functional
specifications for the MSP430F5212 device.
Related Links
Table 7-1 lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 7-1. Related Links
106
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
MSP430F5229
Click here
Click here
Click here
Click here
Click here
MSP430F5227
Click here
Click here
Click here
Click here
Click here
MSP430F5224
Click here
Click here
Click here
Click here
Click here
MSP430F5222
Click here
Click here
Click here
Click here
Click here
MSP430F5219
Click here
Click here
Click here
Click here
Click here
MSP430F5217
Click here
Click here
Click here
Click here
Click here
MSP430F5214
Click here
Click here
Click here
Click here
Click here
MSP430F5212
Click here
Click here
Click here
Click here
Click here
Device and Documentation Support
Copyright © 2012–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
7.4
SLAS718F – NOVEMBER 2012 – REVISED NOVEMBER 2015
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Community
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At
e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow
engineers.
TI Embedded Processors Wiki
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded
processors from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
7.5
Trademarks
MSP430, Code Composer Studio, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
7.6
Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
7.7
Export Control Notice
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any
controlled product restricted by other applicable national regulations, received from disclosing party under
nondisclosure obligations (if any), or any direct product of such technology, to any destination to which
such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior
authorization from U.S. Department of Commerce and other competent Government authorities to the
extent required by those laws.
7.8
Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
8 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the
most current data available for the designated devices. This data is subject to change without notice and
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Mechanical, Packaging, and Orderable Information
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2015, Texas Instruments Incorporated
107
PACKAGE OPTION ADDENDUM
www.ti.com
5-Oct-2015
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
MSP430F5212IRGZR
ACTIVE
VQFN
RGZ
48
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5212
MSP430F5212IRGZT
ACTIVE
VQFN
RGZ
48
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5212
MSP430F5214IRGZR
ACTIVE
VQFN
RGZ
48
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5214
MSP430F5214IRGZT
ACTIVE
VQFN
RGZ
48
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5214
MSP430F5217IRGCR
ACTIVE
VQFN
RGC
64
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5217
MSP430F5217IRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5217
MSP430F5217IYFFR
ACTIVE
DSBGA
YFF
64
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5217
MSP430F5217IZQE
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
360
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5217
MSP430F5217IZQER
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
2000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5217
MSP430F5219IRGCR
ACTIVE
VQFN
RGC
64
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5219
MSP430F5219IRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5219
MSP430F5219IYFFR
ACTIVE
DSBGA
YFF
64
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5219
MSP430F5219IYFFT
ACTIVE
DSBGA
YFF
64
250
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5219
MSP430F5219IZQE
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
360
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5219
MSP430F5219IZQER
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5219
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
5-Oct-2015
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
MSP430F5222IRGZR
ACTIVE
VQFN
RGZ
48
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5222
MSP430F5222IRGZT
ACTIVE
VQFN
RGZ
48
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5222
MSP430F5223IRGZT
NRND
VQFN
RGZ
48
TBD
Call TI
Call TI
-40 to 85
F5223
MSP430F5224IRGZR
ACTIVE
VQFN
RGZ
48
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5224
MSP430F5227IRGCR
ACTIVE
VQFN
RGC
64
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5227
MSP430F5227IYFFR
ACTIVE
DSBGA
YFF
64
