TI1 LMK04906 Ultra low noise clock jitter cleaner/multiplier Datasheet

LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
LMK04906 Ultra Low Noise Clock Jitter Cleaner/Multiplier with 6 Programmable Outputs
Check for Samples: LMK04906
FEATURES
APPLICATIONS
•
•
•
1
23
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Ultra-Low RMS Jitter Performance
– 100 fs RMS Jitter (12 kHz to 20 MHz)
– 123 fs RMS Jitter (100 Hz to 20 MHz)
Dual Loop PLLatinum™ PLL Architecture
– PLL1
– Integrated Low-Noise Crystal Oscillator
Circuit
– Holdover Mode when Input Clocks are
Lost
– Automatic or Manual
Triggering/Recovery
– PLL2
– Normalized [1 Hz] PLL Noise Floor of 227 dBc/Hz
– Phase Detector Rate up to 155 MHz
– OSCin Frequency-doubler
– Integrated Low-Noise VCO
3 Redundant Input Clocks with LOS
– Automatic and Manual Switch-Over Modes
50% Duty Cycle Output Divides, 1 to 1045
(Even and Odd)
LVPECL, LVDS, or LVCMOS Programmable
Outputs
Precision Digital Delay, Fixed or Dynamically
Adjustable
25 ps Step Analog Delay Control.
6 Differential Outputs. Up to 12 Single Ended.
– Up to 5 VCXO/Crystal Buffered Outputs
Clock Rates of up to 2600 MHz
0-Delay Mode
Three Default Clock Outputs at Power Up
Multi-mode: Dual PLL, Single PLL, and Clock
Distribution
Industrial Temperature Range: -40 to 85 °C
3.15 V to 3.45 V Operation
Package: 64-Pin WQFN (9.0 x 9.0 x 0.8 mm)
•
•
•
•
•
•
•
•
•
•
10G/40G/100G OTN Line Cards
SONET/SDH OC-48/STM-16 and OC-192/STM64 Line Cards
GbE/10GbE, 1/2/4/8/10GFC Line Cards
ITU G.709 and Custom FEC Line Cards
Synchronous Ethernet
Optical Modules
DSLAM/MSANs
Test and Measurement
Broadcast Video
Wireless Basestations
Data Converter Clocking
Microwave ODU and IDUs for Wireless
Backhaul
Backplane
Hitless Switching, Jitter
Cleaning, Frequency
Multiplication, and
Programmable Clock
Distribution
LMK04906
156.25 MHz
LVPECL
10 GbE
PHY
100 MHz
LVDS
10 GbE
PHY
LMK04906
622.08,
155.52, 77.76,
19.44 MHz
33.33 MHz
LVCMOS
FPGA
NPU
SONET
SONET
Figure 1. System Application Diagram
Crystal or
VCXO
LMX2541
OSCout0
0XOWLSOH ³FOHDQ´
clocks at different
frequencies
PLL+VCO
CLKin0
Recovered
³GLUW\´ FORFNV
or clean clocks
Serializer/
Deserializer
CLKout0
LMK04906
CLKin1
CLKout1
CLKout2
Precision Clock
Conditioner
CLKout3
CLKin2
Backup
Reference
Clock
ADC
CLKout4
FPGA
DAC
CPLD
Figure 2. Simplified LMK04906 Block Diagram
1
2
3
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PLLatinum is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2012–2013, Texas Instruments Incorporated
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
DESCRIPTION
The LMK04906 is the industry's highest performance clock jitter attenuator with superior clock jitter cleaning,
generation, and distribution with advanced features to meet high performance timing application needs.
The LMK04906 accepts 3 clock input ranging from 1 kHz to 750 MHz and generates 6 unique clock output
frequencies ranging from 2.26 MHz to 2.6 GHz. The LMK04906 can also buffer a crystal or VCXO to generate a
7th unique clock frequency.
The device provides virtually all frequency translation combination required for SONET, Ethernet, Fibre Channel
and multi-mode Wireless Base Stations.
The LMK04906 input clock frequency and clock multiplication ratio are programmable through a SPI interface.
Device
VCO Frequency
LMK04906
2370 to 2600 MHz
Device Configuration Information
(1)
NSID
Reference Inputs
Dedicated
Buffered/Divided OSCin
Clock
Programmable
LVDS/LVPECL/LVCMOS
Outputs (1)
VCO
LMK04906BISQ
3
1
6
2370 to 2600 MHz
Up to 2 of these outputs are also able to be driven by the OSCin clock.
Common Frequency Plans
Standard/Application
Output Frequencies
Infiniband
VCO Frequency
Recommended Crystal Value
100, 200
SATA
75, 150, 300, 600
SAS
37.5, 75, 120, 150
Fast Ethernet
25
1 GbE
125
10 GbE
156.25, 312.5, 625
XAUI
2400 MHz
20 MHz
2500 MHz
78.125, 156.25, 312.5
Backplane
227.27...
2G/4G/16G Fiber Channel
106.25, 212.5
10G Fiber Channel
159.375
2550 MHz
644.53125, 322.265625,
161.1328125
2578.125 MHz
12.5 MHz
SONET
19.44, 38.88, 77.76, 155.52,
311.04, 622.08
2488.32 MHz
19.44 MHz
A/D Clocking
30.72, 61.44, 122.88, 153.6,
245.76, 491.52, 983.04
2457.6 MHz
19.2 MHz or
12.288 MHz
40/100 GbE
Achievable Frequencies
By using the tunable range of the VCO followed by a programmable divider, the LMK04906 can achieve any of
the frequencies in the table below
2
Output Divider Value
Achieved Frequency (MHz)
1
2370 - 2600
2
1185 - 1300
3
790 - 866.7
4
592.5 - 650
5
474 - 520
6
395.7 - 433
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Output Divider Value
Achieved Frequency (MHz)
7
338.6 - 371.4
8
296.25 - 325
9
263.3 - 288.9
10
263.3 - 288.9 10 237 - 260
11 to 1045
Any frequency in the range of 2.27 - 236.36
Functional Block Diagrams and Operating Modes
The LMK04906 is a flexible device that can be configured for many different use cases. The following simplified
block diagrams help show the user the different use cases of the device.
Dual PLL
Figure 3 illustrates the typical use case of the LMK04906 in dual loop mode. In dual loop mode the reference to
PLL1 is either CLKin0, CLKin1, or CLKin2. An external VCXO or tunable crystal will be used to provide feedback
for the first PLL and a reference to the second PLL. This first PLL cleans the jitter with the VCXO or low cost
tunable crystal by using a narrow loop bandwidth. The VCXO or tunable crystal output may be buffered through
the OSCout0 port and optionally on up to 2 of the CLKouts. The VCXO or tunable crystal is used as the
reference to PLL2 and may be doubled using the frequency doubler. The internal VCO drives up to six
divide/delay blocks which drive 6 clock outputs.
Holdover functionality is optionally available when the input reference clock is lost. Holdover works by fixing the
tuning voltage of PLL1 to the VCXO or tunable crystal.
It is also possible to use an external VCO in place of PLL2's internal VCO.
R
N
Phase
Detector
PLL1
PLL2
External VCXO
or Tunable
Crystal
External
Loop Filter
OSCout0
OSCout0*
1 output
OSCin
CLKinX
CLKinX*
3 inputs
CPout1
PLL1
External
Loop Filter
CPout2
R
Input
Buffer
N
Phase
Detector
PLL2
Divider
Digital Delay
Analog Delay
Partially
Integrated
Loop Filter
Internal
VCO
CLKoutX
CLKoutX*
6 outputs
6 blocks
LMK04906
Figure 3. Simplified Functional Block Diagram for Dual Loop Mode
0-Delay Dual PLL
Figure 4 illustrates the use case of 0-delay dual loop mode. This configuration is very similar to Dual PLL except
that the feedback to the first PLL is driven by a clock output. This causes the clock outputs to have deterministic
phase with the clock input. Since all the clock outputs can be synchronized together, all the clock outputs can be
in phase with the clock input signal. The feedback to PLL1 can be connected internally as shown, or externally
using FBCLKin (CLKin1) as an input port.
It is also possible to use an external VCO in place of PLL2's internal VCO.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
3
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
R
Phase
Detector
PLL1
3 inputs
N
PLL2
External VCXO
or Tunable
Crystal
External
Loop Filter
OSCout0
OSCout0*
1 output
OSCin
CLKinX
CLKinX*
CPout1
PLL1
External
Loop Filter
CPout2
R
Input
Buffer
N
Phase
Detector
PLL2
Divider
Digital Delay
Analog Delay
Partially
Integrated
Loop Filter
CLKoutX
CLKoutX*
6 outputs
Internal
VCO
6 blocks
Internal or external loopback, user programmable
LMK04906
Figure 4. Simplified Functional Block Diagram for 0-delay Dual Loop Mode
Single PLL
Figure 5 illustrates the use case of single PLL mode. In single PLL mode only PLL2 is used and PLL1 is powered
down. OSCin is used as the reference input. The internal VCO drives up to 6 divide/delay blocks which drive 6
clock outputs. The reference at OSCin can be used to drive the OSCout0 port. OSCin can also optionally drive
up to 2 of the clock outputs.
It is also possible to use an external VCO in place of PLL2's internal VCO.
PLL2
OSCout0
OSCout0*
1 outputs
External
Loop Filter
CPout2
OSCin
OSCin*
R
N
Phase
Detector
PLL2
Divider
Digital Delay
Analog Delay
Partially
Integrated
Loop Filter
CLKoutX
CLKoutX*
6 outputs
Internal
VCO
6 blocks
LMK04906
Figure 5. Simplified Functional Block Diagram for Single Loop Mode
0-delay Single PLL
Figure 6 illustrates the use case of 0-delay single PLL mode. This configuration is very similar to Single PLL
except that the feedback to PLL2 comes from a clock output. This causes the clock outputs to be in phase with
the reference input. Since all the clock outputs can be synchronized together, all the clock outputs can be in
phase with the clock input signal. The feedback to PLL2 can be performed internally as shown, or externally
using FBCLKin (CLKin1) as an input port.
It is also possible to use an external VCO in place of PLL2's internal VCO.
4
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
PLL2
OSCout0
OSCout0*
1 output
External
Loop Filter
CPout2
OSCin
OSCin*
R
N
Phase
Detector
PLL2
Divider
Digital Delay
Analog Delay
Partially
Integrated
Loop Filter
CLKoutX
CLKoutX*
6 outputs
Internal
VCO
6 blocks
Internal or external loopback, user programmable
LMK04906
Figure 6. Simplified Functional Block Diagram for 0-delay Single Loop Mode
Clock Distribution
Figure 7 illustrates the LMK04906 used for clock distribution. CLKin1 is used to drive up to 6 divide/delay blocks
which drive 6 outputs. OSCin can be used to drive the OSCout port. OSCin can also optionally drive up to 2 of
the clock outputs.
CLKin1
CLKin1*
Divider
Digital Delay
Analog Delay
CLKoutX
CLKoutX*
6 outputs
6 blocks
OSCout0
OSCout0*
1 output
OSCin
OSCin*
LMK04906
Figure 7. Simplified Functional Block Diagram for Mode Clock Distribution
Detailed LMK04906 Block Diagram
Figure 8 illustrates the complete LMK04906 block diagram for the LMK04906 family.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
5
LMK04906
CLKin2*
CLKin2
CLKin2 Divider
(1, 2, 4, or 8)
CLKin0*
CLKin0
CLKin0 Divider
(1, 2, 4, or 8)
CLKin1*/Fin*
FBCLKin*
CLKin1/
Fin/FBCLKin
www.ti.com
Ref
Mux
CLKin1 Divider
(1, 2, 4, or 8)
Fin/Fin*
R Delay
R1 Divider
(1 to 16,383)
Phase
Detector
PLL1
N1 Divider
(1 to 16,383)
N Delay
CPout1
SNAS589D – JUNE 2012 – REVISED MAY 2013
Status_LD
SYNC/
Status_CLKin2
OSCout0
_MUX
Status_CLKin0
CLKuWire
FBMux
PWire
Port
Holdover
Control
Registers
LEuWire
FB
Mux
CPout2
Mode
Mux2
2X
OSCout0
OSCout0*
Status_Holdover
Status_CLKin1
DATAuWire
CLKout1
CLKout3
CLKout4
CLKout5
Device
Control
2X
Mux
OSC Divider
(2 to 8)
N2 Divider
(1 to 262,143)
Mode
Mux3
FBMux
R2 Divider
(1 to 4,095)
N2 Prescaler
(2 to 8)
OSCin*
OSCin
Phase
Detector
PLL2
Clock Distribution Path
Mode
Mux1
Partially
Integrated
Loop Filter
VCO
Mux
Internal VCO
VCO Divider
(2 to 8)
Fin/Fin*
CLKout0
CLKout0*
Mux
Delay
Divider
(1 to 1045)
Digital
Delay
Osc
Mux1
Digital
Delay
Divider
(1 to 1045)
Delay
Digital
Delay
Divider
(1 to 1045)
Delay
Divider
(1 to 1045)
Delay
Mux
CLKout3
CLKout3*
Mux
CLKout4
CLKout4*
Mux
CLKout5
CLKout5*
Clock Buffer 1
CLKout1
CLKout1*
Mux
Delay
Divider
(1 to 1045)
Digital
Delay
Osc
Mux2
Clock Buffer 3
CLKout2
CLKout2*
Mux
Delay
Divider
(1 to 1045)
Digital
Delay
Clock Buffer 2
Digital
Delay
Clock Buffer 1
Figure 8. Detailed LMK04906 Block Diagram
6
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
NC
Status_CLKin1
Status_CLKin0
NC
NC
CLKout5*
CLKout5
Vcc12
NC
NC
CLKout4*
CLKout4
Vcc11
NC
CLKout3*
CLKout3
Connection Diagram
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Vcc13
1
48
Vcc10
NC
2
47
NC
CLKout0*
3
46
DATAuWire
CLKout0
4
45
CLKuWire
NC
5
44
LEuWire
SYNC/
Status_CLKin2
6
43
Vcc9
NC
7
42
CPout2
NC
8
41
Vcc8
NC
9
40
OSCout0*
Vcc1
10
39
OSCout0
LDObyp1
11
38
Vcc7
LDObyp2
12
37
OSCin*
CLKout1
13
36
OSCin
CLKout1*
14
35
Vcc6
NC
15
34
CPout1
Vcc2
16
33
Status_LD
29
30
31
32
CLKin2*
28
CLKin2
27
Vcc5
26
CLKin0*
25
CLKin0
24
Status_Holdover
CLKout2*
23
FBCLKin*/Fin*/CLKin1*
NC
22
FBCLKin/Fin/CLKin1
NC
21
GND
20
Vcc4
19
NC
18
CLKout2
17
Vcc3
DAP
Figure 9. 64-Pin WQFN Package
PIN DESCRIPTIONS
Pin Number
Name(s)
I/O
(1)
Type
Description
Power Supply for CLKou0
1
Vcc13
PWR
2, 5, 7, 8, 9, 15,
17, 19
22, 47, 51, 55,
56, 60,
61, 64
NC
No Connect
3, 4
CLKout0*, CLKout0
O
Programmable
Clock output 0.
6
SYNC /
Status_CLKin2
I/O
Programmable
CLKout Synchronization input or CLKin2 Status output.
(1)
These pins must be left floating.
10
Vcc1
PWR
Power supply for VCO LDO.
11
LDObyp1
ANLG
LDO Bypass, bypassed to ground with 10 µF capacitor.
12
LDObyp2
ANLG
LDO Bypass, bypassed to ground with a 0.1 µF
capacitor.
13, 14
CLKout1, CLKout1*
O
Programmable
Clock output 1.
See Application Information section for recommended connections.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
7
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
PIN DESCRIPTIONS (1) (continued)
Pin Number
Name(s)
16
Vcc2
I/O
Type
Description
PWR
Power supply for CLKout1.
PWR
Power supply for CLKout2
18
Vcc3
20, 21
CLKout2*, CLKout2
23
GND
PWR
Ground
24
Vcc4
PWR
Power supply for digital.
O
Programmable
Reference Clock Input Port 1 for PLL1. AC or DC
Coupled.
CLKin1, CLKin1*
25, 26
FBCLKin, FBCLKin*
Clock output 2
I
ANLG
Feedback input for external clock feedback input (0delay mode). AC or DC Coupled.
External VCO input (External VCO mode). AC or DC
Coupled.
Fin/Fin*
Programmable status pin, default readback output.
Programmable to holdover mode indicator. Other options
available by programming.
27
Status_Holdover
I/O
Programmable
28, 29
CLKin0, CLKin0*
I
ANLG
Reference Clock Input Port 0 for PLL1.
AC or DC Coupled.
30
Vcc5
PWR
Power supply for clock inputs.
31, 32
CLKin2, CLKin2*
I
ANLG
Reference Clock Input Port 2 for PLL1,
AC or DC Coupled.
33
Status_LD
I/O
Programmable
34
CPout1
O
ANLG
Charge pump 1 output.
35
Vcc6
PWR
Power supply for PLL1, charge pump 1.
36, 37
OSCin, OSCin*
I
ANLG
Feedback to PLL1, Reference input to PLL2.
AC Coupled.
PWR
Power supply for OSCin port.
O
Programmable
38
Vcc7
39, 40
OSCout0, OSCout0*
41
Vcc8
42
CPout2
Programmable status pin, default lock detect for PLL1
and PLL2. Other options available by programming.
Buffered output 0 of OSCin port.
PWR
Power supply for PLL2, charge pump 2.
O
ANLG
Charge pump 2 output.
PWR
Power supply for PLL2.
43
Vcc9
44
LEuWire
I
CMOS
MICROWIRE Latch Enable Input.
45
CLKuWire
I
CMOS
MICROWIRE Clock Input.
46
DATAuWire
I
CMOS
MICROWIRE Data Input.
48
Vcc10
49, 50
CLKout3, CLKout3*
PWR
O
Programmable
O
Programmable
PWR
Power supply for CLKout3.
Clock output 3.
52
Vcc11
53, 54
CLKout4, CLKout4*
57
Vcc12
58, 59
CLKout5, CLKout5*
O
Programmable
Clock output 5.
62
Status_CLKin0
I/O
Programmable
Programmable status pin. Default is input for pin control
of PLL1 reference clock selection. CLKin0 LOS status
and other options available by programming.
63
Status_CLKin1
I/O
Programmable
Programmable status pin. Default is input for pin control
of PLL1 reference clock selection. CLKin1 LOS status
and other options available by programming.
DAP
DAP
PWR
GND
Power supply for CLKout4.
Clock output 4.
Power supply for CLKout5.
DIE ATTACH PAD, connect to GND.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
8
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Absolute Maximum Ratings
(1) (2) (3) (4)
Parameter
Symbol
Ratings
Units
VCC
-0.3 to 3.6
V
VIN
-0.3 to (VCC + 0.3)
V
TSTG
-65 to 150
°C
Lead Temperature (solder 4 seconds)
TL
+260
°C
Junction Temperature
TJ
150
°C
Differential Input Current (CLKinX/X*,
OSCin/OSCin*, FBCLKin/FBCLKin*, Fin/Fin*)
IIN
±5
mA
MSL
3
Supply Voltage
(5)
Input Voltage
Storage Temperature Range
Moisture Sensitivity Level
(1)
(2)
(3)
(4)
(5)
"Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test
conditions, see the Electrical Characteristics. The guaranteed specifications apply only to the test conditions listed.
This device is a high performance RF integrated circuit with an ESD rating up to 2 kV Human Body Model, up to 150 V Machine Model,
and up to 750 V Charged Device Model and is ESD sensitive. Handling and assembly of this device should only be done at ESD-free
workstations.
Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress
ratings only. Functional operation of the device is only implied at these or any other conditions in excess of those given in the operation
sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.
If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and
specifications.
Never to exceed 3.6 V.
Package Thermal Resistance
64-Lead WQFN
Parameter
Thermal resistance from junction to ambient on 4layer JEDEC PCB (1)
Thermal resistance from junction to case
(2)
(1)
(2)
Symbol
Ratings
Units
θJA
19.5
° C/W
θJC
1.5
° C/W
Specification assumes 32 thermal vias connect the die attach pad to the embedded copper plane on the 4-layer JEDEC PCB. These
vias play a key role in improving the thermal performance of the WQFN. Note that the JEDEC PCB is a standard thermal measurement
PCB and does not represent best performance a PCB can achieve. It is recommended that the maximum number of vias be used in the
board layout. θJA is unique for each PCB.
Case is defined as the DAP (die attach pad).
Recommended Operating Conditions
Parameter
Symbol
Junction
Temperature
TJ
Ambient
Temperature
TA
Supply Voltage
Condition
VCC = 3.3 V
VCC
Min
Typical
Max
Unit
125
°C
-40
25
85
°C
3.15
3.3
3.45
V
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
9
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Electrical Characteristics
(3.15 V ≤ VCC ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
1
3
mA
410
470
mA
500
MHz
Current Consumption
ICC_PD
Power Down Supply Current
ICC_CLKS
Supply Current with all clocks enabled
(1)
All clock delays disabled,
CLKoutX_DIV = 1045,
CLKoutX_TYPE = 1 (LVDS),
PLL1 and PLL2 locked.
CLKin0/0*, CLKin1/1*, and CLKin2/2* Input Clock Specifications
Clock Input Frequency
fCLKin
0.001
(2)
SLEWCLKin
VIDCLKin
VSSCLKin
VIDCLKin
VSSCLKin
Clock Input Slew Rate
(3)
Clock Input
Differential Input Voltage
0.15
AC coupled
CLKinX_BUF_TYPE = 0 (Bipolar)
0.25
AC coupled
CLKinX_BUF_TYPE = 1 (MOS)
Figure 14
(3)
VCLKin0-offset
DC offset voltage between
CLKin0/CLKin0*
CLKin0* - CLKin0
VCLKin1-offset
DC offset voltage between
CLKin1/CLKin1*
CLKin1* - CLKin1
VCLKin2-offset
DC offset voltage between
CLKin2/CLKin2*
CLKin2* - CLKin2
VCLKinX-offset
DC offset voltage between
CLKinX/CLKinX*
CLKinX* - CLKinX
VCLKin-VIH
High input voltage
VCLKin-VIL
Low input voltage
0.5
V/ns
1.55
|V|
0.5
3.1
Vpp
0.25
1.55
|V|
0.5
3.1
Vpp
AC coupled to CLKinX; CLKinX* AC
coupled to Ground
CLKinX_BUF_TYPE = 0 (Bipolar)
0.25
2.4
Vpp
AC coupled to CLKinX; CLKinX* AC
coupled to Ground
CLKinX_BUF_TYPE = 1 (MOS)
0.25
2.4
Vpp
(4)
Clock Input
Single-ended Input Voltage
VCLKin
20% to 80%
Each pin AC coupled
CLKin0_BUF_TYPE = 0 (Bipolar)
Each pin AC coupled
CLKinX_BUF_TYPE = 1 (MOS)
DC coupled to CLKinX; CLKinX* AC
coupled to Ground
CLKinX_BUF_TYPE = 1 (MOS)
20
mV
0
mV
20
mV
55
mV
2.0
VCC
V
0.0
0.4
V
AC coupled
(CLKinX_BUF_TYPE = 0)
MODE = 2 or 8; FEEDBACK_MUX = 6
0.001
1000
MHz
AC coupled
(CLKinX_BUF_TYPE = 0)
MODE = 3 or 11
0.001
3100
MHz
AC coupled;
(CLKinX_BUF_TYPE = 0)
0.25
2.0
Vpp
AC coupled; 20% to 80%;
(CLKinX_BUF_TYPE = 0)
0.15
FBCLKin/FBCLKin* and Fin/Fin* Input Specifications
Clock Input Frequency
fFBCLKin
(3)
Clock Input Frequency
fFin
(3)
VFBCLKin/Fin
SLEWFBCLKin/Fin
(1)
(2)
(3)
(4)
10
Single Ended
Clock Input Voltage
(3)
Slew Rate on CLKin
(3)
0.5
V/ns
Load conditions for output clocks: LVDS: 100 Ω differential. See applications section Current Consumption / Power Dissipation
Calculations for Icc for specific part configuration and how to calculate Icc for a specific design.
CLKin0, CLKin1, and CLKin2 maximum is guaranteed by characterization, production tested at 200 MHz.
Guaranteed by characterization.
See DIFFERENTIAL VOLTAGE MEASUREMENT TERMINOLOGY for definition of VID and VOD voltages.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Electrical Characteristics (continued)
(3.15 V ≤ VCC ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
40
MHz
PLL1 Specifications
fPD1
PLL1 Phase Detector Frequency
ICPout1SOURCE
PLL1 Charge
Pump Source Current
(5)
VCPout1 = VCC/2, PLL1_CP_GAIN = 0
100
VCPout1 = VCC/2, PLL1_CP_GAIN = 1
200
VCPout1 = VCC/2, PLL1_CP_GAIN = 2
400
VCPout1 = VCC/2, PLL1_CP_GAIN = 3
1600
VCPout1=VCC/2, PLL1_CP_GAIN = 0
-100
VCPout1=VCC/2, PLL1_CP_GAIN = 1
-200
VCPout1=VCC/2, PLL1_CP_GAIN = 2
-400
VCPout1=VCC/2, PLL1_CP_GAIN = 3
-1600
µA
ICPout1SINK
PLL1 Charge
Pump Sink Current
ICPout1%MIS
Charge Pump
Sink / Source Mismatch
VCPout1 = VCC/2, T = 25 °C
3
ICPout1VTUNE
Magnitude of Charge Pump Current
Variation vs. Charge Pump Voltage
0.5 V < VCPout1 < VCC - 0.5 V
TA = 25 °C
4
%
ICPout1%TEMP
Charge Pump Current vs. Temperature
Variation
4
%
ICPout1 TRI
Charge Pump TRI-STATELeakage
Current
PN10kHz
PLL1_CP_GAIN = 400 µA
PLL 1/f Noise at 10 kHz offset.
Normalized to 1 GHz Output Frequency PLL1_CP_GAIN = 1600 µA
PN1Hz
Normalized Phase Noise Contribution
(5)
0.5 V < VCPout < VCC - 0.5 V
µA
10
%
5
-117
dBc/Hz
-118
PLL1_CP_GAIN = 400 µA
-221.5
PLL1_CP_GAIN = 1600 µA
-223
nA
dBc/Hz
PLL2 Reference Input (OSCin) Specifications
fOSCin
SLEWOSCin
PLL2 Reference Input
500
(6)
PLL2 Reference Clock minimum slew
rate on OSCin (7)
20% to 80%
0.15
(7)
AC coupled; Single-ended (Unused pin
AC coupled to GND)
0.2
2.4
Differential voltage swing
Figure 14
AC coupled
0.2
1.55
|V|
0.4
3.1
Vpp
VOSCin-offset
DC offset voltage between
OSCin/OSCin*
OSCinX* - OSCinX
Each pin AC coupled
fdoubler_max
Doubler input frequency
VOSCin
VIDOSCin
VSSOSCin
Input Voltage for OSCin or OSCin*
(7)
0.5
MHz
V/ns
20
EN_PLL2_REF_2X = 1;
OSCin Duty Cycle 40% to 60%
Vpp
mV
155
MHz
20.5
MHz
Crystal Oscillator Mode Specifications
fXTAL
Crystal Frequency Range
RESR < 40 Ω
(7)
(8)
Vectron VXB1 crystal, 20.48 MHz,
RESR < 40 Ω
XTAL_LVL = 0
PXTAL
Crystal Power Dissipation
CIN
Input Capacitance of LMK04906 OSCin
-40 to +85 °C
port
(5)
(6)
(7)
(8)
6
100
µW
6
pF
This parameter is programmable
FOSCin maximum frequency guaranteed by characterization. Production tested at 200 MHz.
Guaranteed by characterization.
See Application Section discussion of Crystal Power Dissipation. OPTIONAL CRYSTAL OSCILLATOR IMPLEMENTATION
(OSCin/OSCin*)
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
11
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Electrical Characteristics (continued)
(3.15 V ≤ VCC ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
155
MHz
PLL2 Phase Detector and Charge Pump Specifications
fPD2
Phase Detector Frequency
VCPout2=VCC/2, PLL2_CP_GAIN = 0
ICPoutSOURCE
PLL2 Charge Pump Source Current
(9)
(9)
100
VCPout2=VCC/2, PLL2_CP_GAIN = 1
400
VCPout2=VCC/2, PLL2_CP_GAIN = 2
1600
VCPout2=VCC/2, PLL2_CP_GAIN = 3
3200
VCPout2=VCC/2, PLL2_CP_GAIN = 0
-100
VCPout2=VCC/2, PLL2_CP_GAIN = 1
-400
VCPout2=VCC/2, PLL2_CP_GAIN = 2
-1600
VCPout2=VCC/2, PLL2_CP_GAIN = 3
-3200
µA
ICPoutSINK
PLL2 Charge Pump Sink Current
ICPout2%MIS
Charge Pump Sink/Source Mismatch
ICPout2VTUNE
Magnitude of Charge Pump Current vs. 0.5 V < VCPout2 < VCC - 0.5 V
Charge Pump Voltage Variation
TA = 25 °C
4
%
ICPout2%TEMP
Charge Pump Current vs. Temperature
Variation
4
%
ICPout2TRI
Charge Pump Leakage
0.5 V < VCPout2 < VCC - 0.5 V
PLL2_CP_GAIN = 400 µA
-118
PN10kHz
PLL 1/f Noise at 10 kHz offset
(10)
. Normalized to
1 GHz Output Frequency
PLL2_CP_GAIN = 3200 µA
-121
Normalized Phase Noise Contribution
PLL2_CP_GAIN = 400 µA
-222.5
PLL2_CP_GAIN = 3200 µA
-227
PN1Hz
(11)
VCPout2=VCC/2, TA = 25 °C
3
µA
10
10
%
nA
dBc/Hz
dBc/Hz
Internal VCO Specifications
fVCO
VCO Tuning Range
KVCO
Fine Tuning Sensitivity
(The range displayed in the typical
column indicates the lower sensitivity is
typical at the lower end of the tuning
LMK04906
range, and the higher tuning sensitivity
is typical at the higher end of the tuning
range).
|ΔTCL|
Allowable Temperature Drift for
Continuous Lock
(12) (13)
LMK04906
2370
2600
16 to 21
After programming R30 for lock, no
changes to output configuration are
permitted to guarantee continuous lock
MHz
MHz/V
125
°C
(9) This parameter is programmable
(10) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker
noise has a 10 dB/decade slope. PN10kHz is normalized to a 10 kHz offset and a 1 GHz carrier frequency. PN10kHz = LPLL_flicker(10
kHz) - 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise,
L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean
crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference
oscillator performance if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f)
and LPLL_flat(f).
(11) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, LPLL_flat(f), is defined as:
PN1HZ=LPLL_flat(f) - 20log(N) - 10log(fPDX). LPLL_flat(f) is the single side band phase noise measured at an offset frequency, f, in a 1 Hz
bandwidth and fPDX is the phase detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f).
(12) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was
at the time that the R30 register was last programmed, and still have the part stay in lock. The action of programming the R30 register,
even to the same value, activates a frequency calibration routine. This implies the part will work over the entire frequency range, but if
the temperature drifts more than the maximum allowable drift for continuous lock, then it will be necessary to reload the R30 register to
ensure it stays in lock. Regardless of what temperature the part was initially programmed at, the temperature can never drift outside the
frequency range of -40 °C to 85 °C without violating specifications.
(13) Guaranteed by characterization.
12
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Electrical Characteristics (continued)
(3.15 V ≤ VCC ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)
Symbol
Parameter
Conditions
Min
CLKout Closed Loop Jitter Specifications using a Commercial Quality VCXO
LMK04906
fCLKout = 245.76 MHz
SSB Phase Noise
Measured at Clock Outputs
Value is average for all output types
L(f)CLKout
Typ
Max
Units
(14)
Offset = 1 kHz
-122.5
Offset = 10 kHz
-132.9
Offset = 100 kHz
-135.2
Offset = 800 kHz
-143.9
Offset = 10 MHz; LVDS
-156.0
Offset = 10 MHz; LVPECL 1600 mVpp
-157.5
Offset = 10 MHz; LVCMOS
-157.1
dBc/Hz
(15)
JCLKout
LVDS/LVPECL/
LVCMOS
LMK04906 (15)
fCLKout = 245.76 MHz
Integrated RMS Jitter
BW = 12 kHz to 20 MHz
115
BW = 100 Hz to 20 MHz
123
CLKout Closed Loop Jitter Specifications using the Integrated Low Noise Crystal Oscillator Circuit
LMK04906
fCLKout = 245.76 MHz
Integrated RMS Jitter
BW = 12 kHz to 20 MHz
XTAL_LVL = 3
192
BW = 100 Hz to 20 MHz
XTAL_LVL = 3
450
fs rms
(16)
Default Power On Reset Clock Output Frequency
fCLKout-startup
Default output clock frequency at
device power on
CLKout4, LVDS, LMK04906
(17)
90
98
110
MHz
Clock Skew and Delay
LVDS-to-LVDS, T = 25 °C,
FCLK = 800 MHz, RL= 100 Ω
AC coupled
30
LVPECL-to-LVPECL,
T = 25 °C,
FCLK = 800 MHz, RL= 100 Ω
emitter resistors =
240 Ω to GND
AC coupled
30
Maximum skew between any two
LVCMOS outputs, same CLKout or
different CLKout (18) (19)
RL = 50 Ω, CL = 5 pF,
T = 25 °C, FCLK = 100 MHz.
100
LVDS or LVPECL to LVCMOS
Same device, T = 25 °C,
250 MHz
750
MODE = 2
PLL1_R_DLY = 0; PLL1_N_DLY = 0
1850
MODE = 2
PLL1_R_DLY = 0; PLL1_N_DLY = 0;
VCO Frequency = 2949.12 MHz
Analog delay select = 0;
Feedback clock digital delay = 11;
Feedback clock half step = 1;
Output clock digital delay = 5;
Output clock half step = 0;
0
Maximum CLKoutX to CLKoutY
(18) (19)
|TSKEW|
MixedTSKEW
td0-DELAY
CLKin to CLKoutX delay
(18)
(18)
ps
ps
ps
(14) VCXO used is a 122.88 MHz Crystek CVHD-950-122.880.
(15) fVCO = 2457.6 MHz, PLL1 parameters: EN_PLL2_REF_2X = 1, PLL2_R = 2, FPD1 = 1.024 MHz, ICP1 = 100 μA, loop bandwidth = 10 Hz.
A 122.88 MHz Crystek CVHD-950–122.880. PLL2 parameters: PLL2_R = 1, FPD2 = 122.88 MHz, ICP2 = 3200 μA, C1 = 47 pF, C2 = 3.9
nF, R2 = 620 Ω, PLL2_C3_LF = 0, PLL2_R3_LF = 0, PLL2_C4_LF = 0, PLL2_R4_LF = 0, CLKoutX_DIV = 10, and
CLKoutX_ADLY_SEL = 0.
(16) Crystal used is a 20.48 MHz Vectron VXB1-1150-20M480 and Skyworks varactor diode, SMV-1249-074LF.
(17) CLKout3 and OSCout0 also oscillate at start-up at the frequency of the VCXO attached to OSCin port.
(18) Equal loading and identical clock output configuration on each clock output is required for specification to be valid. Specification not valid
for delay mode.
(19) Guaranteed by characterization.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
13
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Electrical Characteristics (continued)
(3.15 V ≤ VCC ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
LVDS Clock Outputs (CLKoutX), CLKoutX_TYPE = 1
fCLKout
VOD
Maximum Frequency
RL = 100 Ω
(19) (20)
VSS
Differential Output Voltage
Figure 15
ΔVOD
Change in Magnitude of VOD for
complementary output states
VOS
Output Offset Voltage
ΔVOS
Change in VOS for complementary
output states
1536
T = 25 °C, DC measurement
AC coupled to receiver input
R = 100 Ω differential termination
MHz
250
400
450
|mV|
500
800
900
mVpp
50
mV
1.375
V
35
|mV|
-50
1.125
1.25
Output Rise Time
20% to 80%, RL = 100 Ω
Output Fall Time
80% to 20%, RL = 100 Ω
ISA
ISB
Output short circuit current - single
ended
Single-ended output shorted to GND, T
= 25 °C
-24
24
mA
ISAB
Output short circuit current - differential
Complimentary outputs tied together
-12
12
mA
TR / TF
200
ps
LVPECL Clock Outputs (CLKoutX)
fCLKout
Maximum Frequency
20% to 80% Output Rise
TR / TF
1536
(19) (20)
80% to 20% Output Fall Time
RL = 100 Ω, emitter resistors = 240 Ω
to GND
CLKoutX_TYPE = 4 or 5
(1600 or 2000 mVpp)
MHz
150
ps
VCC 1.03
V
VCC 1.41
V
700 mVpp LVPECL Clock Outputs (CLKoutX), CLKoutX_TYPE = 2
VOH
Output High Voltage
VOL
Output Low Voltage
VOD
Output Voltage
Figure 15
VSS
T = 25 °C, DC measurement
Termination = 50 Ω to
VCC - 1.4 V
305
380
440
|mV|
610
760
880
mVpp
1200 mVpp LVPECL Clock Outputs (CLKoutX), CLKoutX_TYPE = 3
VOH
Output High Voltage
VOL
Output Low Voltage
VOD
Output Voltage
Figure 15
VSS
T = 25 °C, DC measurement
Termination = 50 Ω to
VCC - 1.7 V
VCC 1.07
V
VCC 1.69
V
545
625
705
|mV|
1090
1250
1410
mVpp
1600 mVpp LVPECL Clock Outputs (CLKoutX), CLKoutX_TYPE = 4
VOH
Output High Voltage
VOL
Output Low Voltage
VOD
Output Voltage
Figure 15
VSS
T = 25 °C, DC Measurement
Termination = 50 Ω to
VCC - 2.0 V
VCC 1.10
V
VCC 1.97
V
660
870
965
|mV|
1320
1740
1930
mVpp
(20) Refer to Typical Performance Characteristics for output operation performance at higher frequencies than the minimum maximum output
frequency.
14
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Electrical Characteristics (continued)
(3.15 V ≤ VCC ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
2000 mVpp LVPECL (2VPECL) Clock Outputs (CLKoutX), CLKoutX_TYPE = 5
VOH
Output High Voltage
VOL
Output Low Voltage
VOD
Output Voltage
Figure 15
VSS
T = 25 °C, DC Measurement
Termination = 50 Ω to
VCC - 2.3 V
VCC 1.13
V
VCC 2.20
V
800
1070
1200
|mV|
1600
2140
2400
mVpp
LVCMOS Clock Outputs (CLKoutX)
fCLKout
Maximum Frequency
(21) (22)
5 pF Load
250
MHz
VOH
Output High Voltage
1 mA Load
VCC 0.1
V
VOL
Output Low Voltage
1 mA Load
IOH
Output High Current (Source)
VCC = 3.3 V, VO = 1.65 V
28
mA
IOL
Output Low Current (Sink)
VCC = 3.3 V, VO = 1.65 V
28
mA
Output Duty Cycle
(21)
VCC/2 to VCC/2, FCLK = 100 MHz, T =
25 °C
TR
Output Rise Time
20% to 80%, RL = 50 Ω,
CL = 5 pF
400
ps
TF
Output Fall Time
80% to 20%, RL = 50 Ω,
CL = 5 pF
400
ps
DUTYCLK
0.1
45
50
55
V
%
Digital Outputs (Status_CLKinX, Status_LD, Status_Holdover, SYNC)
VOH
High-Level Output Voltage
VOL
Low-Level Output Voltage
IOH = -500 µA
VCC 0.4
IOL = 500 µA
V
0.4
V
VCC
V
0.4
V
Digital Inputs (Status_CLKinX, SYNC)
VIH
High-Level Input Voltage
VIL
Low-Level Input Voltage
IIH
IIL
1.6
High-Level Input Current
VIH = VCC
Low-Level Input Current
VIL = 0 V
Status_CLKinX_TYPE = 0
(High Impedance)
-5
5
Status_CLKinX_TYPE = 1
(Pull-up)
-5
5
Status_CLKinX_TYPE = 2
(Pull-down)
10
80
Status_CLKinX_TYPE = 0
(High Impedance)
-5
5
Status_CLKinX_TYPE = 1
(Pull-up)
-40
-5
Status_CLKinX_TYPE = 2
(Pull-down)
-5
5
1.6
VCC
µA
µA
Digital Inputs (CLKuWire, DATAuWire, LEuWire)
VIH
High-Level Input Voltage
VIL
Low-Level Input Voltage
IIH
High-Level Input Current
VIH = VCC
IIL
Low-Level Input Current
VIL = 0
V
0.4
V
5
25
µA
-5
5
µA
(21) Guaranteed by characterization.
(22) Refer to Typical Performance Characteristics for output operation performance at higher frequencies than the minimum maximum output
frequency.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
15
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Electrical Characteristics (continued)
(3.15 V ≤ VCC ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
MICROWIRE Interface Timing
TECS
LE to Clock Set Up Time
See MICROWIRE Input Timing
25
ns
TDCS
Data to Clock Set Up Time
See MICROWIRE Input Timing
25
ns
TCDH
Clock to Data Hold Time
See MICROWIRE Input Timing
8
ns
TCWH
Clock Pulse Width High
See MICROWIRE Input Timing
25
ns
TCWL
Clock Pulse Width Low
See MICROWIRE Input Timing
25
ns
TCES
Clock to LE Set Up Time
See MICROWIRE Input Timing
25
ns
TEWH
LE Pulse Width
See MICROWIRE Input Timing
25
ns
TCR
Falling Clock to Readback Time
See MICROWIRE Readback Timing
25
ns
Serial MICROWIRE Timing Diagram
Register programming information on the DATAuWire pin is clocked into a shift register on each rising edge of
the CLKuWire signal. On the rising edge of the LEuWire signal, the register is sent from the shift register to the
register addressed. A slew rate of at least 30 V/µs is recommended for these signals. After programming is
complete the CLKuWire, DATAuWire, and LEuWire signals should be returned to a low state. If the CLKuWire or
DATAuWire lines are toggled while the VCO is in lock, as is sometimes the case when these lines are shared
with other parts, the phase noise may be degraded during this programming.
MSB
DATAuWire
D26
LSB
D25
D24
D23
D22
D0
A4
A1
A0
CLKuWire
tECS
tCES
tDCS
tCDH
tCWH
tECS
tCWL
LEuWire
tEWH
Figure 10. MICROWIRE Timing Diagram
ADVANCED MICROWIRE TIMING DIAGRAMS
3 Extra Clocks or Double Program
Figure 11 shows the timing for the programming sequence for loading CLKoutX_DIV > 25 or CLKoutX_DDLY >
12 as described in SPECIAL PROGRAMMING CASE FOR R0 to R5 for CLKoutX_DIV & CLKoutX_DDLY.
DATAuWire
MSB
LSB
D26
A0
CLKuWire
tCES
tECS
tCWL
LEuWire
tCWH
tEWH
Figure 11. MICROWIRE Timing Diagram: Extra CLKuWire Pulses for R0 to R5
16
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Three Extra Clocks with LEuWire High
Figure 12 shows the timing for the programming sequence which allows SYNC_EN_AUTO = 1 when loading
CLKoutX_DIV > 25 or CLKoutX_DDLY > 12. When SYNC_EN_AUTO = 1, a SYNC event is automatically
generated on the falling edge of LEuWire. See SPECIAL PROGRAMMING CASE FOR R0 to R5 for
CLKoutX_DIV & CLKoutX_DDLY.
DATAuWire
MSB
LSB
D26
A0
CLKuWire
tECS
tCES
tCES
LEuWire
Figure 12. MICROWIRE Timing Diagram: Extra CLKuWire Pulses for R0 to R5 with LEuWire Asserted
Readback
See READBACK for more information on performing a readback operation. Figure 13 shows timing for LEuWire
for both READBACK_LE = 1 and 0.
The rising edges of CLKuWire during MICROWIRE readback continue to clock data on DATAuWire into the
device during readback. If after the readback, LEuWire transitions from low to high, this data will be latched to
the decoded register. The decoded register address consists of the last 5 bits clocked on DATAuWire as shown
in the MICROWIRE Timing Diagrams.
DATAuWire
MSB
LSB
D26
A0
CLKuWire
tCR
tECS
tCWH
tCR
tCWL
LEuWire
READBACK_LE = 0
tCES
tEWH
tECS
LEuWire
READBACK_LE = 1
Readback Pin
RD26
Register Write
RD25
RD24
RD23
RD0
Register Read
Figure 13. MICROWIRE Readback Timing Diagram
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
17
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Measurement Definitions
CHARGE PUMP CURRENT SPECIFICATION DEFINITIONS
I1 = Charge Pump Sink Current at VCPout = VCC - ΔV
I2 = Charge Pump Sink Current at VCPout = VCC/2
I3 = Charge Pump Sink Current at VCPout = ΔV
I4 = Charge Pump Source Current at VCPout = VCC - ΔV
I5 = Charge Pump Source Current at VCPout = VCC/2
I6 = Charge Pump Source Current at VCPout = ΔV
ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.
Charge Pump Output Current Magnitude Variation Vs. Charge Pump Output Voltage
Charge Pump Sink Current Vs. Charge Pump Output Source Current Mismatch
18
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Charge Pump Output Current Magnitude Variation Vs. Temperature
DIFFERENTIAL VOLTAGE MEASUREMENT TERMINOLOGY
The differential voltage of a differential signal can be described by two different definitions causing confusion
when reading datasheets or communicating with other engineers. This section will address the measurement and
description of a differential signal so that the reader will be able to understand and discern between the two
different definitions when used.
The first definition used to describe a differential signal is the absolute value of the voltage potential between the
inverting and non-inverting signal. The symbol for this first measurement is typically VID or VOD depending on if
an input or output voltage is being described.
The second definition used to describe a differential signal is to measure the potential of the non-inverting signal
with respect to the inverting signal. The symbol for this second measurement is VSS and is a calculated
parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its
differential pair. VSS can be measured directly by oscilloscopes with floating references, otherwise this value can
be calculated as twice the value of VOD as described in the first description.
Figure 14 illustrates the two different definitions side-by-side for inputs and Figure 15 illustrates the two different
definitions side-by-side for outputs. The VID and VOD definitions show VA and VB DC levels that the non-inverting
and inverting signals toggle between with respect to ground. VSS input and output definitions show that if the
inverting signal is considered the voltage potential reference, the non-inverting signal voltage potential is now
increasing and decreasing above and below the non-inverting reference. Thus the peak-to-peak voltage of the
differential signal can be measured.
VID and VOD are often defined as volts (V) and VSS is often defined as volts peak-to-peak (VPP).
VID Definition
VSS Definition for Input
Non-Inverting Clock
VA
2· VID
VID
VB
Inverting Clock
VID = | VA - VB |
VSS = 2· VID
GND
Figure 14. Two Different Definitions for Differential Input Signals
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
19
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
VOD Definition
VSS Definition for Output
Non-Inverting Clock
VA
2· VOD
VOD
VB
Inverting Clock
VOD = | VA - VB |
VSS = 2· VOD
GND
Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for more
information.
Figure 15. Two Different Definitions for Differential Output Signals
20
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Typical Performance Characteristics
CLOCK OUTPUT AC CHARACTERISTICS
LVDS VOD
vs.
Frequency
LVPECL /w 240 ohm emitter resistors VOD
vs.
Frequency
1200
2000 mVpp
1600 mVpp
1000
1200 mVpp
700 mVpp
500
450
400
VOD(mV)
VOD(mV)
350
300
250
200
800
600
400
150
100
200
50
0
0
0
500
1000 1500 2000 2500 3000
FREQUENCY (MHz)
Figure 16.
0
500 1000 1500 2000 2500 3000
FREQUENCY (MHz)
Figure 17.
LVPECL /w 120 ohm emitter resistors VOD
vs.
Frequency
1200
VOD(mV)
1000
2000 mVpp
800
600
1600 mVpp
400
200
0
0
500 1000 1500 2000 2500 3000
FREQUENCY (MHz)
Figure 18.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
21
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
FEATURES
SYSTEM ARCHITECTURE
The dual loop PLL architecture of the LMK04906 provides the lowest jitter performance over the widest range of
output frequencies and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external
reference clock and uses an external VCXO or tunable crystal to provide a frequency accurate, low phase noise
reference clock for the second stage frequency multiplication PLL (PLL2). PLL1 typically uses a narrow loop
bandwidth (10 Hz to 200 Hz) to retain the frequency accuracy of the reference clock input signal while at the
same time suppressing the higher offset frequency phase noise that the reference clock may have accumulated
along its path or from other circuits. This “cleaned” reference clock provides the reference input to PLL2.
The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (50 kHz to
200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high offset frequency phase
noise profile of the internal VCO and the good low offset frequency phase noise of the reference VCXO or
tunable crystal.
Ultra low jitter is achieved by allowing the external VCXO or Crystal’s phase noise to dominate the final output
phase noise at low offset frequencies and the internal VCO’s phase noise to dominate the final output phase
noise at high offset frequencies. This results in best overall phase noise and jitter performance.
The LMK04906 allows subsets of the device to be used to increase the flexibility of device. These different
modes are selected using MODE: Device Mode. For instance:
• Dual Loop Mode - Typical use case of LMK04906. CLKinX used as reference input to PLL1, OSCin port is
connected to VCXO or tunable crystal.
• Single Loop Mode - Powers down PLL1. OSCin port is used as reference input.
• Clock Distribution Mode - Allows input of CLKin1 to be distributed to output with division, digital delay, and
analog delay.
See Functional Description for more information on these modes.
PLL1 REDUNDANT REFERENCE INPUTS (CLKin0/CLKin0*, CLKin1/CLKin1*, and
CLKin2/CLKin2*)
The LMK04906 has three reference clock inputs for PLL1, CLKin0, CLKin1, and CLKin2. Ref Mux selects
CLKin0, CLKin1, or CLKin2. Automatic or manual switching occurs between the inputs.
CLKin0, CLKin1, and CLKin2 each have input dividers. The input divider allows different clock input frequencies
to be normalized so that the frequency input to the PLL1 R divider remains constant during automatic switching.
By programming these dividers such that the frequency presented to the input of the PLL1_R divider is the same
prevents the user from needing to reprogram the PLL1 R divider when the input reference is changed to another
CLKin port with a different frequency.
CLKin1 is shared for use as an external 0-delay feedback (FBCLKin), or for use with an external VCO (Fin).
Fast manual switching between reference clocks is possible with a external pins Status_CLKin0, Status_CLKin1,
Status_CLKin2.
PLL1 TUNABLE CRYSTAL SUPPORT
The LMK04906 integrates a crystal oscillator on PLL1 for use with an external crystal and varactor diode to
perform jitter cleaning.
The LMK04906 must be programmed to enable Crystal mode.
VCXO/CRYSTAL BUFFERED OUTPUTS
The LMK04906 provides a dedicated output which is a buffered copy of the PLL2 reference input. This reference
input is typically a low noise VCXO or Crystal. When using a VCXO, this output can be used to clock external
devices such as microcontrollers, FPGAs, CPLDs, etc. before the LMK04906 is programmed.
The OSCout0 buffer output type is programmable to LVDS, LVPECL, or LVCMOS.
22
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
The dedicated output buffer OSCout0 can output frequency lower than the VCXO or Crystal frequency by
programming the OSC Divider. The OSC Divider value range is 1 to 8. Each OSCoutX can individually choose to
use the OSC Divider output or to bypass the OSC Divider.
Two clock outputs can also be programmed to be driven by OSCin. This allows a total of 2 additional differential
outputs to be buffered outputs of OSCin. When programmed in this way, a total of 3 differential outputs can be
driven by a buffered copy of OSCin.
VCXO/Crystal buffered outputs cannot be synchronized to the VCO clock distribution outputs. The assertion of
SYNC will still cause these outputs to become low. Since these outputs will turn off and on asynchronously with
respect to the VCO sourced clock outputs during a SYNC, it is possible for glitches to occur on the buffered clock
outputs when SYNC is asserted and unasserted. If the NO_SYNC_CLKoutX bits are set these outputs will not be
affected by the SYNC event except that the phase relationship will change with the other synchronized clocks
unless a buffered clock output is used as a qualification clock during SYNC.
FREQUENCY HOLDOVER
The LMK04906 supports holdover operation to keep the clock outputs on frequency with minimum drift when the
reference is lost until a valid reference clock signal is re-established.
HITLESS SWITCHING
The LMK04906 supports hitless switching.
INTEGRATED LOOP FILTER POLES
The LMK04906 features programmable 3rd and 4th order loop filter poles for PLL2. These internal resistors and
capacitor values may be selected from a fixed range of values to achieve either a 3rd or 4th order loop filter
response. The integrated programmable resistors and capacitors compliment external components mounted near
the chip.
These integrated components can be effectively disabled by programming the integrated resistors and capacitors
to their minimum values.
INTERNAL VCO
The output of the internal VCO is routed to a mux which allows the user to select either the direct VCO output or
a divided version of the VCO for the Clock Distribution Path. This same selection is also fed back to the PLL2
phase detector through a prescaler and N-divider.
The mux selectable VCO divider has a divide range of 2 to 8 with 50% output duty cycle for both even and odd
divide values.
The primary use of the VCO divider is to achieve divides greater than the clock output divider supports alone.
EXTERNAL VCO MODE
The Fin/Fin* input allows an external VCO to be used with PLL2 of the LMK04906.
Using an external VCO reduces the number of available clock inputs by one.
CLOCK DISTRIBUTION
The LMK04906 features a total of 6 outputs driven from the internal or external VCO.
All VCO driven outputs have programmable output types. They can be programmed to LVPECL, LVDS, or
LVCMOS. When all distribution outputs are configured for LVCMOS or single ended LVPECL a total of 24
outputs are available.
If the buffered OSCin output OSCout0 is included in the total number of clock outputs the LMK04906 is able to
distribute, then up to 6 differential clocks or up to 12 single ended clocks may be generated with the LMK04906.
The following sections discuss specific features of the clock distribution channels that allow the user to control
various aspects of the output clocks.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
23
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
CLKout DIVIDER
Each clock output has a single clock output divider. The divider supports a divide range of 1 to 1045 (even and
odd) with 50% output duty cycle. When divides of 26 or greater are used, the divider/delay block uses extended
mode.
The VCO Divider may be used to reduce the divide needed by the clock output divider so that it may operate in
normal mode instead of extended mode. This can result in a small current saving if enabling the VCO Divider
allows 3 or more clock output divides to change from extended to normal mode.
CLKout DELAY
The clock distribution section includes both a fine (analog) and coarse (digital) delay for phase adjustment of the
clock outputs.
The fine (analog) delay allows a nominal 25 ps step size and range from 0 to 475 ps of total delay. Enabling the
analog delay adds a nominal 500 ps of delay in addition to the programmed value. When adjusting analog delay,
glitches may occur on the clock outputs being adjusted. Analog delay may not operate at frequencies above the
minimum-guaranteed maximum output frequency of 1536 MHz.
The coarse (digital) delay allows a group of outputs to be delayed by 4.5 to 12 clock distribution path cycles in
normal mode, or from 12.5 to 522 VCO cycles in extended mode. The delay step can be as small as half the
period of the clock distribution path by using the CLKoutX_HS bit provided the output divide value is greater than
1. For example 2 GHz VCO frequency without using the VCO divider results in 250 ps coarse tuning steps. The
coarse (digital) delay value takes effect on the clock outputs after a SYNC event.
There are 3 different ways to use the digital (coarse) delay.
1. Fixed Digital Delay
2. Absolute Dynamic Digital Delay
3. Relative Dynamic Digital Delay
These are further discussed in the Functional Description.
PROGRAMMABLE OUTPUT TYPE
For increased flexibility all LMK04906 clock outputs (CLKoutX) and OSCout0 can be programmed to an LVDS,
LVPECL, or LVCMOS output type.
Any LVPECL output type can be programmed to 700, 1200, 1600, or 2000 mVpp amplitude levels. The 2000
mVpp LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000 mVpp
differential swing for compatibility with many data converters and is also known as 2VPECL.
CLOCK OUTPUT SYNCHRONIZATION
Using the SYNC input causes all active clock outputs to share a rising edge. See Clock Output Synchronization
(SYNC) for more information.
The SYNC event also causes the digital delay values to take effect.
0-DELAY
The 0-delay mode synchronizes the input clock phase to the output clock phase. The 0-delay feedback may
performed with an internal feedback loop from some of the clock outputs or with an external feedback loop into
the FBCLKin port as selected by the FEEDBACK_MUX.
Without using 0-delay mode there will be n possible fixed phase relationships from clock input to clock output
depending on the clock output divide value.
Using an external 0-delay feedback reduces the number of available clock inputs by one.
DEFAULT STARTUP CLOCKS
Before the LMK04906 is programmed, CLKout4 is enabled and operating at a nominal frequency and CLKout3
and OSCout0 are enabled and operating at the OSCin frequency. These clocks can be used to clock external
devices such as microcontrollers, FPGAs, CPLDs, etc. before the LMK04906 is programmed.
24
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
For CLKout3 and OSCout0 to work before the LMK04906 is programmed the device must not be using Crystal
mode.
STATUS PINS
The LMK04906 provides status pins which can be monitored for feedback or in some cases used for input
depending upon device programming. For example:
• The Status_Holdover pin may indicate if the device is in hold-over mode.
• The Status_CLKin0 pin may indicate the LOS (loss-of-signal) for CLKin0.
• The Status_CLKin0 pin may be an input for selecting the active clock input.
• The Status_LD pin may indicate if the device is locked.
The status pins can be programmed to a variety of other outputs including analog lock detect, PLL divider
outputs, combined PLL lock detect signals, PLL1 Vtune railing, readback, etc. Refer to the General Programming
Information of this datasheet for more information. Default pin programming is captured in Table 16.
REGISTER READBACK
Programmed registers may be read back using the MICROWIRE interface. For readback one of the status pins
must be programmed for readback mode.
At no time may registers be programed to values other than the valid states defined in the datasheet.
Functional Description
FUNCTIONAL OVERVIEW
In default mode of operation, dual PLL mode with internal VCO, the Phase Frequency Detector in PLL1
compares the active CLKinX reference divided by CLKinX_PreR_DIV and PLL1 R divider with the external
VCXO or crystal attached to the PLL2 OSCin port divided by PLL1 N divider. The external loop filter for PLL1
should be narrow to provide an ultra clean reference clock from the external VCXO or crystal to the
OSCin/OSCin* pins for PLL2.
The Phase Frequency Detector in PLL2 compares the external VCXO or crystal attached to the OCSin port
divided by the PLL2 R divider with the output of the internal VCO divided by the PLL2 N divider and N2 prescaler and optionally the VCO divider. The bandwidth of the external loop filter for PLL2 should be designed to
be wide enough to take advantage of the low in-band phase noise of PLL2 and the low high offset phase noise of
the internal VCO. The VCO output is also placed on the distribution path for the clock distribution section. The
clock distribution consists of 6 dividers and delays which drive 6 outputs. Each clock output allows the user to
select a divide value, a digital delay value, and an analog delay. The 6 dividers drive programmable output
buffers. Two outputs allow their input signal to be from the OSCin port directly.
When a 0-delay mode is used, a clock output will be passed through the feedback mux to the PLL1 N Divider for
synchronization and 0-delay.
When an external VCO mode is used, the Fin port will be used to input an external VCO signal. PLL2 Phase
comparison will now be with this signal divided by the PLL2 N divider and N2 pre-scaler. The VCO divider may
not be used. One less clock input is available when using an external VCO mode.
When a single PLL mode is used, PLL1 is powered down. OSCin is used as a reference to PLL2.
MODE SELECTION
The LMK04906 family is capable of operating in several different modes as programmed by MODE: Device
Mode.
Table 1. Device Mode Selection
MODE
R11[31:27]
PLL1
PLL2
PLL2 VCO
0
X
X
Internal
2
X
X
Internal
3
X
X
External
0-delay
Clock Dist
X
X
X
X
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
25
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 1. Device Mode Selection (continued)
MODE
R11[31:27]
PLL1
PLL2
PLL2 VCO
0-delay
Clock Dist
5
X
X
X
X
External
6
X
Internal
8
X
Internal
11
X
External
X
X
X
X
16
X
In addition to selecting the device's mode of operation above, some modes require additional configuration. Also
there are other features including holdover and dynamic digital delay that can also be enabled.
Table 2. Registers to Further Configure Device Mode of Operation
Register
Holdover
0-Delay
Dynamic Digital Delay
HOLDOVER_MODE
2
—
—
EN_TRACK
User
—
—
DAC_CLK_DIV
User
—
—
EN_MAN_DAC
User
—
—
DISABLE_DLD1_DET
User
—
—
EN_VTUNE_RAIL_
DET
User
—
—
DAC_HIGH_TRIP
User
—
—
DAC_LOW_TRIP
User
—
—
FORCE_HOLDOVER
0
—
—
SYNC_EN_AUTO
—
—
User
SYNC_QUAL
—
—
1
EN_SYNC
—
—
1
CLKout2_PD
—
—
0
EN_
FEEDBACK_MUX
—
1
1
FEEDBACK_MUX
—
Feedback Clock
Qualifying Clock
NO_SYNC_
CLKoutX
—
—
User
INPUTS / OUTPUTS
PLL1 Reference Inputs (CLKin0, CLKin1, and CLKin2)
The reference clock inputs for PLL1 may be selected from either CLKin0, CLKin1, or CLKin2. The user has the
capability to manually select one of the inputs or to configure an automatic switching mode of operation. See
INPUT CLOCK SWITCHING for more info.
CLKin0, CLKin1, and CLKin2 have dividers which allow the device to switch between reference inputs of different
frequencies automatically without needing to reprogram the PLL1 R divider. The CLKin pre-divider values are 1,
2, 4, and 8.
CLKin1 input can alternatively be used for external feedback in 0-delay mode (FBCLKin) or for an external VCO
input port (Fin).
PLL2 OSCin / OSCin* Port
The feedback from the external oscillator being locked with PLL1 drives the OSCin/OSCin* pins. Internally this
signal is routed to the PLL1 N Divider and to the reference input for PLL2.
This input may be driven with either a single-ended or differential signal and must be AC coupled. If operated in
single ended mode, the unused input must be connected to GND with a 0.1 µF capacitor.
26
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
CRYSTAL OSCILLATOR
The internal circuitry of the OSCin port also supports the optional implementation of a crystal based oscillator
circuit. A crystal, a varactor diode, and a small number of other external components may be used to implement
the oscillator. The internal oscillator circuit is enabled by setting the EN_PLL2_XTAL bit. See EN_PLL2_XTAL.
INPUT CLOCK SWITCHING
Manual, pin select, and automatic are three different kinds clock input switching modes can be set with the
CLKin_SELECT_MODE register.
Below is information about how the active input clock is selected and what causes a switching event in the
various clock input selection modes.
Input Clock Switching - Manual Mode
When CLKin_SELECT_MODE is 0, 1, or 2 then CLKin0, CLKin1, or CLKin2 respectively is always selected as
the active input clock. Manual mode will also override the EN_CLKinX bits such that the CLKinX buffer will
operate even if CLKinX is is disabled with EN_CLKinX = 0.
Entering Holdover
If holdover mode is enabled then holdover mode is entered if:
Digital lock detect of PLL1 goes low and DISABLE_DLD1_DET = 0.
Exiting Holdover
The active clock for automatic exit of holdover mode is the manually selected clock input.
Input Clock Switching - Pin Select Mode
When CLKin_SELECT_MODE is 3, the pins Status_CLKin0 and Status_CLKin1 select which clock input is
active.
Clock Switch Event: Pins
Changing the state of Status_CLKin0 or Status_CLKin1 pins causes an input clock switch event.
Clock Switch Event: PLL1 DLD
To prevent PLL1 DLD high to low transition from causing a input clock switch event and causing the device to
enter holdover mode, disable the PLL1 DLD detect by setting DISABLE_DLD1_DET = 1. This is the preferred
behavior for Pin Select Mode.
Configuring Pin Select Mode
The Status_CLKin0_TYPE must be programmed to an input value for the Status_CLKin0 pin to function as an
input for pin select mode.
The Status_CLKin1_TYPE must be programmed to an input value for the Status_CLKin1 pin to function as an
input for pin select mode.
If the Status_CLKinX_TYPE is set as output, the input value is considered "0."
The polarity of Status_CLKin1 and Status_CLKin0 input pins can be inverted with the CLKin_SEL_INV bit.
Table 3 defines which input clock is active depending on Status_CLKin0 and Status_CLKin1 state.
Table 3. Active Clock Input - Pin Select Mode
Status_CLKin1
Status_CLKin0
Active Clock
0
0
CLKin0
0
1
CLKin1
1
0
CLKin2
1
1
Holdover
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
27
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
The pin select mode will override the EN_CLKinX bits such that the CLKinX buffer will operate even if CLKinX is
is disabled with EN_CLKinX = 0. To switch as fast as possible, keep the clock input buffers enabled (EN_CLKinX
= 1) that could be switched to.
Pin Select Mode and Host
When in the pin select mode, the host can monitor conditions of the clocking system which could cause the host
to switch the active clock input. The LMK04906 device can also provide indicators on the Status_LD and
Status_HOLDOVER like "DAC Rail," "PLL1 DLD", "PLL1 & PLL2 DLD" which the host can use in determining
which clock input to use as active clock input.
Switch Event without Holdover
When an input clock switch event is triggered and holdover mode is disabled, the active clock input immediately
switches to the selected clock. When PLL1 is designed with a narrow loop bandwidth, the switching transient is
minimized.
Switch Event with Holdover
When an input clock switch event is triggered and holdover mode is enabled, the device will enter holdover mode
and remain in holdover until a holdover exit condition is met as described in HOLDOVER MODE. Then the
device will complete the reference switch to the pin selected clock input.
Input Clock Switching - Automatic Mode
When CLKin_SELECT_MODE is 4, the active clock is selected in priority order of enabled clock inputs starting
upon an input clock switch event. The priority order of the clocks is CLKin0 → CLKin1 → CLKin2, etc.
For a clock input to be eligible to be switched through, it must be enabled using EN_CLKinX.
Starting Active Clock
Upon programming this mode, the currently active clock remains active if PLL1 lock detect is high. To ensure a
particular clock input is the active clock when starting this mode, program CLKin_SELECT_MODE to the manual
mode which selects the desired clock input (CLKin0, 1, or 2). Wait for PLL1 to lock PLL1_DLD = 1, then select
this mode with CLKin_SELECT_MODE = 4.
Clock Switch Event: PLL1 DLD
A loss of lock as indicated by PLL1’s DLD signal (PLL1_DLD = 0) will cause an input clock switch event if
DISABLE_DLD1_DET = 0. PLL1 DLD must go high (PLL1_DLD = 1) in between input clock switching events.
Clock Switch Event: PLL1 Vtune Rail
If Vtune_RAIL_DET_EN is set and the PLL1 Vtune voltage crosses the DAC high or low threshold, holdover
mode will be entered. Since PLL1_DLD = 0 in holdover a clock input switching event will occur.
Clock Switch Event with Holdover
If holdover is enabled and an input clock switch event occurs, holdover mode is entered and the active clock is
set to the next enabled clock input in priority order. When the new active clock meets the holdover exit
conditions, holdover is exited and the active clock will continue to be used as a reference until another PLL1 loss
of lock event. PLL1 DLD must go high in between input clock switching events.
Clock Switch Event without Holdover
If holdover is not enabled and an input clock switch event occurs, the active clock is set to the next enabled clock
in priority order. The LMK04906 will keep this new input clock as the active clock until another input clock
switching event. PLL1 DLD must go high in between input clock switching events.
Input Clock Switching - Automatic Mode with Pin Select
When CLKin_SELECT_MODE is 6, the active clock is selected using the Status_CLKinX pins upon an input
clock switch event according to Table 4.
Starting Active Clock
28
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Upon programming this mode, the currently active clock remains active if PLL1 lock detect is high. To ensure a
particular clock input is the active clock when starting this mode, program CLKin_SELECT_MODE to the manual
mode which selects the desired clock input (CLKin0 or 1). Wait for PLL1 to lock PLL1_DLD = 1, then select this
mode with CLKin_SELECT_MODE = 6.
Clock Switch Event: PLL1 DLD
An input clock switch event is generated by a loss of lock as indicated by PLL1's DLD signal (PLL1 DLD = 0).
Clock Switch Event: PLL1 Vtune Rail
If Vtune_RAIL_DET_EN is set and the PLL1 Vtune voltage crosses the DAC threshold, holdover mode will be
entered. Since PLL1_DLD = 0 in holdover, a clock input switching event will occur.
Clock Switch Event with Holdover
If holdover is enabled and an input clock switch event occurs, holdover mode is entered and the active clock is
set to the clock input defined by the Status_CLKinX pins. When the new active clock meets the holdover exit
conditions, holdover is exited and the active clock will continue to be used as a reference until another input
clock switch event. PLL1 DLD must go high in between input clock switching events.
Clock Switch Event without Holdover
If holdover is not enabled and an input clock switch event occurs, the active clock is set to the clock input defined
by the Status_CLKinX pins. The LMK04906 will keep this new input clock as the active clock until another input
clock switching event. PLL1 DLD must go high in between input clock switching events.
Table 4. Active Clock Input - Auto Pin Mode
Status_CLKin1
Status_CLKin0
Active Clock
X
1
CLKin0
1
0
CLKin1
0
0
CLKin2
The polarity of Status_CLKin1 and Status_CLKin0 input pins can be inverted with the CLKin_SEL_INV bit.
HOLDOVER MODE
Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock
reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed
tuning voltage is set on CPout1 to operate PLL1 in open loop.
Enable holdover
Program HOLDOVER_MODE to enable holdover mode. Holdover mode can be manually enabled by
programming the FORCE_HOLDOVER bit.
The holdover mode can be set to operate in 2 different sub-modes.
• Fixed CPout1 (EN_TRACK = 0 or 1, EN_MAN_DAC = 1).
• Tracked CPout1 (EN_TRACK = 1, EN_MAN_DAC = 0).
– Not valid when EN_VTUNE_RAIL_DET = 1.
Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector
frequency divided by DAC_CLK_DIV. These updates occur any time EN_TRACK = 1.
The DAC update rate should be programmed for <= 100 kHz to ensure DAC holdover accuracy.
When tracking is enabled the current voltage of DAC can be readback, see DAC_CNT.
Entering holdover
The holdover mode is entered as described in INPUT CLOCK SWITCHING. Typically this is because:
• FORCE_HOLDOVER bit is set.
• PLL1 loses lock according to PLL1_DLD, and
– HOLDOVER_MODE = 2
– DISABLE_DLD1_DET = 0
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
29
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
•
www.ti.com
CPout1 voltage crosses DAC high or low threshold, and
– HOLDOVER_MODE = 2
– EN_VTUNE_RAIL_DET = 1
– EN_TRACK = 1
– DAC_HIGH_TRIP = User Value
– DAC_LOW_TRIP = User Value
– EN_MAN_DAC = 1
– MAN_DAC = User Value
During holdover
PLL1 is run in open loop mode.
• PLL1 charge pump is set to TRI-STATE.
• PLL1 DLD will be unasserted.
• The HOLDOVER status is asserted
• During holdover If PLL2 was locked prior to entry of holdover mode, PLL2 DLD will continue to be asserted.
• CPout1 voltage will be set to:
– a voltage set in the MAN_DAC register (fixed CPout1).
– a voltage determined to be the last valid CPout1 voltage (tracked CPout1).
• PLL1 DLD will attempt to lock with the active clock input.
The HOLDOVER status signal can be monitored on the Status_HOLDOVER or Status_LD pin by programming
the HOLDOVER_MUX or LD_MUX register to "Holdover Status."
Exiting holdover
Holdover mode can be exited in one of two ways.
• Manually, by programming the device from the host.
• Automatically, By a clock operating within a specified ppm of the current PLL1 frequency on the active clock
input. See INPUT CLOCK SWITCHING for more detail on which clock input is active.
To exit holdover by programming, set HOLDOVER_MODE = Disabled. HOLDOVER_MODE can then be reenabled by programming HOLDOVER_MODE = Enabled. Care should be taken to ensure that the active clock
upon exiting holdover is as expected, otherwise the CLKin_SELECT_MODE register may need to be reprogrammed.
Holdover Frequency Accuracy and DAC Performance
When in holdover mode PLL1 will run in open loop and the DAC will set the CPout1 voltage. If Fixed CPout1
mode is used, then the output of the DAC will be a voltage dependant upon the MAN_DAC register. If Tracked
CPout1 mode is used, then the output of the DAC will be the voltage at the CPout1 pin before holdover mode
was entered. When using Tracked mode and EN_MAN_DAC = 1, during holdover the DAC value is loaded with
the programmed value in MAN_DAC, not the tracked value.
When in Tracked CPout1 mode the DAC has a worst case tracking error of ±2 LSBs once PLL1 tuning voltage is
acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode
caused by the DAC tracking accuracy is ±6.4 mV * Kv. Where Kv is the tuning sensitivity of the VCXO in use.
Therefore the accuracy of the system when in holdover mode in ppm is:
Holdover accuracy (ppm) =
± 6.4 mV × Kv × 1e6
VCXO Frequency
Example: consider a system with a 19.2 MHz clock input, a 153.6 MHz VCXO with a Kv of 17 kHz/V. The
accuracy of the system in holdover in ppm is:
±0.71 ppm = ±6.4 mV * 17 kHz/V * 1e6 / 153.6 MHz
It is important to account for this frequency error when determining the allowable frequency error window to
cause holdover mode to exit.
30
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Holdover Mode - Automatic Exit of Holdover
The LMK04906 device can be programmed to automatically exit holdover mode when the accuracy of the
frequency on the active clock input achieves a specified accuracy. The programmable variables include
PLL1_WND_SIZE and DLD_HOLD_CNT.
See DIGITAL LOCK DETECT FREQUENCY ACCURACY to calculate the register values to cause holdover to
automatically exit upon reference signal recovery to within a user specified ppm error of the holdover frequency.
It is possible for the time to exit holdover to vary because the condition for automatic holdover exit is for the
reference and feedback signals to have a time/phase error less than a programmable value. Because it is
possible for two clock signals to be very close in frequency but not close in phase, it may take a long time for the
phases of the clocks to align themselves within the allowable time/phase error before holdover exits.
PLLs
PLL1
PLL1's maximum phase detector frequency (fPD1) is 40 MHz. Since a narrow loop bandwidth should be used for
PLL1, the need to operate at high phase detector rate to lower the in-band phase noise becomes unnecessary.
The maximum values for the PLL1 R and N dividers is 16,383. Charge pump current ranges from 100 to 1600
µA. PLL1 N divider may be driven by OSCin port at the OSCout0_MUX output (default) or by internal or external
feedback as selected by Feedback Mux in 0-delay mode.
Low charge pump currents and phase detector frequencies aid design of low loop bandwidth loop filters with
reasonably sized components to allow the VCXO or PLL2 to dominate phase noise inside of PLL2 loop
bandwidth. High charge pump currents may be used by PLL1 when using VCXOs with leaky tuning voltage
inputs to improve system performance.
PLL2
PLL2's maximum phase detector frequency (fPD2) is 155 MHz. Operating at highest possible phase detector rate
will ensure low in-band phase noise for PLL2 which in turn produces lower total jitter. The in-band phase noise
from the reference input and PLL is proportional to N2. The maximum value for the PLL2 R divider is 4,095. The
maximum value for the PLL2 N divider is 262,143. The N2 Prescaler in the total N feedback path can be
programmed for values 2 to 8 (all divides even and odd). Charge pump current ranges from 100 to 3200 µA.
High charge pump currents help to widen the PLL2 loop bandwidth to optimize PLL2 performance.
PLL2 FREQUENCY DOUBLER
The PLL2 reference input at the OSCin port may be routed through a frequency doubler before the PLL2 R
Divider. The frequency doubler feature allows the phase comparison frequency to be increased when a relatively
low frequency oscillator is driving the OSCin port. By doubling the PLL2 phase detector frequency, the in-band
PLL2 noise is reduced by about 3 dB.
For applications in which the OSCin frequency and PLL2 phase detector frequency are equal, the best PLL2 inband noise can be achieved when the doubler is enabled (EN_PLL2_REF_2X = 1) and the PLL2 R divide value
is 2. Do not use doubler disabled (EN_PLL2_REF_2X = 0) and PLL2 R divide value of 1.
When using the doubler take care to use the PLL2 R Divider to reduce the phase detector frequency to the limit
of the PLL2 maximum phase detector frequency.
DIGITAL LOCK DETECT
Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference
path (R) and the feedback path (N) of the PLL. When the time error, which is phase error, between the two
signals is less than a specified window size (ε) a lock detect count increments. When the lock detect count
reaches a user specified value lock detect is asserted true. Once digital lock detect is true, a single phase
comparison outside the specified window will cause digital lock detect to be asserted false. This is illustrated in
Figure 19.
The incremental lock detect count feature functions as a digital filter to ensure that lock detect isn't asserted for
only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial
phase lock.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
31
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
The digital lock detect signal can be monitored on the Status_LD or Status_Holdover pin. The pin may be
programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.
See DIGITAL LOCK DETECT FREQUENCY ACCURACY for more detailed information on programming the
registers to achieve a specified frequency accuracy in ppm with lock detect.
The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See
HOLDOVER MODE for more info.
START
PLLX
Lock Detected = False
Lock Count = 0
Phase Error < â
NO
YES
Increment
PLLX Lock Count
YES
NO
PLLX Lock Count =
PLLX_DLD_CNT
YES
PLLX
Lock Detected = True
NO
Phase Error > â
YES
Figure 19. Digital Lock Detect Flowchart
STATUS PINS
The Status_LD, Status_HOLDOVER, Status_CLKin0, Status_CLKin1, and SYNC/Status_CLKin2 pins can be
programmed to output a variety of signals for indicating various statuses like digital lock detect, holdover, several
DAC indicators, and several PLL divider outputs.
Logic Low
This is a vary simple output. In combination with the output _MUX register, this output can be toggled between
high and low. Useful to confirm MICROWIRE programming or as a general purpose IO.
Digital Lock Detect
PLL1 DLD, PLL2 DLD, and PLL1 + PLL2 are selectable on certain output pins. See DIGITAL LOCK DETECT for
more information.
32
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Holdover Status
Indicates if the device is in Holdover mode. See HOLDOVER MODE for more information.
DAC
Various flags for the DAC can be monitored including DAC Locked, DAC Rail, DAC Low, and DAC High.
When the PLL1 tuning voltage crosses the low threshold, DAC Low is asserted. When PLL1 tuning voltage
crosses the high threshold, DAC High is asserted. When either DAC Low or DAC High is asserted, DAC Rail will
also be asserted.
DAC Locked is asserted when EN_Track = 1 and DAC is closely tracking the PLL1 tuning voltage.
PLL Divider Outputs
The PLL divider outputs are useful for debugging failure to lock issues. It allows the user to measure the
frequency the PLL inputs are receiving. The settings of PLL1_R, PLL1_N, PLL2_R, and PLL2_N output pulses at
the phase detector rate. The settings of PLL1_R / 2, PLL1_N / 2, PLL2_R / 2, and PLL2_N / 2 output a 50% duty
cycle waveform at half the phase detector rate.
CLKinX_LOS
The clock input loss of signal indicator is asserted when LOS is enabled (EN_LOS) and the clock no longer
detects an input as defined by the time-out threshold, LOS_TIMEOUT.
CLKinX Selected
If this clock is the currently selected/active clock, this pin will be asserted.
MICROWIRE Readback
The readback data can be output on any pin programmable to readback mode. For more information on
readback see READBACK.
VCO
The integrated VCO uses a frequency calibration routine when register R30 is programmed to lock VCO to target
frequency. Register R30 contains the PLL2_N register.
During the frequency calibration the PLL2_N_CAL value is used instead of PLL2_N, this allows 0-delay modes to
have a separate PLL2 N value for VCO frequency calibration and regular operation.
CLOCK DISTRIBUTION
Fixed Digital Delay
This section discussing Fixed Digital delay and associated registers is fundamental to understanding digital delay
and dynamic digital delay.
Clock outputs may be delayed or advanced from one another by up to 517.5 clock distribution path periods. By
programming a digital delay value from 4.5 to 522 clock distribution path periods, a relative clock output delay
from 0 to 517.5 periods is achieved. The CLKoutX_DDLY (5 to 522) and CLKoutX_HS (-0.5 or 0) registers set
the digital delay as shown in Table 5.
Table 5. Possible Digital Delay Values
CLKoutX_DDLY
CLKoutX_HS
Digital Delay
5
1
4.5
5
0
5
6
1
5.5
6
0
6
7
1
6.5
7
0
7
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
33
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 5. Possible Digital Delay Values (continued)
CLKoutX_DDLY
CLKoutX_HS
Digital Delay
...
...
...
520
0
520
521
1
520.5
521
0
521
522
1
521.5
522
0
522
Note: Digital delay values only take effect during a SYNC event and if the NO_SYNC_CLKoutX bit is cleared for
this clock output. See Clock Output Synchronization (SYNC) for more information.
The resolution of digital delay is determined by the frequency of the clock distribution path. The clock distribution
path is the output of Mode Mux1 (Figure 8). The best resolution of digital delay is achieved by bypassing the
VCO divider.
VCO_DIV
Digital Delay Resolution
=
(with VCO Divider) 2 × VCO Frequency
(1)
Digital Delay Resolution
1
(VCO Divider bypassed or external VCO) = 2 × VCO Frequency
(2)
The digital delay between clock outputs can be dynamically adjusted with no or minimum disruption of the output
clocks. See DYNAMICALLY PROGRAMMING DIGITAL DELAY for more information.
FIXED DIGITAL DELAY - EXAMPLE
Given a VCO frequency of 2457.6 MHz and no VCO divider, by using digital delay the outputs can be adjusted in
1 / (2 * 2457.6 MHz) = ~203.5 ps steps.
To achieve quadrature (90 degree shift) between the 122.88 MHz outputs on CLKout4 and CLKout3 from a VCO
frequency of 2457.6 MHz and bypassing the VCO divider, consider the following:
1. The frequency of 122.88 MHz has a period of ~8.14 ns.
2. To delay 90 degrees of a 122.88 MHz clock period requires a ~2.03 ns delay.
3. Given a digital delay step of ~203.5 ps, this requires a digital delay value of 12 steps (2.03 ns / 20.35 ps =
10).
4. Since the 10 steps are half period steps, CLKout3_DDLY is programmed 5 full periods beyond 5 for a total of
10.
This result in the following programming:
• Clock output dividers to 20. CLKout2_DIV = 20 and CLKout3_DIV = 20.
• Set first clock digital delay value. CLKout2_DDLY = 5, CLKout2_HS = 0.
• Set second 90 degree shifted clock digital delay value. CLKout3_DDLY = 10, CLKout3_HS = 0.
Table 6 shows some of the possible phase delays in degrees achievable in the above example.
Table 6. Relative phase shift from
CLKout2 to CLKout3
CLKout3_DDLY = 5 and CLKout3_HS = 0
34
CLKout3_DDLY
CLKout_HS
Relative Digital Delay
Degrees of 122.88 MHz
5
1
-0.5
-9°
5
0
0.0
0°
6
1
0.5
9°
6
0
1.0
18°
7
1
1.5
27°
7
0
2.0
36°
8
1
2.5
45°
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 6. Relative phase shift from
CLKout2 to CLKout3
CLKout3_DDLY = 5 and CLKout3_HS = 0 (continued)
CLKout3_DDLY
CLKout_HS
Relative Digital Delay
Degrees of 122.88 MHz
8
0
3.0
54°
9
1
3.5
63°
9
0
4.0
72°
10
1
4.5
81°
10
0
5.0
90°
11
1
5.5
99°
11
0
6.0
108°
12
1
6.5
117°
12
0
7.0
126°
13
1
7.5
135°
13
0
8.0
144°
14
1
8.5
153°
...
...
...
...
Figure 21 illustrates clock outputs programmed with different digital delay values during a SYNC event.
Refer to DYNAMICALLY PROGRAMMING DIGITAL DELAY for more information on dynamically adjusting digital
delay.
Clock Output Synchronization (SYNC)
The purpose of the SYNC function is to synchronize the clock outputs with a fixed and known phase relationship
between each clock output selected for SYNC. SYNC can also be used to hold the outputs in a low or 0 state.
The NO_SYNC_CLKoutX bits can be set to disable synchronization for a clock output.
To enable SYNC, EN_SYNC must be set. See EN_SYNC, Enable Synchronization.
The digital delay value set by CLKoutX_DDLY takes effect only upon a SYNC event. The digital delay due to
CLKoutX_HS takes effect immediately upon programming. See DYNAMICALLY PROGRAMMING DIGITAL
DELAY for more information on dynamically changing digital delay.
During a SYNC event, clock outputs driven by the VCO are not synchronized to clock outputs driven by OSCin.
OSCout0 is always driven by OSCin. CLKout3 or 4 may be driven by OSCin depending on the
CLKoutX_OSCin_Sel bit value. While SYNC is asserted, NO_SYNC_CLKoutX operates normally for CLKout3
and 4 under all circumstances. SYNC operates normally for CLKout3 and 4 when driven by VCO.
Effect of SYNC
When SYNC is asserted, the outputs to be synchronized are held in a logic low state. When SYNC is
unasserted, the clock outputs to be synchronized are activated and will transition to a high state simultaneously
with one another except where different digital delay values have been programmed.
Refer to DYNAMICALLY PROGRAMMING DIGITAL DELAY for SYNC functionality when SYNC_QUAL = 1.
Table 7. Steady State Clock Output Condition
Given Specified Inputs
SYNC_TYPE
SYNC_POL
_INV
SYNC Pin
Clock Output State
0,1,2 (Input)
0
0
Active
0,1,2 (Input)
0
1
Low
0,1,2 (Input)
1
0
Low
0,1,2 (Input)
1
1
Active
3, 4, 5, 6 (Output)
0
0 or 1
Active
3, 4, 5, 6 (Output)
1
0 or 1
Low
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
35
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Methods of Generating SYNC
There are five methods to generate a SYNC event:
• Manual:
– Asserting the SYNC pin according to the polarity set by SYNC_POL_INV.
– Toggling the SYNC_POL_INV bit though MICROWIRE will cause a SYNC to be asserted.
• Automatic:
– If PLL1_SYNC_DLD or PLL2_SYNC_DLD is set, the SYNC pin will be asserted while DLD (digital lock
detect) is false for PLL1 or PLL2 respectively.
– Programming Register R30, which contains PLL2_N will generate a SYNC event when using the internal
VCO.
– Programming Register R0 through R5 when SYNC_EN_AUTO = 1.
Note: Due to the speed of the clock distribution path (as fast as ~325 ps period) and the slow slew rate of the
SYNC, the exact VCO cycle at which the SYNC is asserted or unasserted by the SYNC is undefined. The timing
diagrams show a sharp transition of the SYNC to clarify functionality.
Avoiding clock output interruption due to SYNC
Any CLKout outputs that have their NO_SYNC_CLKoutX bits set will be unaffected by the SYNC event. It is
possible to perform a SYNC operation with the NO_SYNC_CLKoutX bits cleared, then set the
NO_SYNC_CLKoutX bits so that the selected clocks will not be affected by a future SYNC. Future SYNC events
will not effect these clocks but will still cause the newly synchronized clocks to be re-synchronized using the
currently programmed digital delay values. When this happens, the phase relationship between the first group of
synchronized clocks and the second group of synchronized clocks will be undefined unless the SYNC pulse is
qualified by an output clock. See DYNAMICALLY PROGRAMMING DIGITAL DELAY.
SYNC Timing
When discussing the timing of the SYNC function, one cycle refers to one period of the clock distribution path.
6 cycles
6 cycles
CLKoutX_DDLY &
CLKoutX_HS
Distribution
Path
SYNC
(SYNC_POL
_INV=1)
CLKout0
CLKout2
CLKout4
A
B
C
D
CLKout0_DIV = 0(valid only for external VCO mode)
CLKout2_DIV = 2
CLKout4_DIV = 4
The digital delay for all clock outputs is 5
The digital delay half step for all clock outputs is 0
SYNC_QUAL = 0 (No qualification)
Figure 20. Clock Output synchronization using the SYNC pin (Active Low)
36
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Refer to Figure 20 during this discussion on the timing of SYNC. SYNC must be asserted for greater than one
clock cycle of the clock distribution path to latch the SYNC event. After SYNC is asserted, the SYNC event is
latched on the rising edge of the distribution path clock, at time A. After this event has been latched, the outputs
will not reflect the low state for 6 cycles, at time B. Due to the asynchronous nature of SYNC with respect to the
output clocks, it is possible that a glitch pulse could be created when the clock output goes low from the SYNC
event. This is shown by CLKout4 in Figure 20 and CLKout2 in Figure 21. See Relative Dynamic Digital Delay for
more information on synchronizing relative to an output clock to eliminate or minimize this glitch pulse.
After SYNC becomes unasserted the event is latched on the following rising edge of the distribution path clock,
time C. The clock outputs will rise at time D, coincident with a rising distribution clock edge that occurs after 6
cycles plus as many more cycles as programmed by the digital delay for that clock output. Therefore, the
soonest a clock output will become high is 11 cycles after the SYNC unassertion event registration, time C, when
the smallest digital delay value of 5 is set. If CLKoutX_HS = 1 and CLKoutX_DDLY = 5, then the clock output will
rise 10.5 cycles after SYNC is unassertion event registration.
6 cycles
CLKoutX_DDLY & CLKoutX_HS
Distribution
Path
4.5
cycles
6 cycles
2.5
cycles
1 cycle
SYNC
(SYNC_POL
_INV=1)
CLKout0
CLKout2
CLKout4
CLKout5
A
B
C
D
E F
CLKout0_DIV = 2, CLKout0_DDLY = 5
CLKout2_DIV = 4, CLKout2_DDLY = 7
CLKout4_DIV = 4, CLKout4_DDLY = 8
CLKout5_DIV = 4, CLKour4_DDLY = 8
CLKout0_HS = 1
CLKout2_HS = 0
CLKout4_HS = 0
CLKout5_HS = 0
SYNC_QUAL = 0 (No qualification)
Figure 21. Clock Output synchronization using the SYNC pin (Active Low)
Figure 21 illustrates the timing with different digital delays programmed.
• Time A) SYNC assertion event is latched.
• Time B) SYNC unassertion latched.
• Time C) All outputs toggle and remain low. A glitch pulse can occur at this time as shown by CLKout2.
• Time D) After 6 + 4.5 = 10.5 cycles CLKout0 rises. This is the shortest time from SYNC unassertion
registration to clock rising edge possible.
• Time E) After 6 + 7 = 13 cycles CLKout2 rises. CLKout2 and CLKout4, 5 are programmed for quadrature
operation.
• Time F) After 6 + 8 = 14 cycles CLKout4 and 5 rise.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
37
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
DYNAMICALLY PROGRAMMING DIGITAL DELAY
To use dynamic digital delay synchronization qualification set SYNC_QUAL = 1. This causes the SYNC pulse to
be qualified by a clock output so that the SYNC event occurs after a specified time from a clock output transition.
This allows the relative adjustment of clock output phase in real-time with no or minimum interruption of clock
outputs. Hence the term dynamic digital delay.
Note that changing the phase of a clock output requires momentarily altering in the rate of change of the clock
output phase and therefore by definition results in a frequency distortion of the signal.
Without qualifying the SYNC with an output clock, the newly synchronized clocks would have a random and
unknown digital delay (or phase) with respect to clock outputs not currently being synchronized.
Absolute vs. Relative Dynamic Digital Delay
The clock used for qualification of SYNC is selected with the feedback mux (FEEDBACK_MUX).
If the clock selected by the feedback mux has its NO_SYNC_CLKoutX = 1, then an absolute dynamic digital
delay adjustment will be performed during a SYNC event and the digital delay of the feedback clock will not be
adjusted.
If the clock selected by the feedback mux has its NO_SYNC_CLKoutX = 0, then a self-referenced or relative
dynamic digital delay adjustment will be performed during a SYNC event and the digital delay of the feedback
clock will be adjusted.
Clocks with NO_SYNC_CLKoutX = 1 always operate without interruption.
Dynamic Digital Delay and 0-Delay Mode
When using a 0-delay mode absolute dynamic digital delay is recommended. Using relative dynamic digital
delay with a 0-delay mode may result in a momentary clock loss on the adjusted clock also being used for 0delay feedback that may result in PLL1 DLD becoming low. This may result in HOLDOVER mode being activated
depending upon device configuration.
SYNC and Minimum Step Size
The minimum step size adjustment for digital delay is half a clock distribution path cycle. This is achieved by
using the CLKoutX_HS bit. The CLKoutX_HS bit change effect is immediate without the need for SYNC. To shift
digital delay using CLKoutX_DDLY a SYNC signal must be generated for the change to take effect.
Programming Overview
To dynamically adjust the digital delay with respect to an existing clock output the device should be programmed
as follows:
• Set SYNC_QUAL = 1 for clock output qualification.
• Set CLKout2_PD = 0. Required for proper operation of SYNC_QUAL = 1.
• Set EN_FEEDBACK_MUX = 1 to enable the feedback buffer.
• Set FEEDBACK_MUX to the clock output that the newly synchronized clocks will be qualified by.
• Set NO_SYNC_CLKoutX = 1 for the output clocks that will continue to operate during the SYNC event. There
is no interruption of output on these clocks.
– If FEEDBACK_MUX selects a clock output with NO_SYNC_CLKoutX = 1, then absolute dynamic digital
delay is performed.
– If FEEDBACK_MUX selects a clock output with NO_SYNC_CLKoutX = 0, then self-referenced or relative
dynamic digital delay is performed.
• The SYNC_EN_AUTO bit may be set to cause a SYNC event to begin when register R0 to R5 is
programmed. The auto SYNC feature is a convenience since does not require the application to manually
assert SYNC by toggling the SYNC_POL_INV bit or the SYNC pin when changing digital delay. However,
under the following condition a special programming sequence is required if SYNC_EN_AUTO = 1:
– The CLKoutX_DDLY value being set in the programmed register is 13 or more.
• Under the following condition a SYNC_EN_AUTO must = 0:
– If the application requires a digital delay resolution of half a clock distribution path cycle in relative
dynamic digital delay mode because the HS bit must be fixed per Table 8 for a qualifying clock.
38
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Internal Dynamic Digital Delay Timing
To dynamically adjust digital delay a SYNC must occur. Once the SYNC is qualified by an output clock, 3 cycles
later an internal one shot pulse will occur. The width of the one shot pulse is 3 cycles. This internal one shot
pulse will cause the outputs to turn off and then back on with a fixed delay with respect to the falling edge of the
qualification clock. This allows for dynamic adjustments of digital delay with respect to an output clock.
The qualified SYNC timing is shown in Figure 22 for absolute dynamic digital delay and Figure 23 for relative
dynamic digital delay.
Other Timing Requirements
When adjusting digital delay dynamically, the falling edge of the qualifying clock selected by the
FEEDBACK_MUX must coincide with the falling edge of the clock distribution path. For this requirement to be
met, program the CLKoutX_HS value of the qualifying clock output according to Table 8.
Table 8. Half Step programming requirement of qualifying clock during SYNC event
Distribution Path Frequency
CLKoutX_DIV value
CLKoutX_HS
Even
Must = 1 during SYNC event.
≥ 1.8 GHz
< 1.8 GHz
Odd
Must = 0 during SYNC event.
Even
Must = 0 during SYNC event.
Odd
Must = 1 during SYNC event.
Absolute Dynamic Digital Delay
Absolute dynamic digital delay can be used to program a clock output to a specific phase offset from another
clock output.
Pros:
• Simple direct phase adjustment with respect to another clock output.
• CLKoutX_HS will remain constant for qualifying clock.
– Can easily use auto sync feature (SYNC_EN_AUTO = 1) when digital delay adjustment requires half step
digital delay requirements.
• Can be used with 0-delay mode.
Cons:
• For some phase adjustments there may be a glitch pulse due to SYNC assertion.
– For example see CLKout4 in Figure 20 and CLKout2 in Figure 21.
ABSOLUTE DYNAMIC DIGITAL DELAY - EXAMPLE
To illustrate the absolute dynamic digital delay adjust procedure, consider the following example.
System Requirements:
• VCO Frequency = 2457.6 MHz
• CLKout0 = 819.2 MHz (CLKout0_DIV = 3)
• CLKout2 = 307.2 MHz (CLKout2_DIV = 8)
• CLKout4 = 245.76 MHz (CLKout4_DIV = 10)
• For all clock outputs during initial programming:
– CLKoutX_DDLY = 5
– CLKoutX_HS = 1
– NO_SYNC_CLKoutX = 0
The application requires the 307.2 MHz clock to be stepped in 22.5 degree steps (~203.4 ps), which is the
minimum step resolution allowable by the clock distribution path requiring use of the half step bit (CLKoutX_HS).
That is 1 / 2457.6 MHz / 2 = ~203.4 ps. During the stepping of the 307.2 MHz clock the 819.2 MHz and 245.76
MHz clock must not be interrupted.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
39
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Step 1: The device is programmed from register R0 to R30 with values that result in the device being locked and
operating as desired, see the system requirements above. The phase of all the output clocks are aligned
because all the digital delay and half step values were the same when the SYNC was generated by
programming register R30. The timing of this is as shown in Figure 20.
Step 2: Now the registers will be programmed to prepare for changing digital delay (or phase) dynamically.
Table 9. Register Setup for Absolute Dynamic Digital Delay Example
Register
Purpose
SYNC_QUAL = 1
Use a clock output for qualifying the SYNC pulse for dynamically
adjusting digital delay.
EN_SYNC = 1 (default)
Required for SYNC functionality.
CLKout3_PD = 0
Required when SYNC_QUAL = 1.
CLKout3 outputs may be powered down or in use.
EN_FEEDBACK_MUX = 1
Enable the feedback mux for SYNC operation for dynamically
adjusting digital delay.
FEEDBACK_MUX = 2 (CLKout4)
Use the fixed 245.76 MHz clock as the SYNC qualification clock.
NO_SYNC_CLKout0 = 1
This clock output (819.2 MHz) won't be affected by SYNC. It will
always operate without interruption.
NO_SYNC_CLKout4 = 1
This clock output (245.76 MHz) won't be affected by SYNC. It will
always operate without interruption.
This clock will also be the qualifying clock in this example.
CLKout4_HS = 1
Since CLKout4 is the qualifying clock and CLKoutX_DIV is even, the
half step bit must be set to 1. See Table 8.
SYNC_EN_AUTO = 1
Automatic generation of SYNC is allowed for this case.
After the registers in Table 9 have been programmed, the application may now dynamically adjust the digital
delay of CLKout2 (307.2 MHz).
Step 3: Adjust digital delay of CLKout2.
Refer to Table 10 for the programming values to set a specified phase offset from the absolute reference clock.
Table 10 is dependant upon the qualifying clock divide value of 12, refer to CALCULATING DYNAMIC DIGITAL
DELAY VALUES FOR ANY DIVIDE for information on creating tables for any divide value.
Table 10. Programming for Absolute Digital Delay Adjustment
Degrees of Adjustment from initial 307.2MHz phase
+/-0 or +/-360 degrees
40
Programming
CLKout2_DDLY = 14; CLKout2_HS = 1
22.5 degrees
-337.5 degrees
CLKout2_DDLY = 14; CLKout2_HS = 0
45 degrees
-315 degrees
CLKout2_DDLY = 15; CLKout2_HS = 1
67.5 degrees
-292.54 degrees
CLKout2_DDLY = 5; CLKout2_HS = 0
90 degrees
-270 degrees
CLKout2_DDLY = 6; CLKout2_HS = 1
112.5 degrees
-247.5 degrees
CLKout2_DDLY = 6; CLKout2_HS = 0
135 degrees
-25 degrees
CLKout2_DDLY = 7; CLKout2_HS = 1
157.5 degrees
-202.5 degrees
CLKout2_DDLY = 7; CLKout2_HS = 0
180 degrees
-180 degrees
CLKout2_DDLY = 8; CLKout2_HS = 1
247.5 degrees
-112.5 degrees
CLKout2_DDLY = 8; CLKout2_HS = 0
270 degrees
-90 degrees
CLKout2_DDLY = 9; CLKout2_HS = 1
292.5 degrees
-67.5 degrees
CLKout2_DDLY = 9; CLKout2_HS = 0
315 degrees
-45 degrees
CLKout2_DDLY = 10; CLKout2_HS = 1
337.5 degrees
-22.5 degrees
CLKout2_DDLY = 10; CLKout2_HS = 0
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
After setting the new digital delay values, the act of programming R1 will start a SYNC automatically because
SYNC_EN_AUTO = 1.
If the user elects to reduce the number of SYNCs because they are not required when only CLKout2_HS is set,
then SYNC_EN_AUTO is = 0 and the SYNC may now be generated by toggling the SYNC pin or by toggling the
SYNC_POL_INV bit. Because of the internal one shot pulse, no strict timing of the SYNC pin or SYNC_POL_INV
bit is required.
After the SYNC event, the clock output will adjust according to Table 10. See Figure 22 for a detailed view of the
timing diagram. The timing diagram critical points are:
• Time A) SYNC assertion event is latched.
• Time B) First qualifying falling clock output edge.
• Time C) Second qualifying falling clock output edge.
• Time D) Internal one shot pulse begins. 5 cycles later clock outputs will be forced low
• Time E) Internal one shot pulse ends. 5 cycles + digital delay cycles later the synced clock outputs rise.
• Time F) Clock outputs are forced low. (CLKout2 is already low).
• Time G) Beginning of digital delay cycles.
• Time H) For CLKout2_DDLY = 14; the clock output rises now.
5 cycles
CLKoutX_DDLY and CLKoutX_HS
Distribution
Path
5.5 cycles
3 cycles 3 cycles
13.5 cycles
SYNC
Internal One
Shot Pulse
CLKout0 /3
HS = 1
CLKout2 /8
HS = 1
CLKout4 /10
HS = 1
1
2
AB
C
D
E
F
G
H
(SYNC_QUAL = 1, Qualify with clock output)
Figure 22. Absolute Dynamic Digital Delay Programming Example
Relative Dynamic Digital Delay
Relative dynamic digital delay can be used to program a clock output to a specific phase offset from another
clock output.
Pros:
• Simple direct phase adjustment with respect to same clock output.
• The clock output will always behave the same during digital delay adjustment transient. For some divide
values there will be no glitch pulse.
Cons:
• For some clock divide values there may be a glitch pulse due to SYNC assertion.
• Adjustments of digital delay requiring the half step bit (CLKoutX_HS) for finer digital delay adjust is
complicated.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
41
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
•
www.ti.com
Use with 0-delay mode may result in PLL1 DLD becoming low and HOLDOVER mode becoming activated.
– DISABLE_DLD1_DET can be set to prevent HOLDOVER from becoming activated due to PLL1 DLD
becoming low.
RELATIVE DYNAMIC DIGITAL DELAY - EXAMPLE
To illustrate the relative dynamic digital delay adjust procedure, consider the following example.
System Requirements:
• VCO Frequency = 2457.6 MHz
• CLKout0 = 819.2 MHz (CLKout0_DIV = 3)
• CLKout2 = 491.52 MHz (CLKout2_DIV = 5)
• CLKout4 = 491.52 MHz (CLKout4_DIV = 5)
• For all clock outputs during initial programming:
– CLKoutX_DDLY = 5
– CLKoutX_HS = 0
– NO_SYNC_CLKoutX = 0
The application requires the 491.52 MHz clock to be stepped in 22.5degree steps (~203.4 ps), which is the
minimum step resolution allowable by the clock distribution path. That is 1 / 2457.62 MHz / 2 = ~203.4 ps. During
the stepping of the 491.52 MHz clocks the 819.2 MHz clock must not be interrupted.
Step 1: The device is programmed from register R0 to R30 with values that result in the device being locked and
operating as desired, see the system requirements above. The phase of all the output clocks are aligned
because all the digital delay and half step values were the same when the SYNC was generated by
programming register R30. The timing of this is as shown in Figure 20.
Step 2: Now the registers will be programmed to prepare for changing digital delay (or phase) dynamically.
Register
Purpose
SYNC_QUAL = 1
Use clock output for qualifying the SYNC pulse for dynamically
adjusting digital delay.
EN_SYNC = 1 (default)
Required for SYNC functionality.
CLKout3_PD = 0
Required when SYNC_QUAL = 1.
CLKout3 outputs may be powered down or in use.
EN_FEEDBACK_MUX = 1
Enable the feedback mux for SYNC operation for dynamically
adjusting digital delay.
FEEDBACK_MUX = 1 (CLKout2)
Use the clock itself as the SYNC qualification clock.
NO_SYNC_CLKout0 = 1
This clock output (819.2 MHz) won't be affected by SYNC. It will
always operate without interruption.
NO_SYNC_CLKout4 = 1
CLKout4’s phase is not to change with respect to CLKout0.
SYNC_EN_AUTO = 0 (default)
Automatic generation of SYNC is not allowed because of the half
step requirement in relative dynamic digital delay mode.
SYNC must be generated manually by toggling the SYNC_POL_INV
bit or the SYNC pin.
After the above registers have been programmed, the application may now dynamically adjust the digital delay of
the 491.52 MHz clocks.
Step 3: Adjust digital delay of CLKout2 by one step which is 22.5 degrees or ~203.4 ps.
Refer to Table 11 for the programming sequence to step one half clock distribution period forward or backwards.
Refer to CALCULATING DYNAMIC DIGITAL DELAY VALUES FOR ANY DIVIDE for more information on how to
calculate digital delay and half step values for other cases.
To fulfill the qualifying clock output half step requirement in Table 8 when dynamically adjusting digital delay, the
CLKoutX_HS bit must be cleared for clocks with even divides. So before any dynamic digital delay adjustment,
CLKoutX_HS must be clear because the clock divide value is even. To achieve the final required digital delay
adjustment, the CLKoutX_HS bit may set after SYNC.
42
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 11. Programming sequence for one step adjust
Step direction and
current HS state
Programming Sequence
Adjust clock output one step forward.
CLKout2_HS is 0.
1. CLKout2_HS = 1.
Adjust clock output one step forward.
CLKout2_HS is 1.
1. CLKout2_DDLY = 11.
2. Perform SYNC event.
3. CLKout2_HS = 0.
Adjust clock output one step backward.
CLKout2_HS is 0.
1. CLKout2_HS = 1.
2. CLKout2_DDLY =11.
3. Perform SYNC event.
Adjust clock output one step backward.
CLKout2_HS is 1.
1. CLKout2_HS = 0.
After programing the updated CLKout2_DDLY and CLKout2_HS values, perform a SYNC event. The SYNC may
be generated by toggling the SYNC pin or by toggling the SYNC_POL_INV bit. Because of the internal one shot
pulse, no strict timing of the SYNC pin or SYNC_POL_INV bit is required. After the SYNC event, the clock output
will be at the specified phase. See Figure 23 for a detailed view of the timing diagram. The timing diagram critical
points are:
• Time A) SYNC assertion event is latched.
• Time B) First qualifying falling clock output edge.
• Time C) Second qualifying falling clock output edge.
• Time D) Internal one shot pulse begins. 5 cycles later clock outputs will be forced low.
• Time E) Internal one shot pulse ends. 5 cycles + digital delay cycles later the synced clock outputs rise.
• Time F) Clock outputs are forced low. (CLKouts are already low).
• Time G) Beginning of digital delay cycles.
• Time H) For CLKout2_DDLY = 11; the clock output rises now.
CLKoutX_DDLY and
CLKoutX_HS
5 cycles
Distribution
Path
5.5 cycles
3 cycles 3 cycles
10.5 cycles
SYNC
Internal One
Shot Pulse
CLKout0 /3
HS = 1
CLKout2 /5
HS = 1
1
2
CLKout4 /5
HS = 1
AB
C
D
E
F
G
H
(SYNC_QUAL = 1, Qualify with clock output)
Starting condition is after half step is removed (CLKout2_HS = 0).
Figure 23. Relative Dynamic Digital Delay Programming Example—2nd adjust
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
43
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
0-Delay Mode
When 0-delay mode is enabled the clock output selected by the Feedback Mux is connected to the PLL1 N
counter to ensure a fixed phase relationship between the selected CLKin and the fed back CLKout. When all the
clock outputs are synced together, all the clock outputs will share the same fixed phase relationship between the
selected CLKin and the fed back CLKout. The feedback can be internal or external using FBCLKin port.
When 0-delay mode is enabled the lowest frequency clock output is fed back to the Feedback Mux to ensure a
repeatable fixed CLKin to CLKout phase relationship between all clock outputs.
If a clock output that is not the lowest frequency output is selected for feedback, then clocks with lower
frequencies will have an unknown phase relationship with respect the other clocks and clock input. There will be
a number of possible phase relationships equal to Feedback_Clock_Frequency / Lower_Clock_Frequency that
may occur.
The Feedback Mux can select a clock output of some of the clocks for internal feedback or the FBCLKin port for
external 0-delay feedback.
To use 0-delay mode, the bit EN_FEEDBACK_MUX must be set (=1) to power up the feedback mux.
See PLL PROGRAMMING for more information on programming PLL1_N for 0-delay mode.
When using an external VCO mode, internal 0-delay feedback must be used since the FBCLKin port is shared
with the Fin input.
Table 12 outlines several registers to program for 0-delay mode.
Table 12. Programming 0-Delay Mode
Register
Purpose
MODE = 2 or 5
Select one of the 0-delay modes for device.
EN_FEEDBACK_MUX = 1
Enable feedback mux.
FEEDBACK_MUX = Application Specific
Select CLKout or FBCLKin for 0-delay feedback.
CLKoutX_DIV
The divide value of the clock selected by FEEDBACK_MUX is
important for PLL2 N value calculation
PLL1_N
PLL1_N value used with CLKoutX_DIV in loop.
General Programming Information
LMK04906 devices are programmed using 32-bit registers. Each register consists of a 5-bit address field and 27bit data field. The address field is formed by bits 0 through 4 (LSBs) and the data field is formed by bits 5 through
31 (MSBs). The contents of each register is clocked in MSB first (bit 31), and the LSB (bit 0) last. During
programming, the LEuWire signal should be held low. The serial data is clocked in on the rising edge of the
CLKuWire signal. After the LSB (bit 0) is clocked in the LEuWire signal should be toggled low-to-high-to-low to
latch the contents into the register selected in the address field. It is recommended to program registers in
numeric order, for example R0 to R16, and R24 to R31 to achieve proper device operation. Figure 10 illustrates
the serial data timing sequence.
To achieve proper frequency calibration, the OSCin port must be driven with a valid signal before programming
register R30. Changes to PLL2 R divider or the OSCin port frequency require register R30 to be reloaded in
order to activate the frequency calibration process.
SPECIAL PROGRAMMING CASE FOR R0 to R5 for CLKoutX_DIV & CLKoutX_DDLY
In some cases when programming register R0 to R5 to change the CLKoutX_DIV divide value or
CLKoutX_DDLY delay value, 3 additional CLKuWire cycles must occur after loading the register for the newly
programmed divide or delay value to take effect. These special cases include:
• When CLKoutX_DIV is > 25.
• When CLKoutX_DDLY is > 12. Note, loading the digital delay value only prepares for a future SYNC event.
Also, since SYNC_EN_AUTO bit = 1 automatically generates a SYNC on the falling edge of LE when R0 to R5 is
programmed, further programming considerations must be made when SYNC_EN_AUTO = 1.
These special programming cases requiring the additional three clock cycles may be properly programmed by
one of the following methods shown in Table 13.
44
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 13. R0 to R5 Special Case
CLKoutX_DIV &
CLKoutX_DDLY
SYNC
_EN_
AUTO
Programming Method
CLKoutX_DIV ≤ 25 and
CLKoutX_DDLY ≤ 12
0 or 1
No Additional Clocks Required (Normal)
CLKoutX_DIV > 25 or
CLKoutX_DDLY > 12
0
Three Extra CLKuWire Clocks (Or program another
register)
CLKoutX_DIV > 25 or
CLKoutX_DDLY > 12
1
Three Extra CLKuWire Clocks while LEuWire is
High
Method: No Additional Clocks Required (Normal)
No special consideration to CLKuWire is required when changing divide value to ≤ 25, digital delay value to ≤ 12,
or when the digital delay and divide value do not change. See MICROWIRE timing Figure 10.
Method: Three Extra CLKuWire Clocks
Three extra clocks must be provided before CLKoutX_DIV > 25 or CLKoutX_DDLY > 12 take effect. See
MICROWIRE timing Figure 11.
Also, by programming another register the three clock requirement can be satisfied.
Method: Three Extra CLKuWire Clocks with LEuWire Asserted
When SYNC_EN_AUTO = 1 the falling edge of LEuWire will generate a SYNC event. CLKoutX_DIV and
CLKoutX_DDLY values must be updated before the SYNC event occurs. So 3 CLKuWire rising edges must
occur before LEuWire goes low. See MICROWIRE timing Figure 12.
Initial Programming Sequence
During the recommended programming sequence the device is programmed in order from R0 to R31, so it is
expected at least one additional register will be programmed after programming the last CLKoutX_DIV or
CLKoutX_DDLY value in R0 to R5. This will result in the extra needed CLKuWire rising edges, so this special
note is of little concern.
If programming R0 to R5 to change CLKout frequency or digital delay or dynamic digital delay at a later time in
the application, care must be taken to provide these extra CLKuWire cycles to properly load the new divide
and/or delay values.
Example
In this example, all registers have been programmed, the PLLs are locked. An LMK04906 has been generating a
clock output frequency of 61.44 MHz on CLKout4 using a VCO frequency of 2457.6 MHz and a divide value of
40. SYNC_EN_AUTO = 0. At a later time the application requires a 30.72 MHz output on CLKout4. By
reprogramming register R4 with CLKout4_DIV = 80 twice, the divide value of 80 is set for clock output 4 which
results in an output frequency of 30.72 MHz (2457.6 MHz / 80 = 30.72 MHz) on CLKout4.
In this example the required 3 CLKuWire cycles were achieved by reprogramming the R4 register with the same
value twice.
RECOMMENDED PROGRAMMING SEQUENCE
Registers are programmed in numeric order with R0 being the first and R31 being the last register programmed.
The recommended programming sequence involves programming R0 with the reset bit (b17) set to 1 to ensure
the device is in a default state. If R0 is programmed again, the reset bit must be cleared to 0 during the
programming of R0.
Overview
•
•
Program R0 with RESET bit = 1. This ensures that the device is configured with default settings. When
RESET = 1, all other R0 bits are ignored.
– If R0 is programmed again during the initial configuration of the device, the RESET bit must be cleared.
R0 through R5: CLKouts.
– Program as necessary to configure the clock outputs, CLKout0 to CLKout5 as desired. These registers
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
45
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
46
www.ti.com
configure clock output controls such as powerdown, digital delay and divider value, analog delay select,
and clock source select.
R6 through R8: CLKouts.
– Program as necessary to configure the clock outputs, CLKout0 to CLKout5 as desired. These registers
configure the output format for each clock outputs and the analog delay for the clock outputs.
R9: Required programming
– Program this register as shown in the register map for proper operation.
R10: OSCouts, VCO divider, and 0-delay.
– Enable and configure clock outputs OSCout0/1.
– Set and select VCO divider (VCO bypass is recommended).
– Set 0-delay feedback source if used.
R11: Part mode, SYNC, and XTAL.
– Program to configure the mode of the part, to configure SYNC functionality and pin, and to enable crystal
mode.
R12: Pins, SYNC, and holdover mode.
– Status_LD pin, more SYNC options to generate a SYNC upon PLL1 and/or PLL2 lock detect.
– Enable clock features such as holdover.
R13: Pins, holdover mode, and CLKins.
– Status_HOLDOVER, Status_CLKin0, and Status_CLKin1 pin controls.
– Enable clock inputs for use in specific part modes.
R14: Pins, LOS, CLKins, and DAC.
– Status_CLKin1 pin control.
– Loss of signal detection, CLKin type, DAC rail detect enable and high and low trip points.
R15: DAC and holdover mode.
– Program to enable and set the manual DAC value.
– HOLDOVER mode options.
R16: Crystal amplitude.
– Increasing XTAL_LVL can improve tunable crystal phase noise performance.
R24: PLL1 and PLL2.
– PLL1 N and R delay and PLL1 digital lock delay value.
– PLL2 integrated loop filter.
R25: DAC and PLL1.
– Program to configure DAC update clock divider and PLL1 digital lock detect count.
R26: PLL2.
– Program to configure PLL2 options.
R27: CLKins and PLL1.
– Clock input pre-dividers.
– Program to configure PLL1 options.
R28: PLL1 and PLL2.
– Program to configure PLL2 R and PLL1 N.
R29: OSCin and PLL2.
– Program to configure oscillator input frequency, PLL2 fast phase detector frequency mode, and PLL2 N
calibration value.
R30: PLL2.
– Program to configure PLL2 prescaler and PLL2 N value.
R31: uWire lock.
– Program to set the uWire_LOCK bit.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
READBACK
At no time should the MICROWIRE registers be programmed to any value other than what is specified in the
datasheet.
For debug of the MICROWIRE interface, it is recommended to simply program an output pin mux to active low
and then toggle the output type register between output and inverting output while observing the output pin for a
low to high transition. For example, to verify MICROWIRE programming, set the LD_MUX = 0 (Low) and then
toggle the LD_TYPE register between 3 (Output, push-pull) and 4 (Output inverted, push-pull). The result will be
that the Status_LD pin will toggle from low to high.
Readback from the MICROWIRE programming registers is available. The MICROWIRE readback function can
be enabled on the Status_LD, Status_HOLDOVER, Status_CLKin0, Status_CLKin1, or SYNC pin by
programming the corresponding MUX register to “uWire Readback” and the corresponding TYPE register to
"Output (push-pull)." Power on reset defaults the Status_HOLDOVER pin to “uWire Readback.”
Figure 13 illustrates the serial data timing sequence for a readback operation for both cases of READBACK_LE
= 0 (POR default) and READBACK_LE = 1.
To perform a readback operation first set the register to be read back by programming the READBACK_ADDR
register. Then after any MICROWIRE write operation, with the LEuWire pin held low continue to clock the
CLKuWire pin. On every rising edge of the CLKuWire pin a new data bit is clocked onto the any pins
programmed for uWire Readback. If the READBACK_LE bit is set, the LEuWire pin should be left high after
LEuWire rising edge while continuing to clock the CLKuWire pin.
It is allowable to perform a register read back in the same MICROWIRE operation which set the
READBACK_ADDR register value.
Data is clocked out MSB first. After 27 clocks all the data values will have been read and the read operation is
complete. If READBACK_LE = 1, the LEuWire line may now be lowered. It is allowable for the CLKuWire pin to
be clocked additional cycles, but the data on the readback pin will be invalid.
CLKuWire must be low before the falling edge of LEuWire.
Readback - Example
To readback register R3 perform the following steps:
• Write R31 with READBACK_ADDR = 3; READBACK_LE = 0. DATAuWire and CLKuWire are toggled as
shown in Figure 10 with new data being clocked in on rising edges of CLKuWire
• Toggle LEuWire high and then low as shown in Figure 10 and Figure 13. LEuWire is returned low because
READBACK_LE = 0.
• Toggle CLKuWire high and then low 27 times to read back all 27 bits of register R3. Data is read MSB first.
Data is valid on falling edge of CLKuWire.
• Read operation is complete.
REGISTER MAP AND READBACK REGISTER MAP
Table 14 provides the register map for device programming. Normally any register can be read from the same
data address it is written to. However, READBACK_LE has adifferent readback address. Also, the DAC_CNT
register is a read only register. Table 15 shows the address for READBACK_LE and DAC_CNT. Bits marked as
reserved are undefined upon readback.
Observe that only the DATA bits are readback during a readback which can result in an offset of 5 bits between
the two register tables.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
47
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 14. Register Map
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
48
POWERDOWN
CLKout 2_PD
0
CLKout2_ ADLY_SEL
0
CLKout2_DDLY [27:18]
0
CLKout 3_PD
CLKout3_ OSCin_Sel
0
CLKout3_ ADLY_SEL
CLKout3_DDLY [27:18]
0
C0LKout4_ OSCin_Sel
0
CLKout4_ ADLY_SEL
CLKout4_DDLY [27:18]
0
0
0
CLKout5 ADLY_SEL
CLKout5_DDLY [27:18]
0
R4
R5
CLKout 0_HS
CLKout1_ ADLY_SEL
CLKout1_DDLY [27:18]
0
0
0
0
0
CLKout 1_HS
0
CLKout0_DIV [15:5]
CLKout1_DIV [15:5]
0
0
0
0
1
CLKout 2_HS
CLKout 1_PD
0
R3
0
CLKout2_DIV [15:5]
0
0
0
1
0
CLKout 3_HS
RESET
R2
1
CLKout3_DiV [15:5]
0
0
0
1
1
CLKout 4_HS
CLKout0_ ADLY_SEL
CLKout0_DDLY [27:18]
R1
2
CLKout4_DIV [15:5]
0
0
1
0
0
CLKout 5_HS
CLKout 0_PD
0
CLKout 5_PD
0
R0
3
Address [4:0]
CLKout 4_PD
Data [26:0]
CLKout5_DIV [15:5]
0
0
1
0
1
R6
0
CLKout1_TYPE [27:24]
CLKout0_TYPE [23:20]
0
CLKout1_ADLY
[15:11]
0
CLKout0_ADLY
[9:5]
0
0
1
1
0
R7
0
CLKout3_TYPE [27:24]
CLKout2_TYPE [23:20]
0
CLKout3_ADLY
[15:11]
0
CLKout2_ADLY
[9:5]
0
0
1
1
1
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 14. Register Map (continued)
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
Data [26:0]
LD_MUX [31:27]
LD_TYPE [26:24]
(1)
R13
HOLDOVER_MUX
[31:27]
HOLDOVER
_TYPE
[26:24]
0
Status_
CLKin1
_TYPE
[26:24]
0
1
0
CLKin0_BUF_TYPE
CLKin1_BUF_TYPE
0
0
Status_
CLKin1
_MUX
[22:20]
CLKin2_BUF_TYPE
EN_SYNC
EN_LOS
0
0
OSCout_DIV
[18:16]
1
0
0
0
1
0
0
0
0
Status_
CLKin0
_TYPE
[18:16]
DAC_HIGH_TRIP
[19:14]
SYNC
_TYPE
[14:12]
0
0
0
Status_
CLKin0
_MUX
[14:12]
0
1
0
0
VCO_DIV
[10:8]
1
1
0
0
0
0
1
0
0
1
0
1
0
1
0
0
1
0
1
1
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
0
0
FEEDBACK
_MUX [7:5]
0
0
0
0
0
0
0
CLKin
_Select
_MODE
[11:8]
0
1
0
EN_PLL2_XTAL
R12
1
EN_CLKin0
PD_OSCin
MODE [31:27]
NO_SYNC_CLKout5
R11
LOS_ TIMEOUT [31:30]
0
2
EN_VTUNE_ RAIL_DET
0
1
DAC_LOW_TRIP
[11:6]
0
0
HOLDOVER _MODE [7:6]
OSCout0_TYPE [27:24]
0
EN_CLKin1
1
1
EN_CLKin2
0
0
EN_TRACK
0
1
CLKin_Sel_INV
0
0
EN_ FEEDBACK_MUX
R10
1
CLKout4_ADLY
[9:5]
0
VCO_MUX
0
SYNC_EN_AUTO
1
DISABLE_ DLD1_DET
0
SYNC_POL_INV
1
SYNC_QUAL
0
SYNC _CLKin2_ MUX [19:18]
1
NO_SYNC_CLKout1
0
EN_OSCout0
1
NO_SYNC_CLKout2
0
SYNC_PLL1 _DLD
1
NO_SYNC_CLKout3
0
SYNC_PLL2 _DLD
0
CLKout5_ADLY
[15:11]
CLKout4_TYPE [19:16]
NO_SYNC_CLKout4
1
0
OSCout0_MUX
CLKout5_TYPE [27:24]
R9
R14
(1)
0
NO_SYNC_CLKout0
R8
3
Address [4:0]
Although the value of 0 is written here, during readback the value of READBACK_LE will be read at this location. See REGISTER MAP AND READBACK REGISTER MAP.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
49
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 14. Register Map (continued)
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
0
PLL2_C4_LF
[31:28]
R24
1
0
1
PLL2_CP _GAIN [27:26]
0
0
PLL1_CP_POL
PLL1_CP_GAIN
0
1
1
0
HOLDOVER_DLD_CNT
[19:6]
0
0
1
0
1
PLL2_R3_LF
[18:16]
0
0
0
0
PLL1_
WND_
SIZE
PLL1_R_DLY
[10:8]
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
1
1
0
0
1
1
0
PLL2_DLD_CNT
[19:6]
1
1
0
1
0
PLL1_R
[19:6]
1
1
0
1
1
PLL1_N [19:6]
0
1
1
1
0
0
1
1
1
0
1
1
1
1
1
0
1
1
1
1
1
0
0
OSCin_FREQ
[26:24]
PLL2_ FAST_PDF
PLL2_N_CAL [22:5]
R30
0
0
0
0
0
PLL2_P
0
PLL2_N [22:5]
R31
0
0
0
0
0
READBACK _LE
0
0
0
1
0
0
0
0
1
PLL1_DLD_CNT [19:6]
0
0
1
1
0
R29
0
0
0
0
PLL2_R
0
0
PLL1_N_DLY
[14:12]
0
CLKin0_ PreR_DIV
PLL2_ CP_POL
R27
1
1
CLKin1_ PreR_DIV
PLL2_
WND_SIZE
[31:30]
CLKin2_ PreR_DIV
R26
0
PLL2_R4_LF
[22:20]
0
DAC_CLK_DIV [31:22]
R28
50
0
PLL2_C3_LF
[27:24]
EN_PLL2_ REF_2X
R25
0
0
FORCE_ HOLDOVER
0
1
PLL2_CP_TRI
0
2
PLL1_CP_TRI
XTAL_
LVL
R16
0
3
Address [4:0]
READBACK_ADDR [20:16]
Submit Documentation Feedback
0
0
0
0
0
0
0
0
0
0
uWire_LOCK
MAN_DAC
[31:22]
R15
EN_MAN_DAC
Data [26:0]
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Register
RD
26
RD
25
RD
24
RD
23
RD
22
RD
21
RD
20
RD
19
RD
18
RD
17
RD
16
RD
15
RD
14
RD
13
RD
12
RD
11
RD
10
RD
9
RD
8
RD
7
RD
6
RD
5
RD
4
RD
3
0
0
0
0
0
0
0
0
0
EN_TRACK
Table 15. Readback Register Map
RD
2
RD
1
RD
0
RESERVED
[26:24]
RD
R31
0
1
1
DAC_CNT [23:14]
HOLDOVER_MODE [2:1]
READBACK_LE
LD_TYPE
[21:19]
1
RESERVED [13:0]
uWire_LOCK
RD
R23
LD_MUX [26:22]
SYNC_PLL1_DLD
RD
R12
SYNC_PLL2_DLD
Data [26:0]
RESERVED [26:10]
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
51
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
DEFAULT DEVICE REGISTER SETTINGS AFTER POWER ON RESET
Table 16 illustrates the default register settings programmed in silicon for the LMK04906 after power on or
asserting the reset bit. Capital X and Y represent numeric values.
Table 16. Default Device Register Settings after Power On/Reset
Group
Clock Output
Control
Field Name
Default Value
(decimal)
Default State
CLKout0_PD
1
PD
CLKout1_PD
1
PD
CLKout2_PD
1
PD
CLKout3_PD
0
Normal
CLKout4_PD
0
Normal
CLKout5_PD
1
PD
CLKout3_OSCin_Sel
1
OSCin
CLKout4_OSCin_Sel
0
VCO
Selects the clock source for a clock output from
internal VCO or external OSCin
CLKoutX_ADLY_SEL
0
None
CLKoutX_DDLY
0
5
RESET
0
Not in reset
POWERDOWN
0
Disabled
(device is active)
Field Description
Register
Bit Location
(MSB:LSB)
R0
R1
Powerdown control for analog and digital delay,
divider, and both output buffers
R2
31
R3
R4
R5
R3
30
R4
30
Add analog delay for clock output
R0 to R5
28, 29
Digital delay value
R0 to R5
27:18 [10]
Performs power on reset for device
R0
17
Device power down control
R1
17
R0 to R5
16
CLKoutX_HS
0
No shift
CLKout0_DIV
25
Divide-by-25
Half shift for digital delay
R0
CLKout1_DIV
25
Divide-by-25
R1
CLKout2_DIV
25
Divide-by-25
CLKout3_DIV
1
Divide-by-1
R3
CLKout4_DIV
25
Divide-by-25
R4
CLKout5_DIV
25
Divide-by-25
R5
CLKout1_TYPE
0
Powerdown
R6
CLKout3_TYPE
8
LVCMOS
(Norm/Norm)
R7
CLKout5_TYPE
0
Powerdown
CLKout0_TYPE
0
Powerdown
R6
CLKout2_TYPE
0
Powerdown
R7
CLKout4_TYPE
1
LVDS
CLKoutX_ADLY
0
No delay
OSCout0_TYPE
1
LVDS
EN_OSCout0
1
Enabled
OSCout0_MUX
0
PD_OSCin
R2
Divide for clock outputs
Individual clock output format. Select from
LVDS/LVPECL/LVCMOS.
15:5 [11]
27:24 [4]
R8
23:20 [4]
Mode
52
R8
19:16 [4]
R6 to R8
15:11, 9:5 [5]
OSCout0 default clock output
R10
27:24 [4]
Enable OSCout0 output buffer
R10
22
Bypass Divider
Select OSCout divider for OSCout0 or bypass
R10
20
0
OSCin powered
Allows OSCin to be powered down. For use in clock
distribution mode.
R10
19
OSCout_DIV
0
Divide-by-8
OSCout divider value
R10
18:16 [3]
VCO_MUX
0
VCO
Select VCO or VCO Divider output
R10
12
EN_FEEDBACK_MUX
0
Disabled
Feedback MUX is powered down.
R10
11
VCO_DIV
2
Divide-by-2
VCO Divide value
R10
10:8 [3]
FEEDBACK_MUX
0
CLKout0
Selects CLKout to feedback into the PLL1 N divider
R10
7:5 [3]
MODE
0
Internal VCO
Device mode
R11
31:27 [5]
Analog delay setting for clock output
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 16. Default Device Register Settings after Power On/Reset (continued)
Group
Clock
Synchronization
Other Mode
Control
CLKin Control
DAC Control
Field Name
Default Value
(decimal)
Default State
Field Description
Enables synchronization circuitry.
Register
Bit Location
(MSB:LSB)
EN_SYNC
1
Enabled
R11
26
NO_SYNC_CLKout5
0
Will sync
R11
25
NO_SYNC_CLKout4
1
Will not sync
R11
24
NO_SYNC_CLKout3
1
Will not sync
R11
23
NO_SYNC_CLKout2
0
Will sync
R11
22
NO_SYNC_CLKout1
0
Will sync
R11
21
NO_SYNC_CLKout0
0
Will sync
R11
20
SYNC_CLKin2_MUX
0
Logic Low
Mux controlling SYNC pin when set to output
R11
19:18 [2]
SYNC_QUAL
0
Not qualified
Allows SYNC operations to be qualified by a clock
output.
R11
17
SYNC_POL_INV
1
Logic Low
Sets the polarity of the SYNC pin when input
R11
16
R11
15
14:12 [3]
Disable individual clock output from becoming
synchronized.
SYNC_EN_AUTO
0
Manual
SYNC is not started by programming a register R0 to
R5.
SYNC_TYPE
1
Input /w
Pull-up
SYNC IO pin type
R11
EN_PLL2_XTAL
0
Disabled
Enable Crystal oscillator for OSCin
R11
5
LD_MUX
3
PLL1 & 2 DLD
Lock detect mux selection when output
R12
31:27 [5]
LD_TYPE
3
Output
(Push-Pull)
LD IO pin type
R12
26:24 [3]
SYNC_PLL2_DLD
0
Normal
Force synchronization mode until PLL2 locks
R12
23
SYNC_PLL1_DLD
0
Normal
Force synchronization mode until PLL1 locks
R12
22
EN_TRACK
1
Enable Tracking
DAC tracking of the PLL1 tuning voltage
R12
8
HOLDOVER_MODE
2
Enable Holdover
Causes holdover to activate when lock is lost
R12
7:6 [2]
HOLDOVER_MUX
7
uWire Readback
Holdover mux selection
R13
31:27 [5]
HOLDOVER_TYPE
3
Output
(Push-Pull)
HOLDOVER IO pin type
R13
26:24 [3]
Status_CLKin1_MUX
0
Logic Low
Status_CLKin1 pin MUX selection
R13
22:20 [3]
Status_CLKin0_TYPE
2
Input /w Pull-down
Status_CLKin0 IO pin type
R13
18:16 [3]
DISABLE_DLD1_DET
0
Not Disabled
Disables PLL1 DLD falling edge from causing
HOLDOVER mode to be entered
R13
15
Status_CLKin0_MUX
0
Logic Low
Status_CLKin0 pin MUX selection
R13
14:12 [3]
CLKin_SELECT_MODE
3
Manual Select
Mode to use in determining reference CLKin for PLL1
R13
11:9 [3]
CLKin_Sel_INV
0
Active High
Invert Status 0 and 1 pin polarity for input
R13
8
EN_CLKin2
1
Usable
Set CLKin2 to be usable
R13
7
EN_CLKin1
1
Usable
Set CLKin1 to be usable
R13
6
EN_CLKin0
1
Usable
Set CLKin0 to be usable
R13
5
LOS_TIMEOUT
0
1200 ns, 420 kHz
Time until no activity on CLKin asserts LOS
R14
31:30 [2]
EN_LOS
1
Enabled
Loss of Signal Detect at CLKin
R14
28
Status_CLKin1_TYPE
2
Input /w Pull-down
Status_CLKin1 pin IO pin type
R14
26:24 [3]
CLKin2_BUF_TYPE
0
Bipolar
CLKin2 Buffer Type
R14
22
CLKin1_BUF_TYPE
0
Bipolar
CLKin1 Buffer Type
R14
21
CLKin0_BUF_TYPE
0
Bipolar
CLKin0 Buffer Type
R14
20
DAC_HIGH_TRIP
0
~50 mV from Vcc
Voltage from Vcc at which holdover mode is entered if
EN_VTUNE_RAIL_DAC is enabled.
R14
19:14 [6]
DAC_LOW_TRIP
0
~50 mV from GND
Voltage from GND at which holdover mode is entered
if EN_VTUNE_RAIL_DAC is enabled.
R14
11:6 [6]
EN_VTUNE_RAIL_DET
0
Disabled
Enable PLL1 unlock state when DAC trip points are
achieved
R14
5
512
3V/2
Writing to this register will set the value for DAC when
in manual override.
Readback from this register is DAC value.
R15
31:22 [10]
0
Disabled
Set manual DAC override
R15
20
Lock must be valid n many clocks of PLL1 PDF
before holdover mode is exited.
R15
19:6 [14]
Forces holdover mode.
R15
5
Sets drive power level of Crystal
R16
31:30 [2]
MAN_DAC
EN_MAN_DAC
HOLDOVER_DLD_CNT
512
512 counts
FORCE_HOLDOVER
0
Holdover not forced
XTAL_LVL
0
1.65 Vpp
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
53
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 16. Default Device Register Settings after Power On/Reset (continued)
Group
Field Name
Default Value
(decimal)
Default State
Register
Bit Location
(MSB:LSB)
PLL2_C4_LF
0
10 pF
PLL2_C3_LF
0
10 pF
PLL2 integrated capacitor C4 value
R24
31:28 [4]
PLL2 integrated capacitor C3 value
R24
PLL2_R4_LF
0
27:24 [4]
200 Ω
PLL2 integrated resistor R4 value
R24
PLL2_R3_LF
22:20 [3]
0
200 Ω
PLL2 integrated resistor R3 value
R24
18:16 [3]
PLL1_N_DLY
0
No delay
Delay in PLL1 feedback path to decrease lag from
input to output
R24
14:12 [3]
PLL1_R_DLY
0
No delay
Delay in PLL1 reference path to increase lag from
input to output
R24
10:8 [3]
PLL1_WND_SIZE
3
40 ns
Window size used for digital lock detect for PLL1
R24
7:6 [2]
DAC_CLK_DIV
4
Divide-by-4
DAC update clock divisor. Divides PLL1 phase
detector frequency.
R25
31:22 [10]
1024
1024 cycles
Lock must be valid n many cycles before LD is
asserted
R25
19:6 [14]
Window size used for digital lock detect for PLL2
R26
31:30 [2]
Doubles reference frequency of PLL2.
R26
29
Polarity of PLL2 Charge Pump
R26
28
PLL2 Charge Pump Gain
R26
27:26 [2]
Number of PDF cycles which phase error must be
within DLD window before LD state is asserted.
R26
19:6 [14]
PLL1_DLD_CNT
PLL Control
PLL2_WND_SIZE
0
EN_PLL2_REF_2X
0
Disabled, 1x
PLL2_CP_POL
0
Negative
PLL2_CP_GAIN
3
3.2 mA
PLL2_DLD_CNT
8192
8192 Counts
(1)
PLL2_CP_TRI
0
Active
PLL2 Charge Pump Active
R26
5
PLL1_CP_POL
1
Positive
Polarity of PLL1 Charge Pump
R27
28
PLL1_CP_GAIN
0
100 uA
PLL1 Charge Pump Gain
R27
27:26 [2]
CLKin2_PreR_DIV
0
Divide-by-1
CLKin2 Pre-R divide value (1, 2, 4, or 8)
R27
25:24 [2]
CLKin1_PreR_DIV
0
Divide-by-1
CLKin1 Pre-R divide value (1, 2, 4, or 8)
R27
23:22 [2]
CLKin0_PreR_DIV
0
Divide-by-1
CLKin0 Pre-R divide value (1, 2, 4, or 8)
R27
21:20 [2]
PLL1_R
96
Divide-by-96
PLL1 R Divider (1 to 16383)
R27
19:6 [14]
PLL1_CP_TRI
0
Active
PLL1 Charge Pump Active
R27
5
PLL2_R
4
Divide-by-4
PLL2 R Divider (1 to 4095)
R28
31:20 [12]
PLL1_N
192
Divide-by-192
PLL1 N Divider (1 to 16383)
R28
19:6 [14]
7
448 to 511 MHz
OSCin frequency range
R29
26:24 [3]
When set, PLL2 PDF of greater than 100 MHz may
be used
OSCin_FREQ
(1)
Reserved
Field Description
PLL2_FAST_PDF
1
PLL2 PDF > 100 MHz
R29
23
PLL2_N_CAL
48
Divide-by-48
Must be programmed to PLL2_N value.
R29
22:5 [18]
PLL2_P
2
Divide-by-2
PLL2 N Divider Prescaler (2 to 8)
R30
26:24 [3]
PLL2_N
48
Divide-by-48
PLL2 N Divider (1 to 262143)
R30
22:5 [18]
READBACK_LE
0
LEuWire Low for Readback
State LEuWire pin must be in for readback
R31
21
READBACK_ADDR
31
Register 31
Register to read back
R31
20:16 [5]
uWire_LOCK
0
Writable
The values of registers R0 to R30 are lockable
R31
5
This register must be reprogrammed to a value of 2 (3.7 ns) during user programming.
REGISTER R0 TO R5
Registers R0 through R5 control the 6 clock outputs CLKout0 to CLKout5. Register R0 controls CLKout0,
Register R1 controls CLKout1, and so on. All functions of the bits in these six registers are identical except the
different registers control different clock outputs. The X in CLKoutX_PD, CLKoutX_ADLY_SEL, CLKoutX_DDLY,
CLKoutX_HS, CLKoutX_DIV denote the actual clock output which may be from 0 to 5.
The RESET bit is only in register R0.
The POWERDOWN bit is only in register R1.
The CLKoutX_OSCin_Sel bit is only in registers R3 and R4.
CLKoutX_PD, Powerdown CLKoutX Output Path
This bit powers down the clock output as specified by CLKoutX. This includes the divider, digital delay, analog
delay, and output buffers.
54
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 17. CLKoutX_PD
R0-R5[31]
State
0
Power up clock output
1
Power down clock output
CLKoutX_OSCin_Sel, Clock output source
This bit sets the source for the clock CLKoutX. The selected source will be either from a VCO via Mode Mux1 or
from the OSCin buffer.
This bit is valid only for registers R3 and R4, clock outputs CLKout3 and CLKout4 respectively. All other clock
outputs are driven by a VCO via Mode Mux1.
Table 18. CLKoutX_OSCin_Sel
R3-R4[30]
Clock output source
0
VCO
1
OSCin
CLKoutX_ADLX_SEL[29], CLKoutX_ADLX_SEL[28], Select Analog Delay
These bits individually select the analog delay block (CLKoutX_ADLY) for use with CLKoutX. If a clock output
does not use analog delay, the analog delay block is powered down.
Table 19. CLKoutX_ADLX_SEL[29], CLKoutX_ADLX_SEL[28]
R0-R5[28],[29]
State
0
Analog delay powered down
1
Analog delay on CLKoutX
CLKoutX_DDLY, Clock Channel Digital Delay
CLKoutX_DDLY and CLKoutX_HS sets the digital delay used for CLKoutX. This value only takes effect during a
SYNC event and if the NO_SYNC_CLKoutX bit is cleared for this clock output. See Clock Output
Synchronization (SYNC).
Programming CLKoutX_DDLY can require special attention. See section SPECIAL PROGRAMMING CASE FOR
R0 to R5 for CLKoutX_DIV & CLKoutX_DDLY for more details.
Using a CLKoutX_DDLY value of 13 or greater will cause the clock output to operate in extended mode
regardless of the clock ouptut's divide value or the half step value.
One clock cycle is equal to the period of the clock distribution path. The period of the clock distribution path is
equal to VCO Divider value divided by the frequency of the VCO. If the VCO divider is disabled or an external
VCO is used, the VCO divide value is treated as 1.
tclock distribution path = VCO divide value / fVCO
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
55
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 20. CLKoutX_DDLY, 10 bits
R0-R5[27:18]
Delay
0 (0x00)
5 clock cycles
1 (0x01)
5 clock cycles
2 (0x02)
5 clock cycles
3 (0x03)
5 clock cycles
4 (0x04)
5 clock cycles
5 (0x05)
5 clock cycles
6 (0x06)
6 clock cycles
7 (0x07)
7 clock cycles
...
...
12 (0x0C)
12 clock cycles
13 (0x0D)
13 clock cycles
...
...
520 (0x208)
520 clock cycles
521 (0x209)
521 clock cycles
522 (0x20A)
522 clock cycles
Power Mode
Normal Mode
Extended Mode
RESET
The RESET bit is located in register R0 only. Setting this bit will cause the silicon default values to be loaded.
When programming register R0 with the RESET bit set, all other programmed values are ignored. After resetting
the device, the register R0 must be programmed again (with RESET = 0) to set non-default values in register R0.
The reset occurs on the falling edge of the LEuWire pin which loaded R0 with RESET = 1.
The RESET bit is automatically cleared upon writing any other register. For instance, when R0 is written to again
with default values.
Table 21. RESET
R0[17]
State
0
Normal operation
1
Reset (automatically cleared)
POWERDOWN
The POWERDOWN bit is located in register R1 only. Setting the bit causes the device to enter powerdown
mode. Normal operation is resumed by clearing this bit with MICROWIRE.
Table 22. POWERDOWN
R1[17]
State
0
Normal operation
1
Powerdown
CLKoutX_HS, Digital Delay Half Shift
This bit subtracts a half clock cycle of the clock distribution path period to the digital delay of CLKoutX.
CLKoutX_HS is used together with CLKoutX_DDLY to set the digital delay value.
When changing CLKoutX_HS, the digital delay immediately takes effect without a SYNC event.
Table 23. CLKoutX_HS
56
R0-R5[16]
State
0
Normal
1
Subtract half of a clock distribution path period from the total digital
delay
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
CLKoutX_DIV, Clock Output Divide
CLKoutX_DIV sets the divide value for the clock output. The divide may be even or odd. Both even and odd
divides output a 50% duty cycle clock.
Using a divide value of 26 or greater will cause the clock output to operate in extended mode regardless of the
clock output's digital delay value.
Programming CLKoutX_DIV can require special attention. See section SPECIAL PROGRAMMING CASE FOR
R0 to R5 for CLKoutX_DIV & CLKoutX_DDLY for more details.
Table 24. CLKoutX_DIV, 11 bits
R0-R5[15:5]
Divide Value
0 (0x00)
Reserved
1 (0x01)
1
(1)
2 (0x02)
2
(2)
3 (0x03)
3
4 (0x04)
4
(2)
5 (0x05)
5
(2)
6 (0x06)
(1)
(2)
Power Mode
Normal Mode
6
...
...
24 (0x18)
24
25 (0x19)
25
26 (0x1A)
26
27 (0x1B)
27
...
...
1044 (0x414)
1044
1045 (0x415)
1045
Extended Mode
CLKoutX_HS must = 0 for divide by 1.
After programming PLL2_N value, a SYNC must occur on channels using this divide value. Programming PLL2_N does generate a
SYNC event automatically which satisfies this requirement, but NO_SYNC_CLKoutX must be set to 0 for these clock outputs.
REGISTERS R6 TO R8
Registers R6 to R8 set the clock output types and analog delays.
CLKoutX_TYPE
The clock output types of the LMK04906 are individually programmable. The CLKoutX_TYPE registers set the
output type of an individual clock output to LVDS, LVPECL, LVCMOS, or powers down the output buffer. Note
that LVPECL supports four different amplitude levels and LVCMOS supports single LVCMOS outputs, inverted,
and normal polarity of each output pin for maximum flexibility.
The programming addresses table shows at what register and address the specified clock output
CLKoutX_TYPE register is located.
The CLKoutX_TYPE table shows the programming definition for these registers.
Table 25. CLKoutX_TYPE Programming Addresses
CLKoutX
Programming Address
CLKout0
R6[23:20]
CLKout1
R6[27:24]
CLKout2
R723:20]
CLKout3
R7[27:24]
CLKout4
R8[19:16]
CLKout5
R8[27:24]
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
57
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 26. CLKoutX_TYPE, 4 bits
R6-R8[31:28, 27:24, 23:20]
Definition
0 (0x00)
Power down
1 (0x01)
LVDS
2 (0x02)
LVPECL (700 mVpp)
3 (0x03)
LVPECL (1200 mVpp)
4 (0x04)
LVPECL (1600 mVpp)
5 (0x05)
LVPECL (2000 mVpp)
6 (0x06)
LVCMOS (Norm/Inv)
7 (0x07)
LVCMOS (Inv/Norm)
8 (0x08)
LVCMOS (Norm/Norm)
9 (0x09)
LVCMOS (Inv/Inv)
10 (0x0A)
LVCMOS (Low/Norm)
11 (0x0A)
LVCMOS (Low/Inv)
12 (0x0C)
LVCMOS (Norm/Low)
13 (0x0D)
LVCMOS (Inv/Low)
14 (0x0E)
LVCMOS (Low/Low)
CLKoutX_ADLY
These registers control the analog delay of the clock output CLKoutX. Adding analog delay to the output will
increase the noise floor of the output. For this analog delay to be active for a clock output, it must be selected
with CLKoutX_ADL_SEL. If neither clock output in a clock output selects the analog delay, then the analog delay
block is powered down.
In addition to the programmed delay, a fixed 500 ps of delay will be added by engaging the delay block.
The programming addresses table shows at what register and address the specified clock output
CLKoutX_ADLY register is located.
The CLKoutX_ADLY table shows the programming definition for these registers.
Table 27. CLKoutX_ADLY Programming Addresses
CLKoutX_ADLY
Programming Address
CLKout0_ADLY
R6[9:5]
CLKout1_ADLY
R6[15:11]
CLKout2_ADLY
R7[9:5]
CLKout3_ADLY
R7[15:11]
CLKout4_ADLY
R8[9:5]
CLKout5_ADLY
R8[15:11]
Table 28. CLKoutX_ADLY, 5 bits
58
R6-R8[15:11, 9:5]
Definition
0 (0x00)
500 ps + No delay
1 (0x01)
500 ps + 25 ps
2 (0x02)
500 ps + 50 ps
3 (0x03)
500 ps + 75 ps
4 (0x04)
500 ps + 100 ps
5 (0x05)
500 ps + 125 ps
6 (0x06)
500 ps + 150 ps
7 (0x07)
500 ps + 175 ps
8 (0x08)
500 ps + 200 ps
9 (0x09)
500 ps + 225 ps
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 28. CLKoutX_ADLY, 5 bits (continued)
R6-R8[15:11, 9:5]
Definition
10 (0x0A)
500 ps + 250 ps
11 (0x0B)
500 ps + 275 ps
12 (0x0C)
500 ps + 300 ps
13 (0x0D)
500 ps + 325 ps
14 (0x0E)
500 ps + 350 ps
15 (0x0F)
500 ps + 375 ps
16 (0x10)
500 ps + 400 ps
17 (0x11)
500 ps + 425 ps
18 (0x12)
500 ps + 450 ps
19 (0x13)
500 ps + 475 ps
20 (0x14)
500 ps + 500 ps
21 (0x15)
500 ps + 525 ps
22 (0x16)
500 ps + 550 ps
23 (0x17)
500 ps + 575 ps
REGISTER R10
OSCout0_TYPE
The OSCout0 clock output has a programmable output type. The OSCout0_TYPE register sets the output type to
LVDS, LVPECL, LVCMOS, or powers down the output buffer. Note that LVPECL supports four different
amplitude levels and LVCMOS supports dual and single LVCMOS outputs with inverted, and normal polarity of
each output pin for maximum flexibility.
To turn on the output, the OSCout0_TYPE must be set to a non-power down setting and enabled with
EN_OSCout0, OSCout0 Output Enable.
Table 29. OSCout0_TYPE, 4 bits
R10[27:24]
Definition
0 (0x00)
Powerdown
1 (0x01)
LVDS
2 (0x02)
LVPECL (700 mVpp)
3 (0x03)
LVPECL (1200 mVpp)
4 (0x04)
LVPECL (1600 mVpp)
5 (0x05)
LVPECL (2000 mVpp)
6 (0x06)
LVCMOS (Norm/Inv)
7 (0x07)
LVCMOS (Inv/Norm)
8 (0x08)
LVCMOS (Norm/Norm)
9 (0x09)
LVCMOS (Inv/Inv)
10 (0x0A)
LVCMOS (Low/Norm)
11 (0x0B)
LVCMOS (Low/Inv)
12 (0x0C)
LVCMOS (Norm/Low)
13 (0x0D)
LVCMOS (Inv/Low)
14 (0x0E)
LVCMOS (Low/Low)
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
59
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
EN_OSCout0, OSCout0 Output Enable
EN_OSCout0 is used to enable an oscillator buffered output.
Table 30. EN_OSCout0
R10[22]
Output State
0
OSCout0 Disabled
1
OSCout0 Enabled
OSCout0 note: In addition to enabling the output with EN_OSCout0. The OSCout0_TYPE must be programmed
to a non-power down value for the output buffer to power up.
OSCout0_MUX, Clock Output Mux
Sets OSCout0 buffer to output a divided or bypassed OSCin signal. The divisor is set by OSCout_DIV, Oscillator
Output Divide.
Table 31. OSCout0_MUX
R10[20]
Mux Output
0
Bypass divider
1
Divided
PD_OSCin, OSCin Powerdown Control
Except in clock distribution mode, the OSCin buffer must always be powered up.
In clock distribution mode, the OSCin buffer must be powered down if not used.
Table 32. PD_OSCin
R10[19]
OSCin Buffer
0
Normal Operation
1
Powerdown
OSCout_DIV, Oscillator Output Divide
The OSCout divider can be programmed from 2 to 8. Divide by 1 is achieved by bypassing the divider with
OSCout0_MUX, Clock Output Mux.
Note that OSCout_DIV will be in the PLL1 N feedback path if OSCout0_MUX selects divided as an output. When
OSCout_DIV is in the PLL1 N feedback path, the OSCout_DIV divide value must be accounted for when
programming PLL1 N.
See PLL PROGRAMMING for more information on programming PLL1 to lock.
Table 33. OSCout_DIV, 3 bits
60
R10[18:16]
Divide
0 (0x00)
8
1 (0x01)
2
2 (0x02)
2
3 (0x03)
3
4 (0x04)
4
5 (0x05)
5
6 (0x06)
6
7 (0x07)
7
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
VCO_MUX
When the internal VCO is used, the VCO divider can be selected to divide the VCO output frequency to reduce
the frequency on the clock distribution path. It is recommended to use the VCO directly unless:
• Very low output frequencies are required.
• If using the VCO divider results in three or more clock output divider/delays changing from extended to
normal power mode, a small power savings may be achieved by using the VCO divider.
A consequence of using the VCO divider is a small degradation in phase noise.
Table 34. VCO_MUX
R10[12]
Divide
0
VCO selected
1
VCO divider selected
EN_FEEDBACK_MUX
When using 0-delay or dynamic digital delay (SYNC_QUAL = 1), EN_FEEDBACK_MUX must be set to 1 to
power up the feedback mux.
Table 35. EN_FEEDBACK_MUX
R10[11]
Divide
0
Feedback mux powered down
1
Feedback mux enabled
VCO_DIV, VCO Divider
Divide value of the VCO Divider.
See PLL PROGRAMMING for more information on programming PLL2 to lock.
Table 36. VCO_DIV, 3 bits
R10[10:8]
Divide
0 (0x00)
8
1 (0x01)
2
2 (0x02)
2
3 (0x03)
3
4 (0x04)
4
5 (0x05)
5
6 (0x06)
6
7 (0x07)
7
FEEDBACK_MUX
When in 0-delay mode, the feedback mux selects the clock output to be fed back into the PLL1 N Divider.
Table 37. FEEDBACK_MUX, 3 bits
R10[7:5]
Divide
0 (0x00)
Reserved
1 (0x01)
CLKout1
2 (0x02)
Reserved
3 (0x03)
CLKout3
4 (0x04)
CLKout4
5 (0x05)
CLKout5
6 (0x06)
FBCLKin/FBCLKin*
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
61
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
REGISTER R11
MODE: Device Mode
MODE determines how the LMK04906 operates from a high level. Different blocks of the device can be powered
up and down for specific application requirements from a dual loop architecture to clock distribution.
The LMK04906 can operate in:
• Dual PLL mode with the internal VCO or an external VCO.
• Single PLL mode uses PLL2 and powers down PLL1. OSCin is used for PLL reference input.
• Clock Distribution mode allows use of CLKin1 to distribute to clock outputs CLKout0 through CLKout11, and
OSCin to distribute to OSCout0, and optionally CLKout3 through CLKout9.
For the PLL modes, 0-delay can be used have deterministic phase with the input clock.
For the PLL modes it is also possible to use an external VCO.
Table 38. MODE, 5 bits
R11[31:27]
Value
0 (0x00)
Dual PLL, Internal VCO
1 (0x01)
Reserved
2 (0x02)
Dual PLL, Internal VCO,
0-Delay
3 (0x03)
Dual PLL, External VCO (Fin)
4 (0x04)
Reserved
5 (0x05)
Dual PLL, External VCO (Fin),
0-Delay
6 (0x06)
PLL2, Internal VCO
7 (0x07)
Reserved
8 (0x08)
PLL2, Internal VCO,
0–Delay
9 (0x09)
Reserved
10 (0x0A)
Reserved
11 (0x0B)
PLL2, External VCO (Fin)
12 (0x0C)
Reserved
13 (0x0D)
Reserved
14 (0x0E)
Reserved
15 (0x0F)
Reserved
16 (0x10)
Clock Distribution
EN_SYNC, Enable Synchronization
The EN_SYNC bit (default on) must be enabled for synchronization to work. Synchronization is required for
dynamic digital delay.
The synchronization enable may be turned off once the clocks are operating to save current. If EN_SYNC is set
after it has been cleared (a transition from 0 to 1), a SYNC is generated that can disrupt the active clock outputs.
Setting the NO_SYNC_CLKoutX bits will prevent this SYNC pulse from affecting the output clocks. Setting the
EN_SYNC bit is not a valid method for synchronizing the clock outputs. See the Clock Output Synchronization
(SYNC) for more information on synchronization.
Table 39. EN_SYNC
62
R11[26]
Definition
0
Synchronization disabled
1
Synchronization enabled
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
NO_SYNC_CLKoutX
The NO_SYNC_CLKoutX bits prevent individual clock outputs from becoming synchronized during a SYNC
event. A reason to prevent individual clock output from becoming synchronized is that during synchronization, the
clock output is in a fixed low state or can have a glitch pulse.
By disabling SYNC on a clock output, it will continue to operate normally during a SYNC event.
Digital delay requires a SYNC operation to take effect. If NO_SYNC_CLKoutX is set before a SYNC event, the
digital delay value will be unused.
Setting the NO_SYNC_CLKoutX bit has no effect on clocks already synchronized together.
Table 40. NO_SYNC_CLKoutX Programming Addresses
NO_SYNC_CLKoutX
Programming Address
CLKout0
R11:20
CLKout1
R11:21
CLKout2
R11:22
CLKout3
R11:23
CLKout4
R11:24
CLKout5
R11:25
Table 41. NO_SYNC_CLKoutX
R11[25, 24, 23, 22, 21, 20]
Definition
0
CLKoutX will synchronize
1
CLKoutX will not synchronize
SYNC_CLKin2_MUX
Mux controlling SYNC/Status_CLKin2 pin.
All the outputs logic is active high when SYNC_TYPE = 3 (Output). All the outputs logic is active low when
SYNC_TYPE = 4 (Output Inverted). For example, when SYNC_MUX = 0 (Logic Low) and SYNC_TYPE = 3
(Output) then SYNC outputs a logic low. When SYNC_MUX = 0 (Logic Low) and SYNC_TYPE = 4 (Output
Inverted) then SYNC outputs a logic high.
Table 42. SYNC_MUX, 2 bits
R11[19:18]
Sync pin output
0 (0x00)
Logic Low
1 (0x01)
CLKin2 LOS
2 (0x02)
CLKin2 Selected
3 (0x03)
uWire Readback
SYNC_QUAL
When SYNC_QUAL is set, clock outputs will be synchronized to an existing clock output selected by
FEEDBACK_MUX. By using the NO_SYNC_CLKoutX bits, selected clock outputs will not be interrupted during
the SYNC event.
Qualifying the SYNC by an output clock means that the pulse which turns the clock outputs off and on will have a
fixed time relationship to the qualifying output clock.
SYNC_QUAL = 1 requires CLKout2_PD = 0 for proper operation. CLKout2_TYPE may be set to Powerdown
mode.
See Clock Output Synchronization (SYNC) for more information.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
63
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 43. SYNC_QUAL
R11[17]
Mode
0
No qualification
1
Qualification by clock output from feedback mux
(Must set
CLKout2_PD = 0)
SYNC_POL_INV
Sets the polarity of the SYNC pin when input. When SYNC is asserted the clock outputs will transition to a low
state.
See Clock Output Synchronization (SYNC) for more information on SYNC. A SYNC event can be generated by
toggling this bit through the MICROWIRE interface.
Table 44. SYNC_POL_INV
R11[16]
Polarity
0
SYNC is active high
1
SYNC is active low
SYNC_EN_AUTO
When set, causes a SYNC event to occur when programming register R0 to R5 to adjust digital delay values.
The SYNC event will coincide with the LEuWire pin falling edge.
Refer to SPECIAL PROGRAMMING CASE FOR R0 to R5 for CLKoutX_DIV & CLKoutX_DDLY for more
information on possible special programming considerations when SYNC_EN_AUTO = 1.
Table 45. SYNC_EN_AUTO
R11[15]
Mode
0
Manual SYNC
1
SYNC Internally Generated
SYNC_TYPE
Sets the IO type of the SYNC pin.
Table 46. SYNC_TYPE, 3 bits
R11[14:12]
Polarity
0 (0x00)
Input
1 (0x01)
Input /w pull-up resistor
2 (0x02)
Input /w pull-down resistor
3 (0x03)
Output (push-pull)
4 (0x04)
Output inverted (push-pull)
5 (0x05)
Output (open source)
6 (0x06)
Output (open drain)
When in output mode the SYNC input is forced to 0 regardless of the SYNC_MUX setting. A synchronization can
then be activated by uWire by programming the SYNC_POL_INV register to active low to assert SYNC. SYNC
can then be released by programming SYNC_POL_INV to active high. Using this uWire programming method to
create a SYNC event saves the need for an IO pin from another device.
EN_PLL2_XTAL
If an external crystal is being used to implement a discrete VCXO, the internal feedback amplifier must be
enabled with this bit in order to complete the oscillator circuit.
64
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 47. EN_PLL2_XTAL
R11[5]
Oscillator Amplifier State
0
Disabled
1
Enabled
REGISTER R12
LD_MUX
LD_MUX sets the output value of the LD pin.
All the outputs logic is active high when LD_TYPE = 3 (Output). All the outputs logic is active low when
LD_TYPE = 4 (Output Inverted). For example, when LD_MUX = 0 (Logic Low) and LD_TYPE = 3 (Output) then
Status_LD outputs a logic low. When LD_MUX = 0 (Logic Low) and LD_TYPE = 4 (Output Inverted) then
Status_LD outputs a logic high.
Table 48. LD_MUX, 5 bits
R12[31:27]
(1)
Divide
0 (0x00)
Logic Low
1 (0x01)
PLL1 DLD
2 (0x02)
PLL2 DLD
3 (0x03)
PLL1 & PLL2 DLD
4 (0x04)
Holdover Status
5 (0x05)
DAC Locked
6 (0x06)
Reserved
7 (0x07)
uWire Readback
8 (0x08)
DAC Rail
9 (0x09)
DAC Low
10 (0x0A)
DAC High
11 (0x0B)
PLL1_N
12 (0x0C)
PLL1_N/2
13 (0x0D)
PLL2 N
14 (0x0E)
PLL2 N/2
15 (0x0F)
PLL1_R
16 (0x10)
PLL1_R/2
17 (0x11)
PLL2 R
18 (0x12)
PLL2 R/2
(1)
(1)
Only valid when HOLDOVER_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).
LD_TYPE
Sets the IO type of the LD pin.
Table 49. LD_TYPE, 3 bits
R12[26:24]
Polarity
0 (0x00)
Reserved
1 (0x01)
Reserved
2 (0x02)
Reserved
3 (0x03)
Output (push-pull)
4 (0x04)
Output inverted (push-pull)
5 (0x05)
Output (open source)
6 (0x06)
Output (open drain)
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
65
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
SYNC_PLLX_DLD
By setting SYNC_PLLX_DLD a SYNC mode will be engaged (asserted SYNC) until PLL1 and/or PLL2 locks.
SYNC_QUAL must be 0 to use this functionality.
Table 50. SYNC_PLL2_DLD
R12[23]
Sync Mode Forced
0
No
1
Yes
Table 51. SYNC_PLL1_DLD
R12[22]
Sync Mode Forced
0
No
1
Yes
EN_TRACK
Enable the DAC to track the PLL1 tuning voltage. For optional use in in holdover mode.
Tracking can be used to monitor PLL1 voltage by readback of DAC_CNT register in any mode.
66
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 52. EN_TRACK
R12[8]
DAC Tracking
0
Disabled
1
Enabled
HOLDOVER_MODE
Enable the holdover mode.
Table 53. HOLDOVER_MODE, 2 bits
R12[7:6]
Holdover Mode
0
Reserved
1
Disabled
2
Enabled
3
Reserved
REGISTER R13
HOLDOVER_MUX
HOLDOVER_MUX sets the output value of the Status_Holdover pin.
The outputs are active high when HOLDOVER_TYPE = 3 (Output). The outputs are active low when
HOLDOVER_TYPE = 4 (Output Inverted).
Table 54. HOLDOVER_MUX, 5 bits
(1)
R13[31:27]
Divide
0 (0x00)
Logic Low
1 (0x01)
PLL1 DLD
2 (0x02)
PLL2 DLD
3 (0x03)
PLL1 & PLL2 DLD
4 (0x04)
Holdover Status
5 (0x05)
DAC Locked
6 (0x06)
Reserved
7 (0x07)
uWire Readback
8 (0x08)
DAC Rail
9 (0x09)
DAC Low
10 (0x0A)
DAC High
11 (0x0B)
PLL1 N
12 (0x0C)
PLL1 N/2
13 (0x0D)
PLL2 N
14 (0x0E)
PLL2 N/2
15 (0x0F)
PLL1 R
16 (0x10)
PLL1 R/2
17 (0x11)
PLL2 R
18 (0x12)
PLL2 R/2
(1)
(1)
Only valid when LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
67
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
HOLDOVER_TYPE
Sets the IO mode of the Status_Holdover pin.
Table 55. HOLDOVER_TYPE, 3 bits
R13[26:24]
Polarity
0 (0x00)
Reserved
1 (0x01)
Reserved
2 (0x02)
Reserved
3 (0x03)
Output (push-pull)
4 (0x04)
Output inverted (push-pull)
5 (0x05)
Output (open source)
6 (0x06)
Output (open drain)
Status_CLKin1_MUX
Status_CLKin1_MUX sets the output value of the Status_CLKin1 pin. If Status_CLKin1_TYPE is set to an input
type, this register has no effect. This MUX register only sets the output signal.
The outputs are active high when Status_CLKin1_TYPE = 3 (Output). The outputs are active low when
Status_CLKin1_TYPE = 4 (Output Inverted).
Table 56. Status_CLKin1_MUX, 3 bits
R13[22:20]
Divide
0 (0x00)
Logic Low
1 (0x01)
CLKin1 LOS
2 (0x02)
CLKin1 Selected
3 (0x03)
DAC Locked
4 (0x04)
DAC Low
5 (0x05)
DAC High
6 (0x06)
uWire Readback
Status_CLKin0_TYPE
Status_CLKin0_TYPE sets the IO type of the Status_CLKin0 pin.
Table 57. Status_CLKin0_TYPE, 3 bits
R13[18:16]
Polarity
0 (0x00)
Input
1 (0x01)
Input /w pull-up resistor
2 (0x02)
Input /w pull-down resistor
3 (0x03)
Output (push-pull)
4 (0x04)
Output inverted (push-pull)
5 (0x05)
Output (open source)
6 (0x06)
Output (open drain)
DISABLE_DLD1_DET
DISABLE_DLD1_DET disables the HOLDOVER mode from being activated when PLL1 lock detect signal
transitions from high to low.
When using Pin Select Mode as the input clock switch mode, this bit should normally be set.
68
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 58. DISABLE_DLD1_DET
R13[15]
Holdover DLD1 Detect
0
PLL1 DLD causes clock switch event
1
PLL1 DLD does not cause clock switch event
Status_CLKin0_MUX
CLKin0_MUX sets the output value of the Status_CLKin0 pin. If Status_CLKin0_TYPE is set to an input type, this
register has no effect. This MUX register only sets the output signal.
The outputs logic is active high when Status_CLKin0_TYPE = 3 (Output). The outputs logic is active low when
Status_CLKin0_TYPE = 4 (Output Inverted).
Table 59. Status_CLKin0_MUX, 3 bits
R13[14:12]
Divide
0 (0x00)
Logic Low
1 (0x01)
CLKin0 LOS
2 (0x02)
CLKin0 Selected
3 (0x03)
DAC Locked
4 (0x04)
DAC Low
5 (0x05)
DAC High
6 (0x06)
uWire Readback
CLKin_SELECT_MODE
CLKin_SELECT_MODE sets the mode used in determining reference CLKin for PLL1.
Table 60. CLKin_SELECT_MODE, 3 bits
R13[11:9]
Mode
0 (0x00)
CLKin0 Manual
1 (0x01)
CLKin1 Manual
2 (0x02)
CLKin2 Manual
3 (0x03)
Pin Select Mode
4 (0x04)
Auto Mode
5 (0x05)
Reserved
6 (0x06)
Auto mode & next clock pin select
7 (0x07)
Reserved
CLKin_Sel_INV
CLKin_Sel_INV sets the input polarity of Status_CLKin0 and Status_CLKin1 pins.
Table 61. CLKin_Sel_INV
R13[8]
Input
0
Active High
1
Active Low
EN_CLKinX
Each clock input can individually be enabled to be used during auto-switching CLKin_SELECT_MODE. Clock
input switching priority is always CLKin0 → CLKin1 → CLKin2 → CLKin0.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
69
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 62. EN_CLKin2
R13[7]
Input
0
No
1
Yes
Table 63. EN_CLKin1
R13[6]
Valid
0
No
1
Yes
Table 64. EN_CLKin0
R13[5]
Valid
0
No
1
Yes
REGISTER 14
LOS_TIMEOUT
This bit controls the amount of time in which no activity on a CLKin causes LOS (Loss-of-Signal) to be asserted.
Table 65. LOS_TIMEOUT, 2 bits
R14[31:30]
Timeout
0 (0x00)
1200 ns, 420 kHz
1 (0x01)
206 ns, 2.5 MHz
2 (0x02)
52.9 ns, 10 MHz
3 (0x03)
23.7 ns, 22 MHz
EN_LOS
Enables the LOS (Loss-of-Signal) timeout control.
Table 66. EN_LOS
R14[28]
LOS
0
Disabled
1
Enabled
Status_CLKin1_TYPE
Sets the IO type of the Status_CLKin1 pin.
Table 67. Status_CLKin1_TYPE, 3 bits
70
R14[26:24]
Polarity
0 (0x00)
Input
1 (0x01)
Input /w pull-up resistor
2 (0x02)
Input /w pull-down resistor
3 (0x03)
Output (push-pull)
4 (0x04)
Output inverted (push-pull)
5 (0x05)
Output (open source)
6 (0x06)
Output (open drain)
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
CLKinX_BUF_TYPE, PLL1 CLKinX/CLKinX* Buffer Type
There are two input buffer types for the PLL1 reference clock inputs: either bipolar or CMOS. Bipolar is
recommended for differential inputs such as LVDS and LVPECL. CMOS is recommended for DC coupled single
ended inputs.
When using bipolar, CLKinX and CLKinX* input pins must be AC coupled when using a differential or single
ended input.
When using CMOS, CLKinX and CLKinX* input pins may be AC or DC coupled with a differential input.
When using CMOS in single ended mode, the unused clock input pin (CLKinX or CLKinX*) must be AC
grounded. The used clock input pin (CLKinX* or CLKinX) may be AC or DC coupled to the signal source.
The programming addresses table shows at what register and address the specified CLKinX_BUF_TYPE bit is
located.
The CLKinX_BUF_TYPE table shows the programming definition for these registers.
Table 68. CLKinX_BUF_TYPE Programming Addresses
CLKinX_BUF_TYPE
Programming Address
CLKin2_BUF_TYPE
R14[22]
CLKin1_BUF_TYPE
R14[21]
CLKin0_BUF_TYPE
R14[20]
Table 69. CLKinX_BUF_TYPE
R14[22, 21, 20]
CLKinX Buffer Type
0
Bipolar
1
CMOS
DAC_HIGH_TRIP
Voltage from Vcc at which holdover mode is entered if EN_VTUNE_RAIL_DAC is enabled. Will also set flags
which can be monitored out Status_LD/Status_Holdover pins.
Step size is ~51 mV
Table 70. DAC_HIGH_TRIP, 6 bits
R14[19:14]
Trip voltage from Vcc (V)
0 (0x00)
1 × Vcc / 64
1 (0x01)
2 × Vcc / 64
2 (0x02)
3 × Vcc / 64
3 (0x03)
4 × Vcc / 64
4 (0x04)
5 × Vcc / 64
...
...
61 (0x3D)
62 × Vcc / 64
62 (0x3E)
63 × Vcc / 64
63 (0x3F)
64 × Vcc / 64
DAC_LOW_TRIP
Voltage from GND at which holdover mode is entered if EN_VTUNE_RAIL_DAC is enabled. Will also set flags
which can be monitored out Status_LD/Status_Holdover pins.
Step size is ~51 mV
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
71
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 71. DAC_LOW_TRIP, 6 bits
R14[11:6]
Trip voltage from GND (V)
0 (0x00)
1 × Vcc / 64
1 (0x01)
2 × Vcc / 64
2 (0x02)
3 × Vcc / 64
3 (0x03)
4 × Vcc / 64
4 (0x04)
5 × Vcc / 64
...
...
61 (0x3D)
62 × Vcc / 64
62 (0x3E)
63 × Vcc / 64
63 (0x3F)
64 × Vcc / 64
EN_VTUNE_RAIL_DET
Enables the DAC Vtune rail detection. When the DAC achieves a specified Vtune, if this bit is enabled, the
current clock input is considered invalid and an input clock switch event is generated.
Table 72. EN_VTUNE_RAIL_DET
R14[5]
State
0
Disabled
1
Enabled
REGISTER 15
MAN_DAC
Sets the DAC value when in manual DAC mode in ~3.2 mV steps.
Table 73. MAN_DAC, 10 bits
R15[31:22]
DAC Voltage
0 (0x00)
0 × Vcc / 1023
1 (0x01)
1 × Vcc / 1023
2 (0x02)
2 × Vcc / 1023
...
...
1023 (0x3FF)
1023 × Vcc / 1023
EN_MAN_DAC
This bit enables the manual DAC mode.
Table 74. EN_MAN_DAC
R15[20]
DAC Mode
0
Automatic
1
Manual
HOLDOVER_DLD_CNT
Lock must be valid for this many clocks of PLL1 PDF before holdover mode is exited.
Table 75. HOLDOVER_DLD_CNT, 14 bits
72
R15[19:6]
Exit Counts
0 (0x00)
Reserved
1 (0x01)
1
2 (0x02)
2
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 75. HOLDOVER_DLD_CNT, 14 bits (continued)
R15[19:6]
Exit Counts
...
...
16,383 (0x3FFF)
16,383
FORCE_HOLDOVER
This bit forces the holdover mode.
When holdover is forced, if in fixed CPout1 mode, then the DAC will set the programmed MAN_DAC value. If in
tracked CPout1 mode, then the DAC will set the current tracked DAC value.
Setting FORCE_HOLDOVER does not constitute a clock input switch event unless DISABLE_DLD1_DET = 0,
since in holdover mode, PLL1_DLD = 0 this will trigger the clock input switch event.
Table 76. FORCE_HOLDOVER
R15[5]
Holdover
0
Disabled
1
Enabled
REGISTER 16
XTAL_LVL
Sets the peak amplitude on the tunable crystal.
Increasing this value can improve the crystal oscillator phase noise performance at the cost of increased current
and higher crystal power dissipation levels.
Table 77. XTAL_LVL, 2 bits
(1)
R15[31:22]
Peak Amplitude (1)
0 (0x00)
1.65 Vpp
1 (0x01)
1.75 Vpp
2 (0x02)
1.90 Vpp
3 (0x03)
2.05 Vpp
At crystal frequency of 20.48 MHz
REGISTER 23
This register must not be programmed, it is a readback only register.
DAC_CNT
The DAC_CNT register is 10 bits in size and located at readback bit position [23:14]. When using tracking mode
for holdover, the DAC value can be readback at this address.
REGISTER 24
PLL2_C4_LF, PLL2 Integrated Loop Filter Component
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop filters without
requiring external components.
Internal loop filter capacitor C4 can be set according to the following table.
Table 78. PLL2_C4_LF, 4 bits
R24[31:28]
Loop Filter Capacitance(pF)
0 (0x00)
10 pF
1 (0x01)
15 pF
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
73
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 78. PLL2_C4_LF, 4 bits (continued)
R24[31:28]
Loop Filter Capacitance(pF)
2 (0x02)
29 pF
3 (0x03)
34 pF
4 (0x04)
47 pF
5 (0x05)
52 pF
6 (0x06)
66 pF
7 (0x07)
71 pF
8 (0x08)
103 pF
9 (0x09)
108 pF
10 (0x0A)
122 pF
11 (0x0B)
126 pF
12 (0x0C)
141 pF
13 (0x0D)
146 pF
14 (0x0E)
Reserved
15 (0x0F)
Reserved
PLL2_C3_LF, PLL2 Integrated Loop Filter Component
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop filters without
requiring external components.
Internal loop filter capacitor C3 can be set according to the following table.
Table 79. PLL2_C3_LF, 4 bits
R24[27:24]
Loop Filter Capacitance(pF)
0 (0x00)
10 pF
1 (0x01)
11 pF
2 (0x02)
15 pF
3 (0x03)
16 pF
4 (0x04)
19 pF
5 (0x05)
20 pF
6 (0x06)
24 pF
7 (0x07)
25 pF
8 (0x08)
29 pF
9 (0x09)
30 pF
10 (0x0A)
33 pF
11 (0x0B)
34 pF
12 (0x0C)
38 pF
13 (0x0D)
39 pF
14 (0x0E)
Reserved
15 (0x0F)
Reserved
PLL2_R4_LF, PLL2 Integrated Loop Filter Component
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop filters without
requiring external components.
Internal loop filter resistor R4 can be set according to the following table.
Table 80. PLL2_R4_LF, 3 bits
74
R24[22:20]
Resistance
0 (0x00)
200 Ω
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 80. PLL2_R4_LF, 3 bits (continued)
R24[22:20]
Resistance
1 (0x01)
1 kΩ
2 (0x02)
2 kΩ
3 (0x03)
4 kΩ
4 (0x04)
16 kΩ
5 (0x05)
Reserved
6 (0x06)
Reserved
7 (0x07)
Reserved
PLL2_R3_LF, PLL2 Integrated Loop Filter Component
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop filters without
requiring external components.
Internal loop filter resistor R3 can be set according to the following table.
Table 81. PLL2_R3_LF, 3 bits
R24[18:16]
Resistance
0 (0x00)
200 Ω
1 (0x01)
1 kΩ
2 (0x02)
2 kΩ
3 (0x03)
4 kΩ
4 (0x04)
16 kΩ
5 (0x05)
Reserved
6 (0x06)
Reserved
7 (0x07)
Reserved
PLL1_N_DLY
Increasing delay of PLL1_N_DLY will cause the outputs to lead from CLKinX. For use in 0-delay mode.
Table 82. PLL1_N_DLY, 3 bits
R24[14:12]
Definition
0 (0x00)
0 ps
1 (0x01)
205 ps
2 (0x02)
410 ps
3 (0x03)
615 ps
4 (0x04)
820 ps
5 (0x05)
1025 ps
6 (0x06)
1230 ps
7 (0x07)
1435 ps
PLL1_R_DLY
Increasing delay of PLL1_R_DLY will cause the outputs to lag from CLKinX. For use in 0-delay mode.
Table 83. PLL1_R_DLY, 3 bits
R24[10:8]
Definition
0 (0x00)
0 ps
1 (0x01)
205 ps
2 (0x02)
410 ps
3 (0x03)
615 ps
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
75
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 83. PLL1_R_DLY, 3 bits (continued)
R24[10:8]
Definition
4 (0x04)
820 ps
5 (0x05)
1025 ps
6 (0x06)
1230 ps
7 (0x07)
1435 ps
PLL1_WND_SIZE
PLL1_WND_SIZE sets the window size used for digital lock detect for PLL1. If the phase error between the
reference and feedback of PLL1 is less than specified time, then the PLL1 lock counter increments.
Refer to DIGITAL LOCK DETECT FREQUENCY ACCURACY for more information.
Table 84. PLL1_WND_SIZE, 2 bits
R24[7:6]
Definition
0
5.5 ns
1
10 ns
2
18.6 ns
3
40 ns
REGISTER 25
DAC_CLK_DIV
The DAC update clock frequency is the PLL1 phase detector frequency divided by this divisor.
Table 85. DAC_CLK_DIV, 10 bits
R25[31:22]
Divide
0 (0x00)
Reserved
1 (0x01)
1
2 (0x02)
2
3 (0x03)
3
...
...
1,022 (0x3FE)
1022
1,023 (0x3FF)
1023
PLL1_DLD_CNT
The reference and feedback of PLL1 must be within the window of phase error as specified by PLL1_WND_SIZE
for this many phase detector cycles before PLL1 digital lock detect is asserted.
Refer to DIGITAL LOCK DETECT FREQUENCY ACCURACY for more information.
Table 86. PLL1_DLD_CNT, 14 bits
76
R25[19:6]
Divide
0
Reserved
1
1
2
2
3
3
...
...
16,382 (0x3FFE)
16,382
16,383 (0x3FFF)
16,383
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
REGISTER 26
PLL2_WND_SIZE
PLL2_WND_SIZE sets the window size used for digital lock detect for PLL2. If the phase error between the
reference and feedback of PLL2 is less than specified time, then the PLL2 lock counter increments. This value
must be programmed to 2 (3.7 ns).
Refer to DIGITAL LOCK DETECT FREQUENCY ACCURACY for more information.
Table 87. PLL2_WND_SIZE, 2 bits
R26[31:30]
Definition
0
Reserved
1
Reserved
2
3.7 ns
3
Reserved
EN_PLL2_REF_2X, PLL2 Reference Frequency Doubler
Enabling the PLL2 reference frequency doubler allows for higher phase detector frequencies on PLL2 than would
normally be allowed with the given VCXO or Crystal frequency.
Higher phase detector frequencies reduces the PLL N values which makes the design of wider loop bandwidth
filters possible.
Refer to PLL PROGRAMMING for more information on how to program the PLL dividers to lock the PLL.
Table 88. EN_PLL2_REF_2X
R26[29]
Description
Reference frequency normal
0
(1)
1
(1)
Reference frequency doubled (2x)
When the doubler is not enabled, PLL2_R should not be programmed to 1.
PLL2_CP_POL, PLL2 Charge Pump Polarity
PLL2_CP_POL sets the charge pump polarity for PLL2. The internal VCO requires the negative charge pump
polarity to be selected. Many VCOs use positive slope.
A positive slope VCO increases output frequency with increasing voltage. A negative slope VCO decreases
output frequency with increasing voltage.
Table 89. PLL2_CP_POL
R26[28]
Description
0
Negative Slope VCO/VCXO
1
Positive Slope VCO/VCXO
PLL2_CP_GAIN, PLL2 Charge Pump Current
This bit programs the PLL2 charge pump output current level. The table below also illustrates the impact of the
PLL2 TRI-STATE bit in conjunction with PLL2_CP_GAIN.
Table 90. PLL2_CP_GAIN, 2 bits
R26[27:26]
PLL2_CP_TRI
R27[5]
Charge Pump Current (µA)
X
1
Hi-Z
0 (0x00)
0
100
1 (0x01)
0
400
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
77
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 90. PLL2_CP_GAIN, 2 bits (continued)
R26[27:26]
PLL2_CP_TRI
R27[5]
Charge Pump Current (µA)
2 (0x02)
0
1600
3 (0x03)
0
3200
PLL2_DLD_CNT
The reference and feedback of PLL2 must be within the window of phase error as specified by PLL2_WND_SIZE
for PLL2_DLD_CNT cycles before PLL2 digital lock detect is asserted.
Refer to DIGITAL LOCK DETECT FREQUENCY ACCURACY for more information
Table 91. PLL2_DLD_CNT, 14 bits
R26[19:6]
Divide
0 (0x00)
Reserved
1 (0x01)
1
2 (0x02)
2
3 (0x03)
3
...
...
16,382 (0x3FFE)
16,382
16,383 (0x3FFF)
16,383
PLL2_CP_TRI, PLL2 Charge Pump TRI-STATE
This bit allows for the PLL2 charge pump output pin, CPout2, to be placed into TRI-STATE.
Table 92. PLL2_CP_TRI
R26[5]
Description
0
PLL2 CPout2 is active
1
PLL2 CPout2 is at TRI-STATE
REGISTER 27
PLL1_CP_POL, PLL1 Charge Pump Polarity
PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use positive slope.
A positive slope VCXO increases output frequency with increasing voltage. A negative slope VCXO decreases
output frequency with increasing voltage.
Table 93. PLL1_CP_POL
R27[28]
Description
0
Negative Slope VCO/VCXO
1
Positive Slope VCO/VCXO
PLL1_CP_GAIN, PLL1 Charge Pump Current
This bit programs the PLL1 charge pump output current level. The table below also illustrates the impact of the
PLL1 TRI-STATE bit in conjunction with PLL1_CP_GAIN.
Table 94. PLL1_CP_GAIN, 2 bits
78
R26[27:26]
PLL1_CP_TRI
R27[5]
Charge Pump Current (µA)
X
1
Hi-Z
0 (0x00)
0
100
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 94. PLL1_CP_GAIN, 2 bits (continued)
R26[27:26]
PLL1_CP_TRI
R27[5]
Charge Pump Current (µA)
1 (0x01)
0
200
2 (0x02)
0
400
3 (0x03)
0
1600
CLKinX_PreR_DIV
The pre-R dividers before the PLL1 R divider can be programmed such that when the active clock input is
switched, the frequency at the input of the PLL1 R divider will be the same. This allows PLL1 to stay in lock
without needing to re-program the PLL1 R register when different clock input frequencies are used. This is
especially useful in the auto CLKin switching modes.
Table 95. CLKinX_PreR_DIV Programming Addresses
CLKinX_PreR_DIV
Programming Address
CLKin2_PreR_DIV
R27[25:24]
CLKin1_PreR_DIV
R27[23:22]
CLKin0_PreR_DIV
R27[21:20]
Table 96. CLKinX_PreR_DIV, 2 bits
R27[25:24, 23:22, 21:20]
Divide
0 (0x00)
1
1 (0x01)
2
2 (0x02)
4
3 (0x03)
8
PLL1_R, PLL1 R Divider
The reference path into the PLL1 phase detector includes the PLL1 R divider. Refer to PLL PROGRAMMING for
more information on how to program the PLL dividers to lock the PLL.
The valid values for PLL1_R are shown in the table below.
Table 97. PLL1_R, 14 bits
R27[19:6]
Divide
0 (0x00)
Reserved
1 (0x01)
1
2 (0x02)
2
3 (0x03)
3
...
...
16,382 (0x3FFE)
16,382
16,383 (0x3FFF)
16,383
PLL1_CP_TRI, PLL1 Charge Pump TRI-STATE
This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into TRI-STATE.
Table 98. PLL1_CP_TRI
R27[5]
Description
0
PLL1 CPout1 is active
1
PLL1 CPout1 is at TRI-STATE
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
79
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
REGISTER 28
PLL2_R, PLL2 R Divider
The reference path into the PLL2 phase detector includes the PLL2 R divider.
Refer to PLL PROGRAMMING for more information on how to program the PLL dividers to lock the PLL.
The valid values for PLL2_R are shown in the table below.
Table 99. PLL2_R, 12 bits
R28[31:20]
Divide
0 (0x00)
Not Valid
1 (0x01)
1
2 (0x02)
(1)
(1)
2
3 (0x03)
3
...
...
4,094 (0xFFE)
4,094
4,095 (0xFFF)
4,095
When using PLL2_R divide value of 1, the PLL2 reference doubler should be used (EN_PLL2_REF_2X = 1).
PLL1_N, PLL1 N Divider
The feedback path into the PLL1 phase detector includes the PLL1 N divider.
Refer to PLL PROGRAMMING for more information on how to program the PLL dividers to lock the PLL.
The valid values for PLL1_N are shown in the table below.
Table 100. PLL1_N, 14 bits
R28[19:6]
Divide
0 (0x00)
Not Valid
1 (0x01)
1
2 (0x02)
2
...
...
4,095 (0xFFF)
4,095
REGISTER 29
OSCin_FREQ, PLL2 Oscillator Input Frequency Register
The frequency of the PLL2 reference input to the PLL2 Phase Detector (OSCin/OSCin* port) must be
programmed in order to support proper operation of the frequency calibration routine which locks the internal
VCO to the target frequency.
Table 101. OSCin_FREQ, 3 bits
R29[26:24]
80
OSCin Frequency
0 (0x00)
0 to 63 MHz
1 (0x01)
>63 MHz to 127 MHz
2 (0x02)
>127 MHz to 255 MHz
3 (0x03)
Reserved
4 (0x04)
>255 MHz to 400 MHz
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
PLL2_FAST_PDF, High PLL2 Phase Detector Frequency
When PLL2 phase detector frequency is greater than 100 MHz, set the PLL2_FAST_PDF to ensure proper
operation of device.
Table 102. PLL2_FAST_PDF
R29[23]
PLL2 PDF
0
Less than or
equal to 100 MHz
1
Greater than 100 MHz
PLL2_N_CAL, PLL2 N Calibration Divider
During the frequency calibration routine, the PLL uses the divide value of the PLL2_N_CAL register instead of
the divide value of the PLL2_N register to lock the VCO to the target frequency.
Refer to PLL PROGRAMMING for more information on how to program the PLL dividers to lock the PLL.
Table 103. PLL2_N_CAL, 18 bits
R30[22:5]
Divide
0 (0x00)
Not Valid
1 (0x01)
1
2 (0x02)
2
...
...
262,143 (0x3FFFF)
262,143
REGISTER 30
If an internal VCO mode is used, programming Register 30 triggers the frequency calibration routine. This
calibration routine will also generate a SYNC event. See Clock Output Synchronization (SYNC) for more details
on a SYNC.
PLL2_P, PLL2 N Prescaler Divider
The PLL2 N Prescaler divides the output of the VCO as selected by Mode_MUX1 and is connected to the PLL2
N divider.
Refer to PLL PROGRAMMING for more information on how to program the PLL dividers to lock the PLL.
Table 104. PLL2_P, 3 bits
R30[26:24]
Divide Value
0 (0x00)
8
1 (0x01)
2
2 (0x02)
2
3 (0x03)
3
4 (0x04)
4
5 (0x05)
5
6 (0x06)
6
7 (0x07)
7
PLL2_N, PLL2 N Divider
The feeback path into the PLL2 phase detector includes the PLL2 N divider.
Each time register 30 is updated via the MICROWIRE interface, a frequency calibration routine runs to lock the
VCO to the target frequency. During this calibration PLL2_N is substituted with PLL2_N_CAL.
Refer to PLL PROGRAMMING for more information on how to program the PLL dividers to lock the PLL.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
81
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
The valid values for PLL2_N are shown in the table below.
Table 105. PLL2_N, 18 bits
R30[22:5]
Divide
0 (0x00)
Not Valid
1 (0x01)
1
2 (0x02)
2
...
262,143 (0x3FFFF)
262,143
REGISTER 31
READBACK_LE
Sets the required state of the LEuWire pin when performing register readback.
Refer to READBACK
Table 106. READBACK_LE
R31[21]
Register
0 (0x00)
LE must be low for readback
1 (0x01)
LE must be high for readback
READBACK_ADDR
Sets the address of the register to read back when performing readback.
When reading register 12, the READBACK_ADDR will be read back at R12[20:16].
When reading back from R31 bits 6 to 31 should be ignored. Only uWire_LOCK is valid.
Refer to REGISTER READBACK for more information on readback.
Table 107. READBACK_ADDR, 5 bits
82
R31[20:16]
Register
0 (0x00)
R0
1 (0x01)
R1
2 (0x02)
R2
3 (0x03)
R3
4 (0x04)
R4
5 (0x05)
R5
6 (0x06)
R6
7 (0x07)
R7
8 (0x08)
R8
9 (0x09)
Reserved
10 (0x0A)
R10
11 (0x0B)
R11
12 (0x0C)
R12
13 (0x0D)
R13
14 (0x0E)
R14
15 (0x0F)
R15
16 (0x10)
Reserved
17 (0x11)
Reserved
...
...
22 (0x16)
Reserved
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 107. READBACK_ADDR, 5 bits (continued)
R31[20:16]
Register
23 (0x17)
Reserved
24 (0x18)
R24
25 (0x19)
R25
26 (0x1A)
R26
27 (0x1B)
R27
28 (0x1C)
R28
29 (0x1D)
R29
30 (0x1E)
R30
31 (0x1F)
R31
uWire_LOCK
Setting uWire_LOCK will prevent any changes to uWire registers R0 to R30. Only by clearing the uWire_LOCK
bit in R31 can the uWire registers be unlocked and written to once more.
It is not necessary to lock the registers to perform a readback operation.
Table 108. uWire_LOCK
R31[5]
State
0
Registers unlocked
1
Registers locked, Write-protect
APPLICATION INFORMATION
FREQUENCY PLANNING WITH THE LMK04906 FAMILY
Calculating the value of the output dividers for use with the LMK04906 family is simple due to the architecture of
the LMK04906. That is, the VCO divider may be bypassed and the clock output dividers allow for even and odd
output divide values from 2 to 1045. For most applications it is recommended to bypass the VCO divider.
The procedure for determining the needed LMK04906 device and clock output divider values for a set of clock
output frequencies is straightforward.
1. Calculate the least common multiple (LCM) of the clock output frequencies.
2. Determine which VCO ranges will support the target clock output frequencies given the LCM.
3. Determine the clock output divide values based on VCO frequency.
4. Determine the PLL2 reference frequency doubler mode and PLL2_P, PLL2_N, and PLL2_R divider values
given the OSCin VCXO or crystal frequency and VCO frequency.
For example, given the following target output frequencies: 200 MHz, 120 MHz, and 25 MHz with a VCXO
frequency of 40 MHz:
First determine the LCM of the three frequencies. LCM(200 MHz, 120 MHz, 25 MHz) = 600 MHz. The LCM
frequency is the lowest frequency for which all of the target output frequencies are integer divisors of the LCM.
Note, if there is one frequency which causes the LCM to be very large, greater than 3 GHz for example,
determine if there is a single frequency requirement which causes this. It may be possible to select the
VCXO/crystal frequency to satisfy this frequency requirement through OSCout or CLKout3/4 driven by OSCin. In
this way it is possible to get non-integer related frequencies at the outputs.
Second, since the LCM is not in a VCO frequency range supported by the LMK04906, multiply the LCM
frequency by an integer which causes it to fall into a valid VCO frequency range of an LMK04906 device. In this
case 600 MHz * 4 = 2400 MHz which is valid for the LMK04906.
Third, continuing the example by using a VCO frequency of 2400 MHz and the LMK04906, the CLKout dividers
can be calculated by simply dividing the VCO frequency by the output frequency. To output 200 MHz, 120 MHz,
and 25 MHz the output dividers will be 12, 20, and 96 respectively.
• 2400 MHz / 200 MHz = 12
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
83
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
•
•
www.ti.com
2400 MHz / 120 MHz = 20
2400 MHz / 25 MHz = 96
Fourth, PLL2 must be locked to its input reference. Refer to PLL PROGRAMMING for more information on this
topic. By programming the clock output dividers and the PLL2 dividers the VCO can lock to the frequency of
2400 MHz and the clock outputs dividers will each divide the VCO frequency down to the target output
frequencies of 200 MHz, 120 MHz, and 25 MHz.
NOTE
Refer to application note AN-1865 Frequency Synthesis and Planning for PLL
Architectures for more information on this topic and LCM calculations.
PLL PROGRAMMING
To lock a PLL the divided reference and divided feedback from VCO or VCXO must result in the same phase
detector frequency. The tables below illustrate how the divides are structured for the reference path (R) and
feedback path (N) depending on the MODE of the device.
Table 109. PLL1 Phase Detector Frequency — Reference Path (R)
MODE
(R) PLL1 PDF =
All
CLKinX Frequency / CLKinX_PreR_DIV / PLL1_R
Table 110. PLL1 Phase Detector Frequency — Feedback Path (N)
MODE
Internal VCO Dual PLL
Internal VCO /w 0-delay
(1)
VCO_MUX
OSCout0
—
Bypass
PLL1 PDF (N) =
VCXO Frequency / PLL1_N
—
Divided
VCXO Frequency / OSCin_DIV / PLL1_N
Bypass
—
VCO Frequency / CLKoutX_DIV / PLL1_N
Divided
—
VCO Frequency / VCO_DIV / CLKoutX_DIV / PLL1_N
(1)
(1)
The actual CLKoutX_DIV used is selected by FEEDBACK_MUX.
Table 111. PLL2 Phase Detector Frequency — Reference Path (R)
EN_PLL2_REF_2X
(1)
PLL2 PDF (R) =
(1)
Disabled
OSCin Frequency / PLL2_R
Enabled
OSCin Frequency * 2 / PLL2_R
(1)
For applications in which the OSCin frequency and PLL2 phase detector frequency are equal, the best PLL2 in-band noise can be
achieved when the doubler is enabled (EN_PLL2_REF_2X = 1) and the PLL2 R divide value is 2. Do not use doubler disabled
(EN_PLL2_REF_2X = 0) and PLL2 R divide value of 1.
Table 112. PLL2 Phase Detector Frequency — Feedback Path (N)
MODE
VCO_MUX
PLL2 PDF (N) =
Dual PLL
Dual PLL /w 0-delay
VCO
VCO Frequency / PLL2_P / PLL2_N
Single PLL
Dual PLL
Dual PLL /w 0-delay
VCO Divider
VCO Frequency / VCO_DIV / PLL2_P / PLL2_N
—
VCO Frequency / VCO_DIV / PLL2_P / PLL2_N
Single PLL
Dual PLL External VCO
Dual PLL External VCO /w 0-delay
Single PLL /w 0-delay
84
VCO
VCO Divider
VCO Frequency / CLKoutX_DIV / PLL2_N
VCO Frequency / VCO_DIV / CLKoutX_DIV / PLL2_N
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 113. PLL2 Phase Detector Frequency — Feedback Path (N) during VCO Frequency Calibration
MODE
All Internal VCO Modes
VCO_MUX
VCO
VCO Divider
PLL2 PDF (N_CAL) =
VCO Frequency / PLL2_P / PLL2_N_CAL
VCO Frequency / VCO_DIV / PLL2_P / PLL2_N_CAL
Example PLL2 N Divider Programming
To program PLL2 to lock an LMK04906 using Dual PLL mode to a VCO frequency of 2400 MHz using a 40 MHz
VCXO reference, first determine the total PLL2 N divide value. This is VCO Frequency / PLL2 phase detector
frequency. This example assumes the PLL2 reference frequency doubler is enabled and a PLL2 R divider value
of 2 (1) which results in PLL2 R divide value of 1 which results in PLL2 phase detector frequency the same as
PLL2 reference frequency (40 MHz). 2400 MHz / 40 MHz = 60, so the total PLL2 N divide value is 60.
The dividers in the PLL2 N feedback path for Dual PLL mode include PLL2_P and PLL2_N. PLL2_P can be
programmed from 2 to 8 even and odd. PLL2_N can be programmed from 1 to 263,143 even and odd. Since the
total PLL2 N divide value of 60 contains the factors 2, 2, 3, and 5, it would be allowable to program PLL2_P to 2,
3 or 5. It is simplest to use the smallest divide, so PLL2_P = 2, and PLL2_N = 30 which results in a Total PLL2 N
= 60.
For this example and in most cases, PLL2_N_CAL will have the same value as PLL2_N. However when using
Single PLL mode with 0-delay, the values will differ. When using an external VCO, PLL2_N_CAL value is
unused.
LOOP FILTER
Each PLL of the LMK04906 requires a dedicated loop filter.
PLL1
The loop filter for PLL1 must be connected to the CPout1 pin. Figure 24 shows a simple 2-pole loop filter. The
output of the filter drives an external VCXO module or discrete implementation of a VCXO using a crystal
resonator and external varactor diode. Higher order loop filters may be implemented using additional external R
and C components. It is recommended the loop filter for PLL1 result in a total closed loop bandwidth in the range
of 10 Hz to 200 Hz. The design of the loop filter is application specific and highly dependent on parameters such
as the phase noise of the reference clock, VCXO phase noise, and phase detector frequency for PLL1. TI's
Clock Conditioner Owner’s Manual covers this topic in detail and TI's Clock Design Tool can be used to simulate
loop filter designs for both PLLs.
These resources may be found: http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page.
PLL2
As shown in Figure 24, the charge pump for PLL2 is directly connected to the optional internal loop filter
components, which are normally used only if either a third or fourth pole is needed. The first and second poles
are implemented with external components. The loop must be designed to be stable over the entire applicationspecific tuning range of the VCO. The designer should note the range of KVCO listed in Electrical Characteristics
and how this value can change over the expected range of VCO tuning frequencies. Because loop bandwidth is
directly proportional to KVCO, the designer should model and simulate the loop at the expected extremes of the
desired tuning range, using the appropriate values for KVCO.
When designing with the integrated loop filter of the LMK04906 family, considerations for minimum resistor
thermal noise often lead one to the decision to design for the minimum value for integrated resistors, R3 and R4.
Both the integrated loop filter resistors (R3 and R4) and capacitors (C3 and C4) also restrict the maximum loop
bandwidth. However, these integrated components do have the advantage that they are closer to the VCO and
can therefore filter out some noise and spurs better than external components. For this reason, a common
strategy is to minimize the internal loop filter resistors and then design for the largest internal capacitor values
that permit a wide enough loop bandwidth. In situations where spur requirements are very stringent and there is
margin on phase noise, a feasible strategy would be to design a loop filter with integrated resistor values larger
than their minimum value.
(1)
For applications in which the OSCin frequency and PLL2 phase detector frequency are equal, the best PLL2 in-band noise can be
achieved when the doubler is enabled (EN_PLL2_REF_2X = 1) and the PLL2 R divide value is 2. Do not use doubler disabled
(EN_PLL2_REF_2X = 0) and PLL2 R divide value of 1.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
85
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
LMK04906 PLL1
LMK04906 PLL2
PLL2 Internal Loop Filter
R3
PLL2
Phase
Detector
PLL1
Phase
Detector
Internal VCO
R4
C3
C4
CPout2
CPout1
External VCXO
PLL1 External Loop
Filter
LF1_C1
LF1_C2
LF2_C1
LF1_R2
LF2_C2
PLL2 External Loop
Filter
LF2_R2
Figure 24. PLL1 and PLL2 Loop Filters
SYSTEM LEVEL DIAGRAM
Figure 25 and Figure 26 show an LMK04906 family device with external circuitry for clocking and for power
supply to serve as a guideline for good practices when designing with the LMK04906 family. Refer to PIN
CONNECTION RECOMMENDATIONS for more details on the pin connections and bypassing recommendations.
Also refer to the evaluation board. PCB design will also play a role in device performance.
86
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Status_CLKin0
240:
Status_CLKin1
CLKout0*, 1*
Status_HOLDOVER
To Host
processor
0.1 PF
CLKout0, 1
Status_LD
0.1 PF
SYNC
2x LVPECL
output clocks
to DAC
240:
LEuWire
CLKuWire
240:
DATAuWire
0.1 PF
CLKout2, 3
0.1 PF
CLKout2*,3*
CLKin0
0.1 PF
CLKin0*
Recovered
Reference
Clocks
50:
2x LVPECL
output clocks
to ADC
240:
0.1 PF
CLKin1
LMK04906
0.1 PF
CLKout4
CLKout4 active at startup
CLKout4*
100:
CLKin1*
LVDS clock to
FPGAs or
microcontroller
0.1 PF
CLKin2
0.1 PF
100:
CLKin2*
0.1 PF
Rterm
LVDS Low
Frequency
System
Synchronization
Clock
CLKout5
CLKout5*
OSCin
0.1 PF
OSCin*
0.1 PF
240:
LDObyp1
0.1 PF
OSCout0
LDObyp2
OSCout0*
CPout2
0.1 PF
CPout1
0.1 PF
10 PF
LVPECL
OSCout clocks
to PLL
references
240:
OSCout0 on at startup
PLL1 Loop Filter
Up to 7 total differential clocks
PLL2 External
Loop Filter
Figure 25. Example Application – System Schematic Except for Power
Figure 25 shows the primary reference clock input is at CLKin0/0*. A secondary reference clock is driving
CLKin1/1*. Both clocks are depicted as AC coupled differential drivers. The VCXO attached to the OSCin/OSCin*
port is configured as an AC coupled single-ended driver. Any of the input ports (CLKin0/0*, CLKin1/1*,
CLKin2/2*or OSCin/OSCin*) may be configured as either differential or single-ended. These options are
discussed later in the data sheet.
See LOOP FILTER for more information on PLL1 and PLL2 loop filters.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
87
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
The clock outputs are all AC coupled with 0.1 µF capacitors. Some clock outputs are depicted as LVPECL with
240 Ω emitter resistors and some clock outputs as LVDS. However, the output format of the clock outputs will
vary by user programming, so the user should use the appropriate source termination for each clock output.
Later sections of this data sheet illustrate alternative methods for AC coupling, DC coupling and terminating the
clock outputs.
PCB design will influence crosstalk performance. Tightly coupled clock traces will have less crosstalk than
loosely coupled clock traces. Also proximity to other clocks traces will influence crosstalk.
PLL Supply Plane
Vcc1
FB
Vcc4
Vcc5
10 PF, 1 PF, 0.1 PF
1 PF, 0.1 PF, 10 nF
Vcc7
Vcc9
LDO
LP3878-ADJ
Vcc6
FB
0.1 PF
0.1 PF
Digital
CLKin/OSCout1
OSCin/OSCout0/
PLL2 Circuitry
PLL2 N Divider
PLL1 CP
0.1 PF
PLL2 CP
FB
FB = Ferrite bead
VCO LDO
0.1 PF
Vcc8
LMK04906
Clock Supply Plane
FB
FB
10 PF, 1 PF, 0.1 PF
FB
Vcc13
Vcc2
Vcc3
FB
Vcc10
Vcc11
Vcc12
CLKout0
CLKout1
CLKout2
CLKout3
CLKout4
CLKout5
Figure 26. Example Application – Power System Schematic
Figure 26 shows an example decouping and bypassing scheme for the LMK04906. Components drawn in dotted
lines are optional. Two power planes are used in this design, one for the clock outputs and one for other PLL
circuits.
PCB design will influence impedance to the supply. Vias and traces will increase the impedance to the power
supply. Ensure good direct return current paths.
PIN CONNECTION RECOMMENDATIONS
Vcc Pins and Decoupling
All Vcc pins must always be connected.
Integrated capacitance on the LMK04906 makes external high frequency decoupling capacitors (≤ 1 nF)
unnecessary. The internal capacitance is more effective at filtering high frequency noise than off device bypass
capacitance because there is no bond wire inductance between the LMK04906 circuit and the bypass capacitor.
88
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Vcc2, Vcc3, Vcc10, Vcc11, Vcc12, Vcc13 (CLKout Vccs)
Each of these pins has an internal 200 pF of capacitance.
Ferrite beads may be used to reduce crosstalk between different clock output frequencies on the same
LMK04906 device. Ferrite beads placed between the power supply and a clock Vcc pin will reduce noise
between the Vcc pin and the power supply. When several output clocks share the same frequency a single ferrite
bead can be used between the power supply and each same frequency CLKout Vcc pin.
When using ferrite beads on CLKout Vcc pins, care must be taken to ensure the power supply can source the
needed switching current.
• In most cases a ferrite bead may be placed and the internal capacitance is sufficient.
• If a ferrite bead is used with a low frequency output (typically ≤ 10 MHz) and a high current switching clock
output format such as non-complementary LVCMOS or high swing LVPECL is used, then...
– the ferrite bead can be removed to the lower impedance to the main power supply and bypass capacitors,
or
– localized capacitance can be placed between the ferrite bead and Vcc pin to support the switching current.
– Note that decoupling capacitors used between the ferrite bead and a CLKout Vcc pin can permit high
frequency switching noise to couple through the capacitors into the ground plane and onto other
CLKout Vcc pins with decoupling capacitors. This can degrade crosstalk performance.
Vcc1 (VCO), Vcc4 (Digital), and Vcc9 (PLL2)
Each of these pins has internal bypass capacitance.
Ferrite beads should not be used between these pins and the power supply/large bypass capacitors because
these Vcc pins don’t produce much noise or a ferrite bead can cause phase noise disturbances and resonances.
The typical application diagram in Figure 26 shows all these Vccs connected to together to Vcc without a ferrite
bead.
Vcc6 (PLL1 Charge Pump) and Vcc8 (PLL2 Charge Pump)
Each of these pins has an internal bypass capacitor.
Use of a ferrite bead between the power supply/large bypass capacitors and PLL1 is optional. PLL1 charge
pump can be connected directly to Vcc along with Vcc1, Vcc4, and Vcc9. Depending on the application, a 0.1 uF
capacitor may be placed close to PLL1 charge pump Vcc pin.
A ferrite bead should be placed between the power supply/large bypass capacitors and Vcc8. Most applications
have high PLL2 phase detector frequencies and (> 50 MHz) such that the internal bypassing is sufficient and a
ferrite bead can be used to isolate this switching noise from other circuits. For lower phase detector frequencies
a ferrite bead is optional and depending on application a 0.1 uF capacitor may be added on Vcc8.
Vcc5 (CLKin), Vcc7 (OSCin & OSCout0)
Each of these pins has an internal 100 pF of capacitance. No ferrite bead should be placed between the power
supply/large bypass capacitors and Vcc5 or Vcc7.
These pins are unique since they supply an output clock and other circuitry.
Vcc5 supplies CLKin.
Vcc7 supplies OSCin, OSCout0, and PLL2 circuitry.
LVPECL Outputs
When using an LVPECL output it is not recommended to place a capacitor to ground on the output as might be
done when using a capacitor input LC lowpass filter. The capacitor will appear as a short to the LVPECL output
drivers which are able to supply large amounts of switching current. The effect of the LVPECL sourcing large
switching currents can result in:
1. Large switching currents through the Vcc pin of the LVPECL power supply resulting in more Vcc noise and
possible Vcc spikes.
2. Large switching currents injected into the ground plane through the capacitor which could couple onto other
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
89
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Vcc pins with bypass capacitors to ground resulting in more Vcc noise and possible Vcc spikes.
Unused Clock Outputs
Leave unused clock outputs floating and powered down.
Unused Clock Inputs
Unused clock inputs can be left floating.
LDO Bypass
The LDObyp1 and LDObyp2 pins should be connected to GND through external capacitors, as shown in the
diagram.
DIGITAL LOCK DETECT FREQUENCY ACCURACY
The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A window
size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback signals
of the PLL for each event to occur. When a PLL digital lock event occurs the PLL's digital lock detect is asserted
true. When the holdover exit event occurs, the device will exit holdover mode.
Event
PLL
Window size
Lock count
PLL1 Locked
PLL1
PLL1_WND_SIZE
PLL1_DLD_CNT
PLL2 Locked
PLL2
PLL2_WND_SIZE
PLL2_DLD_CNT
Holdover exit
PLL1
PLL1_WND_SIZE
HOLDOVER_DLD_CNT
For a digital lock detect event to occur there must be a “lock count” number of phase detector cycles of PLLX
during which the time/phase error of the PLLX_R reference and PLLX_N feedback signal edges are within the
user programmable "window size." Since there must be at least "lock count" phase detector events before a lock
event occurs, a minimum digital lock event time can be calculated as "lock count" / fPDX where X = 1 for PLL1 or
2 for PLL2.
By using Equation 3, values for a "lock count" and "window size" can be chosen to set the frequency accuracy
required by the system in ppm before the digital lock detect event occurs:
2e6 × PLLX_WND_SIZE × fPDX
ppm =
PLLX_DLD_CNT
(3)
The effect of the "lock count" value is that it shortens the effective lock window size by dividing the "window size"
by "lock count".
If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by "window
size", then the “lock count” value is reset to 0.
Minimum Lock Time Calculation Example
To calculate the minimum PLL2 digital lock time given a PLL2 phase detector frequency of 40 MHz and
PLL2_DLD_CNT = 10,000. Then the minimum lock time of PLL2 will be 10,000 / 40 MHz = 250 µs.
CALCULATING DYNAMIC DIGITAL DELAY VALUES FOR ANY DIVIDE
This section explains how to calculate the dynamic digital delay for any divide value.
Dynamic digital delay allows the time offset between two or more clock outputs to be adjusted with no or minimal
interruption of clock outputs. Since the clock outputs are operating at a known frequency, the time offset can also
be expressed as a phase shift. When dynamically adjusting the digital delay of clock outputs with different
frequencies the phase shift should be expressed in terms of the higher frequency clock. The step size of the
smallest time adjustment possible is equal to half the period of the Clock Distribution Path, which is the VCO
frequency (Equation 1) or the VCO frequency divided by the VCO divider (Equation 2) if not bypassed. The
smallest degree phase adjustment with respect to a clock frequency will be 360 * the smallest time adjustment *
the clock frequency. The total number of phase offsets that the LMK04906 family is able to achieve using
dynamic digital delay is equal 1 / (higher clock frequency * the smallest phase adjustment).
90
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Equation 4 calculates the digital delay value that must be programmed for a synchronizing clock to achieve a 0
time/phase offset from the qualifying clock. Once this digital delay value is known, it is possible to calculate the
digital delay value for any phase offset. The qualifying clock for dynamic digital delay is selected by the
FEEDBACK_MUX. When dynamic digital delay is engaged with same clock output used for the qualifying clock
and the new synchronized clock, it is termed relative dynamic digital delay since causing another SYNC event
with the same digital delay value will offset the clock by the same phase once again. The important part of
relative dynamic digital delay is that the CLKoutX_HS must be programmed correctly when the SYNC event
occurs (Table 8). This can result in needing to program the device twice. Once to set the new CLKoutX_DDLY
with CLKoutX_HS as required for the SYNC event, and again to set the CLKoutX_HS to its desired value.
Digital delay values are programmed using the CLKoutX_DDLY and CLKoutX_HS registers as shown in
Equation 5. For example, to achieve a digital delay of 13.5, program CLKoutX_DDLY = 14 and CLKoutX_HS = 1.
§§ ª
16
««¬CLKoutX_DIV
©©
ª
««¬
0 digital delay = ¨ ¨
·
¹
·
+ 0.5¸ x CLKoutX_DIV¸ - 11.5
¹
(4)
Equation 4 uses the ceiling operator. To find the ceiling of a fractional number round up. An integer remains the
same value.
Digital delay = CLKoutX_DDLY - (0.5 * CLKoutX_HS)
(5)
Note: since the digital delay value for 0 time/phase offset is a function of the qualifying clock's divide value, the
resulting digital delay value can be used for any clock output operating at any frequency to achieve a 0
time/phase offset from the qualifying clock. Therefore the calculated time shift table will also be the same as in
Table 114
Example
Consider a system with:
• A VCO frequency of 2000 MHz.
• The VCO divider is bypassed, therefore the clock distribution path frequency is 2000 MHz.
• CLKout0_DIV = 10 resulting in a 200 MHz frequency on CLKout0.
• CLKout2_DIV = 20 resulting in a 100 MHz frequency on CLKout2.
For this system the minimum time adjustment is 0.25 ns, which is 0.5 / (2000 MHz). Since the higher frequency
is 200 MHz, phase adjustments will be calculated with respect to the 200 MHz frequency. The 0.25 ns minimum
time adjustment results in a minimum phase adjustment of 18 degrees, which is 360 degrees / 200 MHz * 0.25
ns.
To calculate the digital delay value to achieve a 0 time/phase shift of CLKout2 when CLKout0 is the qualifying
clock. Solve Equation 4 using the divide value of 10. To solve the equation 16/10 = 1.6, the ceiling of 1.6 is 2.
Then to finish solving the equation solve (2 + 0.5) * 10 - 11.5 = 13.5. A digital delay value of 13.5 is programmed
by setting CLKout2_DDLY = 14 and CLKout2_HS = 1.
To calculate the digital delay value to achieve a 0 time/phase shift of CLKout0 when CLKout2 is the qualifying
clock, solve Equation 4 using the divide value of CLKout2, which is 20. This results in a digital delay of 18.5
which is programmed as CLKout0_DDLY = 19 and CLKout0_HS = 1.
Once the 0 time/phase shift digital delay programming value is known a table can be constructed with the digital
delay value to be programmed for any time/phase offset by decrementing or incrementing the digital delay value
by 0.5 for the minimum time/phase adjustment.
A complete filled out table for use of CLKout0 as the qualifying clock is shown in Table 114. It was created by
entering a digital delay of 13.5 for 0 degree phase shift, then decrementing the digital delay down to the minimum
value of 4.5. Since this did not result in all the possible phase shifts, the digital delay was then incremented from
13.5 to 14.0 to complete all possible phase shifts.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
91
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 114. Example Digital Delay Calculation
Digital delay
Calculated time shift
(ns)
Relative time shift to 200 MHz
(ns)
Phase shift of 200 MHz
(degrees)
4.5
-4.5
0.5
36
5
-4.25
0.75
54
5.5
-4.0
1.0
72
6
-3.75
1.25
90
6.5
-3.5
1.5
108
7
-3.25
1.75
126
7.5
-3.0
2.0
144
8
-2.75
2.25
162
8.5
-2.5
2.5
180
9
-2.25
2.75
198
9.5
-2.0
3.0
216
10
-1.75
3.25
234
10.5
-1.5
3.5
252
11
-1.25
3.75
270
11.5
-1.0
4.0
288
12
-0.75
4.25
306
12.5
-0.5
4.5
324
342
13
-0.25
4.75
13.5
0
0
0
14
0.25
0.25
18
14.5
0.5
0.5
36
Observe that the digital delay value of 4.5 and 14.5 will achieve the same relative time shift/phase delay.
However programming a digital delay of 14.5 will result in a clock off time for the synchronizing clock to achieve
the same phase time shift/phase delay.
Digital delay value is programmed as CLKoutX_DDLY - (0.5 * CLKoutX_HS). So to achieve a digital delay of
13.5, program CLKoutX_DDLY = 14 and CLKoutX_HS = 1. To achieve a digital delay of 14, program
CLKoutX_DDLY = 14 and CLKoutX_HS = 0.
OPTIONAL CRYSTAL OSCILLATOR IMPLEMENTATION (OSCin/OSCin*)
The LMK04906 family features supporting circuitry for a discretely implemented oscillator driving the OSCin port
pins. Figure 27 illustrates a reference design circuit for a crystal oscillator:
92
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
OSCin*
Copt
CC1 = 2.2 nF
R1 = 4.7k
SMV1249-074LF
R3 = 10k
LMK04906
XTAL
1 nF
R2 = 4.7k
CC2 = 2.2 nF
OSCin
CPout1
Copt
PLL1 Loop Filter
Figure 27. Reference Design Circuit for Crystal Oscillator Option
This circuit topology represents a parallel resonant mode oscillator design. When selecting a crystal for parallel
resonance, the total load capacitance, CL, must be specified. The load capacitance is the sum of the tuning
capacitance (CTUNE), the capacitance seen looking into the OSCin port (CIN), and stray capacitance due to PCB
parasitics (CSTRAY), and is given by Equation 6.
CSTRAY
CL = CTUNE + CIN +
(6)
2
CTUNE is provided by the varactor diode shown in Figure 27, Skyworks model SMV1249-074LF. A dual diode
package with common cathode provides the variable capacitance for tuning. The single diode capacitance
ranges from approximately 31 pF at 0.3 V to 3.4 pF at 3 V. The capacitance range of the dual package (anode to
anode) is approximately 15.5 pF at 3 V to 1.7 pF at 0.3 V. The desired value of VTUNE applied to the diode should
be VCC/2, or 1.65 V for VCC = 3.3 V. The typical performance curve from the data sheet for the SMV1249-074LF
indicates that the capacitance at this voltage is approximately 6 pF (12 pF / 2).
The nominal input capacitance (CIN) of the LMK04906 family OSCin pins is 6 pF. The stray capacitance (CSTRAY)
of the PCB should be minimized by arranging the oscillator circuit layout to achieve trace lengths as short as
possible and as narrow as possible trace width (50 Ω characteristic impedance is not required). As an example,
assume that CSTRAY is 4 pF. The total load capacitance is nominally:
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
93
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
CL = 6 + 6 +
www.ti.com
4
= 14 pF
2
(7)
Consequently the load capacitance specification for the crystal in this case should be nominally 14 pF.
The 2.2 nF capacitors shown in the circuit are coupling capacitors that block the DC tuning voltage applied by the
4.7 kΩ and 10 kΩ resistors. The value of these coupling capacitors should be large, relative to the value of CTUNE
(CC1 = CC2 >> CTUNE), so that CTUNE becomes the dominant capacitance.
For a specific value of CL, the corresponding resonant frequency (FL) of the parallel resonant mode circuit is:
1
FL = FS À
C1
2(C0 + CL1)
+ 1 = FS À
§C0
2¨
© C1
+
CL ·
+1
¸
C1 ¹
(8)
FS = Series resonant frequency
C1 = Motional capacitance of the crystal
CL = Load capacitance
C0 = Shunt capacitance of the crystal, specified on the crystal datasheet
The normalized tuning range of the circuit is closely approximated by:
1
'F FCL1 - FCL2 C1
=
=
F
2
FFCL1
À
1
1
1
=
(C0 + CL1) (C0 + CL2)
2
À
§C0
¨ C1
©
+
-
§C0
¨
¸
C1 ¹ © C1
CL1·
1
+
CL2·
¸
C1 ¹
(9)
CL1, CL2 = The endpoints of the circuit’s load capacitance range, assuming a variable capacitance element is one
component of the load. FCL1, FCL2 = parallel resonant frequencies at the extremes of the circuit’s load
capacitance range.
A common range for the pullability ratio, C0/C1, is 250 to 280. The ratio of the load capacitance to the shunt
capacitance is ~(n * 1000), n < 10. Hence, picking a crystal with a smaller pullability ratio supports a wider tuning
range because this allows the scale factors related to the load capacitance to dominate.
Examples of the phase noise and jitter performance of the LMK04906 with a crystal oscillator are shown in
Table 115. This table illustrates the clock output phase noise when a 20.48 MHz crystal is paired with PLL1.
94
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 115. Example RMS Jitter and Clock Output Phase Noise for LMK04906 with a
20.48 MHz Crystal Driving OSCin (T = 25 °C, VCC = 3.3 V) (1)
RMS Jitter (ps)
Integration Bandwidth
Clock Output Type
PLL2 PDF = 20.48 MHz
(EN_PLL2_REF2X = 0,
XTAL_LVL = 3)
PLL2 PDF = 40.96 MHz
(EN_PLL2_REF2X = 1, XTAL_LVL = 3)
fCLK = 245.76 MHz
fCLK = 122.88 MHz
fCLK = 245.76 MHz
LVCMOS
374
412
382
LVDS
419
421
372
LVPECL 1.6 Vpp
460
448
440
LVCMOS
226
195
190
LVDS
231
205
194
LVPECL 1.6 Vpp
226
191
188
Clock Output Type
PLL2 PDF = 20.48 MHz
(EN_PLL2_REF2X = 0,
XTAL_LVL = 3)
100 Hz – 20 MHz
10 kHz – 20 MHz
Phase Noise (dBc/Hz)
Offset
fCLK = 245.76 MHz
fCLK = 122.88 MHz
fCLK = 245.76 MHz
LVCMOS
-87
-93
-87
LVDS
-86
-91
-86
100 Hz
LVPECL 1.6 Vpp
-86
-92
-85
LVCMOS
-115
-121
-115
LVDS
-115
-123
-116
LVPECL 1.6 Vpp
-114
-122
-116
LVCMOS
-117
-128
-122
LVDS
-117
-128
-122
LVPECL 1.6 Vpp
-117
-128
-122
LVCMOS
-130
-135
-129
LVDS
-130
-135
-129
LVPECL 1.6 Vpp
-129
-135
-129
LVCMOS
-150
-154
-148
LVDS
-149
-153
-148
LVPECL 1.6 Vpp
-150
-154
-148
LVCMOS
-159
-162
-159
LVDS
-157
-159
-157
LVPECL 1.6 Vpp
-159
-161
-159
1 kHz
10 kHz
100 kHz
1 MHz
40 MHz
(1)
PLL2 PDF = 40.96 MHz
(EN_PLL2_REF2X = 1, XTAL_LVL = 3)
Performance data and crystal specifications contained in this section are based on Vectron model VXB1-1150-20M480, 20.48 MHz.
PLL1 has a narrow loop bandwidth, PLL2 loop parameters are: C1 = 150 pF, C2 = 120 nF, R2 = 470 Ω, Charge Pump current = 3.2 mA,
Phase detector frequency = 20.48 MHz or 40.96 MHz, VCO frequency = 2949.12 MHz. Loop filter was optimized for 40.96 MHz phase
detector performance.
Example crystal specifications are presented in Table 116.
Table 116. Example Crystal Specifications
Parameter
Value
Nominal Frequency (MHz)
20.48
Frequency Stability, T = 25 °C
± 10 ppm
Operating temperature range
-40 °C to +85 °C
Frequency Stability, -40 °C to +85 °C
± 15 ppm
Load Capacitance
14 pF
Shunt Capacitance (C0)
5 pF Maximum
Motional Capacitance (C1)
20 fF ± 30%
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
95
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 116. Example Crystal Specifications (continued)
Parameter
Value
25 Ω Maximum
Equivalent Series Resistance
Drive level
2 mWatts Maximum
C0/C1 ratio
225 typical, 250 Maximum
See Figure 28 for a representative tuning curve.
180
140
100
PPM
60
20
-20
-60
-100
-140
-180
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
VTUNE(V)
Figure 28. Example Tuning Curve, 20.48 MHz Crystal
The tuning curve achieved in the user's application may differ from the curve shown above due to differences in
PCB layout and component selection.
This data is measured on the bench with the crystal integrated with the LMK04906 family. Using a voltmeter to
monitor the VTUNE node for the crystal, the PLL1 reference clock input frequency is swept in frequency and the
resulting tuning voltage generated by PLL1 is measured at each frequency. At each value of the reference clock
frequency, the lock state of PLL1 should be monitored to ensure that the tuning voltage applied to the crystal is
valid.
The curve shows over the tuning voltage range of 0.3 VDC to 3.0 VDC, the frequency range is -140 to +91 ppm;
or equivalently, a tuning range of -2850 Hz to +1850 Hz. The measured tuning voltage at the nominal crystal
frequency (20.48 MHz) is 1.7 V. Using the diode data sheet tuning characteristics, this voltage results in a tuning
capacitance of approximately 6.5 pF.
The tuning curve data can be used to calculate the gain of the oscillator (KVCO). The data used in the calculations
is taken from the most linear portion of the curve, a region centered on the crossover point at the nominal
frequency (20.48 MHz). For a well designed circuit, this is the most likely operating range. In this case, the tuning
range used for the calculations is ± 1000 Hz (± 0.001 MHz), or ± 81.4 ppm. The simplest method is to calculate
the ratio:
KVCO =
'F
=
'V
§ 'F2 - 'F1 · MHz
¨ VTUNE2 - VTUNE1¸ , V
©
¹
(10)
ΔF2 and ΔF1 are in units of MHz. Using data from the curve this becomes:
0.001 - (-0.001)
MHz
= 0.00164
2.03 - 0.814
V
(11)
A second method uses the tuning data in units of ppm:
FNOM À ('ppm2 - 'ppm1)
KVCO =
6
'V À 10
(12)
FNOM is the nominal frequency of the crystal and is in units of MHz. Using the data, this becomes:
96
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
12.288 À (81.4 - (-81.4))
(2.03 - 0.814) À 10
6
= 0.00164,
MHz
V
(13)
In order to ensure startup of the oscillator circuit, the equivalent series resistance (ESR) of the selected crystal
should conform to the specifications listed in Electrical Characteristics.
It is also important to select a crystal with adequate power dissipation capability, or drive level. If the drive level
supplied by the oscillator exceeds the maximum specified by the crystal manufacturer, the crystal will undergo
excessive aging and possibly become damaged. Drive level is directly proportional to resonant frequency,
capacitive load seen by the crystal, voltage and equivalent series resistance (ESR). For more complete coverage
of crystal oscillator design, see Application Note AN-1939 at http://www.ti.com/lsds/ti/analog/clocksandtimers/
clocks_and_timers.page or http://www.ti.com/ general/docs/techdocs.tsp?silold=1.
DRIVING CLKin AND OSCin INPUTS
Driving CLKin Pins with a Differential Source
Both CLKin ports can be driven by differential signals. It is recommended that the input mode be set to bipolar
(CLKinX_BUF_TYPE = 0) when using differential reference clocks. The LMK04906 family internally biases the
input pins so the differential interface should be AC coupled. The recommended circuits for driving the CLKin
pins with either LVDS or LVPECL are shown in Figure 29 and Figure 30.
100: Trace
(Differential)
LVDS
100:
CLKinX
0.1 PF
LMK04906
Input
0.1 PF
CLKinX*
240:
Figure 29. CLKinX/X* Termination for an LVDS Reference Clock Source
LVPECL
Ref Clk
0.1 PF
0.1 PF
100: Trace
(Differential)
100:
CLKinX
0.1 PF
LMK04906
Input
0.1 PF
240:
CLKinX*
Figure 30. CLKinX/X* Termination for an LVPECL Reference Clock Source
Finally, a reference clock source that produces a differential sine wave output can drive the CLKin pins using the
following circuit. Note: the signal level must conform to the requirements for the CLKin pins listed in Electrical
Characteristics.
100: Trace
(Differential)
Differential
Sinewave Clock
Source
100:
CLKinX
0.1 PF
0.1 PF
LMK04906
Input
CLKinX*
Figure 31. CLKinX/X* Termination for a Differential Sinewave Reference Clock Source
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
97
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Driving CLKin Pins with a Single-Ended Source
The CLKin pins of the LMK04906 family can be driven using a single-ended reference clock source, for example,
either a sine wave source or an LVCMOS/LVTTL source. Either AC coupling or DC coupling may be used. In the
case of the sine wave source that is expecting a 50 Ω load, it is recommended that AC coupling be used as
shown in the circuit below with a 50 Ω termination.
NOTE
The signal level must conform to the requirements for the CLKin pins listed in the
Electrical Characteristics table. CLKinX_BUF_TYPE in Register 11 is recommended to be
set to bipolar mode (CLKinX_BUF_TYPE = 0).
0.1 PF
50: Trace
Clock Source
CLKinX
50:
0.1 PF
LMK04906
CLKinX*
Figure 32. CLKinX/X* Single-ended Termination
If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC
coupling may be used. If DC coupling is used, the CLKinX_BUF_TYPE should be set to MOS buffer mode
(CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC coupled,
MOS-mode clock inputs given in the table of Electrical Characteristics. If AC coupling is used, the
CLKinX_BUF_TYPE should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at
the input pins must meet the specifications for AC coupled, bipolar mode clock inputs given in the table of
Electrical Characteristics. In this case, some attenuation of the clock input level may be required. A simple
resistive divider circuit before the AC coupling capacitor is sufficient.
Figure 33. DC Coupled LVCMOS/LVTTL Reference Clock
TERMINATION AND USE OF CLOCK OUTPUT (DRIVERS)
When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:
• Transmission line theory should be followed for good impedance matching to prevent reflections.
• Clock drivers should be presented with the proper loads. For example:
– LVDS drivers are current drivers and require a closed current loop.
– LVPECL drivers are open emitters and require a DC path to ground.
• Receivers should be presented with a signal biased to their specified DC bias level (common mode voltage)
for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage
level. In this case, the signal should normally be AC coupled.
98
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
It is possible to drive a non-LVPECL or non-LVDS receiver with an LVDS or LVPECL driver as long as the above
guidelines are followed. Check the datasheet of the receiver or input being driven to determine the best
termination and coupling method to be sure that the receiver is biased at its optimum DC voltage (common mode
voltage). For example, when driving the OSCin/OSCin* input of the LMK04906 family, OSCin/OSCin* should be
AC coupled because OSCin/OSCin* biases the signal to the proper DC level (See Figure 25) This is only slightly
different from the AC coupled cases described in Driving CLKin Pins with a Single-Ended Source because the
DC blocking capacitors are placed between the termination and the OSCin/OSCin* pins, but the concept remains
the same. The receiver (OSCin/OSCin*) sets the input to the optimum DC bias voltage (common mode voltage),
not the driver.
Termination for DC Coupled Differential Operation
For DC coupled operation of an LVDS driver, terminate with 100 Ω as close as possible to the LVDS receiver as
shown in Figure 34.
100: Trace
(Differential)
LVDS
Driver
100:
CLKoutX
LVDS
Receiver
CLKoutX*
Figure 34. Differential LVDS Operation, DC Coupling, No Biasing of the Receiver
For DC coupled operation of an LVPECL driver, terminate with 50 Ω to VCC - 2 V as shown in Figure 35.
Alternatively terminate with a Thevenin equivalent circuit (120 Ω resistor connected to VCC and an 82 Ω resistor
connected to ground with the driver connected to the junction of the 120 Ω and 82 Ω resistors) as shown in
Figure 36 for VCC = 3.3 V.
50:
Vcc - 2 V
CLKoutX
100: Trace
(Differential)
LVPECL
Driver
LVPECL
Receiver
50:
CLKoutX*
Vcc - 2 V
Figure 35. Differential LVPECL Operation, DC Coupling
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
99
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
82:
120:
Vcc
CLKoutX
100: Trace
(Differential)
LVPECL
Driver
LVPECL
Receiver
82:
120:
CLKoutX*
Vcc
Figure 36. Differential LVPECL Operation, DC Coupling, Thevenin Equivalent
Termination for AC Coupled Differential Operation
AC coupling allows for shifting the DC bias level (common mode voltage) when driving different receiver
standards. Since AC coupling prevents the driver from providing a DC bias voltage at the receiver it is important
to ensure the receiver is biased to its ideal DC level.
When driving non-biased LVDS receivers with an LVDS driver, the signal may be AC coupled by adding DC
blocking capacitors, however the proper DC bias point needs to be established at the receiver. One way to do
this is with the termination circuitry in Figure 37.
0.1 PF
LVDS
Driver
100: Trace
(Differential)
50:
CLKoutX
LVDS
Receiver
CLKoutX*
50:
Vbias
0.1 PF
Figure 37. Differential LVDS Operation, AC Coupling, External Biasing at the Receiver
Some LVDS receivers may have internal biasing on the inputs. In this case, the circuit shown in Figure 37 is
modified by replacing the 50 Ω terminations to Vbias with a single 100 Ω resistor across the input pins of the
receiver, as shown in Figure 38. When using AC coupling with LVDS outputs, there may be a startup delay
observed in the clock output due to capacitor charging. The previous figures employ a 0.1 µF capacitor. This
value may need to be adjusted to meet the startup requirements for a particular application.
LVDS
Driver
100: Trace
(Differential)
100:
0.1 PF
LVDS
Receiver
0.1 PF
Figure 38. LVDS Termination for a Self-Biased Receiver
100
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
LVPECL drivers require a DC path to ground. When AC coupling an LVPECL signal use 120 Ω emitter resistors
close to the LVPECL driver to provide a DC path to ground as shown in Figure 39. For proper receiver operation,
the signal should be biased to the DC bias level (common mode voltage) specified by the receiver. The typical
DC bias voltage for LVPECL receivers is 2 V. A Thevenin equivalent circuit (82 Ω resistor connected to VCC and
a 120 Ω resistor connected to ground with the driver connected to the junction of the 82 Ω and 120 Ω resistors) is
a valid termination as shown in Figure 39 for VCC = 3.3 V. Note this Thevenin circuit is different from the DC
coupled example in Figure 36.
82:
120:
0.1 PF
LVPECL
Driver
100: Trace
(Differential)
0.1 PF
82:
120:
CLKoutX*
LVPECL
Receiver
120:
CLKoutX
120:
Vcc
Vcc
Figure 39. Differential LVPECL Operation, AC Coupling, Thevenin Equivalent, External Biasing at the
Receiver
Termination for Single-Ended Operation
A balun can be used with either LVDS or LVPECL drivers to convert the balanced, differential signal into an
unbalanced, single-ended signal.
It is possible to use an LVPECL driver as one or two separate 800 mVpp signals. When using only one LVPECL
driver of a CLKoutX/CLKoutX* pair, be sure to properly terminated the unused driver. When DC coupling one of
the LMK04906 family clock LVPECL drivers, the termination should be 50 Ω to VCC - 2 V as shown in Figure 40.
The Thevenin equivalent circuit is also a valid termination as shown in Figure 41 for Vcc = 3.3 V.
50:
Vcc - 2V
CLKoutX
50: Trace
LVPECL
Driver
Vcc - 2V
CLKoutX*
Load
50:
Figure 40. Single-Ended LVPECL Operation, DC Coupling
CLKoutX
Vcc
50: Trace
CLKoutX*
82 :
120:
LVPECL
Driver
82:
120:
Vcc
Load
Figure 41. Single-Ended LVPECL Operation, DC Coupling, Thevenin Equivalent
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
101
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
0.1 PF
LVPECL
Driver
50: Trace
50:
CLKoutX
120:
When AC coupling an LVPECL driver use a 120 Ω emitter resistor to provide a DC path to ground and ensure a
50 Ω termination with the proper DC bias level for the receiver. The typical DC bias voltage for LVPECL
receivers is 2 V (See Driving CLKin Pins with a Single-Ended Source). If the companion driver is not used it
should be terminated with either a proper AC or DC termination. This latter example of AC coupling a singleended LVPECL signal can be used to measure single-ended LVPECL performance using a spectrum analyzer or
phase noise analyzer. When using most RF test equipment no DC bias point (0 VDC) is required for safe and
proper operation. The internal 50 Ω termination of the test equipment correctly terminates the LVPECL driver
being measured as shown in Figure 42.
50:
CLKoutX*
120:
0.1 PF
Load
Figure 42. Single-Ended LVPECL Operation, AC Coupling
POWER SUPPLY
Current Consumption / Power Dissipation Calculations
From Table 117 the current consumption can be calculated for any configuration.
For example, the current for the entire device with 1 LVDS (CLKout0) and 1 LVPECL 1.6 Vpp /w 240 ohm
emitter resistors (CLKout1) output active with a clock output divide = 1, and no other features enabled can be
calculated by adding up the following blocks: core current, clock buffer, one LVDS output buffer current, and one
LVPECL output buffer current. There will also be one LVPECL output drawing emitter current, which means
some of the power from the current draw of the device is dissipated in the external emitter resistors which
doesn't add to the power dissipation budget for the device but is important for LDO ICC calculations.
For total current consumption of the device, add up the significant functional blocks. In this example, 228.1 mA =
• 140 mA (core current)
• 17.3 mA (base clock distribution)
• 25.5 mA (CLKout0 & 1 divider)
• 14.3 mA (LVDS buffer)
• 31 mA (LVPECL 1.6 Vpp buffer /w 240 ohm emitter resistors)
Once total current consumption has been calculated, power dissipated by the device can be calculated. The
power dissipation of the device is equation to the total current entering the device multiplied by the voltage at the
device minus the power dissipated in any emitter resistors connected to any of the LVPECL outputs. If no emitter
resistors are connected to the LVPECL outputs, this power will be 0 watts. Continuing the above example which
has 228.1 mA total Icc and one output with 240 ohm emitter resitors. Total IC power = 717.7 mW = 3.3 V * 228.1
mA - 35 mW.
102
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
Table 117. Typical Current Consumption for Selected Functional Blocks (TA = 25 °C, VCC = 3.3 V)
Block
Typical ICC
(mA)
Condition
Power
dissipated
in device
(mW)
Power
dissipated
externally (1
)
(mW)
Core and Functional Blocks
Core
MODE = 0: Dual Loop, Internal VCO
PLL1 and PLL2 locked
140
462
-
MODE = 2: Dual Loop, Internal VCO,
0-Delay
PLL1 and PLL2 locked; Includes
EN_FEEDBACK_MUX = 1
155
512
-
MODE = 3: Dual Loop, External VCO
PLL1 and PLL2 locked
127
419
-
MODE = 5: Dual Loop, External VCO, PLL1 and PLL2 locked; Includes
0-Delay
EN_FEEDBACK_MUX = 1
142
469
-
MODE = 6: Single Loop (PLL2),
Internal VCO
PLL2 locked
116
383
-
MODE = 11: Single Loop (PLL2),
External VCO
PLL2 locked
103
340
-
PD_OSCin = 0
42
139
-
PD_OSCin = 1
34.5
114
-
2
6.6
-
17.3
57.1
-
MODE = 16: Clock Distribution
EN_TRACK
Tracking is enabled (EN_TRACK = 1)
Base Clock
Distribution
At least 1 CLKoutX_PD = 0
CLKout Outputs
Each CLKout Output
2.8
9.2
-
Clock Divider/
Digital Delay
When a clock output is enabled, this contributes the divider/delay block
25.5
84.1
-
Divider / digital delay in extended mode
29.6
97.7
-
VCO Divider
VCO Divider current
7.7
25.4
-
HOLDOVER
mode
When in holdover mode
2.2
7.2
-
Feedback Mux
Feedback mux must be enabled for 0-delay modes and digital delay mode
(SYNC_QUAL = 1)
4.9
16.1
-
SYNC Asserted
While SYNC is asserted, this extra current is drawn
1.7
5.6
-
EN_SYNC = 1
Required for SYNC functionality. May be turned off once SYNC is complete
to save power.
6
19.8
-
SYNC_QUAL = 1
Delay enabled, delay > 7 (CLKout_MUX = 2, 3)
Crystal Mode
OSCin Doubler
Enabling the Crystal Oscillator
8.7
28.7
-
XTAL_LVL = 0
1.8
5.9
-
XTAL_LVL = 1
2.7
9
-
XTAL_LVL = 2
3.6
12
-
XTAL_LVL = 3
4.5
15
-