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5227
MSP430F5227IZQE
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
360
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5227
MSP430F5227IZQER
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5227
MSP430F5229IRGCR
ACTIVE
VQFN
RGC
64
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5229
MSP430F5229IRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
F5229
MSP430F5229IYFFR
ACTIVE
DSBGA
YFF
64
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5229
MSP430F5229IYFFT
ACTIVE
DSBGA
YFF
64
250
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5229
MSP430F5229IZQE
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
360
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5229
MSP430F5229IZQER
ACTIVE
BGA
MICROSTAR
JUNIOR
ZQE
80
2500
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5229
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
5-Oct-2015
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
28-Apr-2015
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MSP430F5212IRGZT
VQFN
RGZ
48
250
180.0
16.4
7.3
7.3
1.1
12.0
16.0
Q2
MSP430F5214IRGZR
VQFN
RGZ
48
2500
330.0
16.4
7.3
7.3
1.1
12.0
16.0
Q2
MSP430F5214IRGZT
VQFN
RGZ
48
250
180.0
16.4
7.3
7.3
1.1
12.0
16.0
Q2
MSP430F5217IRGCR
VQFN
RGC
64
2000
330.0
16.4
9.3
9.3
1.1
12.0
16.0
Q2
MSP430F5217IRGCT
VQFN
RGC
64
250
180.0
16.4
9.3
9.3
1.1
12.0
16.0
Q2
MSP430F5217IYFFR
DSBGA
YFF
64
2500
330.0
12.4
3.54
3.66
0.81
8.0
12.0
Q2
MSP430F5217IZQER
BGA MI
CROSTA
R JUNI
OR
ZQE
80
2000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q1
VQFN
RGC
64
2000
330.0
16.4
9.3
9.3
1.1
12.0
16.0
Q2
MSP430F5219IRGCT
VQFN
RGC
64
250
180.0
16.4
9.3
9.3
1.1
12.0
16.0
Q2
MSP430F5219IYFFR
DSBGA
YFF
64
2500
330.0
12.4
3.54
3.66
0.81
8.0
12.0
Q2
MSP430F5219IYFFT
DSBGA
YFF
64
250
180.0
12.4
3.54
3.66
0.81
8.0
12.0
Q2
MSP430F5219IZQER
BGA MI
CROSTA
R JUNI
OR
ZQE
80
2500
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q1
MSP430F5219IRGCR
MSP430F5222IRGZR
VQFN
RGZ
48
2500
330.0
16.4
7.3
7.3
1.1
12.0
16.0
Q2
MSP430F5222IRGZT
VQFN
RGZ
48
250
180.0
16.4
7.3
7.3
1.1
12.0
16.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
28-Apr-2015
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MSP430F5224IRGZR
VQFN
RGZ
48
2500
330.0
16.4
7.3
7.3
1.1
12.0
16.0
Q2
MSP430F5227IRGCR
VQFN
RGC
64
2000
330.0
16.4
9.3
9.3
1.1
12.0
16.0
Q2
MSP430F5227IYFFR
DSBGA
YFF
64
2500
330.0
12.4
3.54
3.66
0.81
8.0
12.0
Q2
MSP430F5227IZQER
BGA MI
CROSTA
R JUNI
OR
ZQE
80
2500
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q1
VQFN
RGC
64
2000
330.0
16.4
9.3
9.3
1.1
12.0
16.0
Q2
MSP430F5229IRGCT
VQFN
RGC
64
250
180.0
16.4
9.3
9.3
1.1
12.0
16.0
Q2
MSP430F5229IYFFR
DSBGA
YFF
64
2500
330.0
12.4
3.54
3.66
0.81
8.0
12.0
Q2
MSP430F5229IYFFT
DSBGA
YFF
64
250
180.0
12.4
3.54
3.66
0.81
8.0
12.0
Q2
MSP430F5229IZQER
BGA MI
CROSTA
R JUNI
OR
ZQE
80
2500
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q1
MSP430F5229IRGCR
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MSP430F5212IRGZT
VQFN
RGZ
48
250
210.0
185.0
35.0
MSP430F5214IRGZR
VQFN
RGZ
48
2500
367.0
367.0
38.0
MSP430F5214IRGZT
VQFN
RGZ
48
250
210.0
185.0
35.0
MSP430F5217IRGCR
VQFN
RGC
64
2000
367.0
367.0
38.0
Pack Materials-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
28-Apr-2015
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MSP430F5217IRGCT
VQFN
RGC
64
250
210.0
185.0
35.0
MSP430F5217IYFFR
DSBGA
YFF
64
2500
367.0
367.0
35.0
MSP430F5217IZQER
BGA MICROSTAR
JUNIOR
ZQE
80
2000
338.1
338.1
20.6
MSP430F5219IRGCR
VQFN
RGC
64
2000
367.0
367.0
38.0
MSP430F5219IRGCT
VQFN
RGC
64
250
210.0
185.0
35.0
MSP430F5219IYFFR
DSBGA
YFF
64
2500
367.0
367.0
35.0
MSP430F5219IYFFT
DSBGA
YFF
64
250
210.0
185.0
35.0
MSP430F5219IZQER
BGA MICROSTAR
JUNIOR
ZQE
80
2500
338.1
338.1
20.6
MSP430F5222IRGZR
VQFN
RGZ
48
2500
367.0
367.0
38.0
MSP430F5222IRGZT
VQFN
RGZ
48
250
210.0
185.0
35.0
MSP430F5224IRGZR
VQFN
RGZ
48
2500
367.0
367.0
38.0
MSP430F5227IRGCR
VQFN
RGC
64
2000
367.0
367.0
38.0
MSP430F5227IYFFR
DSBGA
YFF
64
2500
367.0
367.0
35.0
MSP430F5227IZQER
BGA MICROSTAR
JUNIOR
ZQE
80
2500
338.1
338.1
20.6
MSP430F5229IRGCR
VQFN
RGC
64
2000
367.0
367.0
38.0
MSP430F5229IRGCT
VQFN
RGC
64
250
210.0
185.0
35.0
MSP430F5229IYFFR
DSBGA
YFF
64
2500
367.0
367.0
35.0
MSP430F5229IYFFT
DSBGA
YFF
64
250
210.0
185.0
35.0
MSP430F5229IZQER
BGA MICROSTAR
JUNIOR
ZQE
80
2500
338.1
338.1
20.6
Pack Materials-Page 3
D: Max = 3.565 mm, Min =3.505 mm
E: Max = 3.445 mm, Min =3.385 mm
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages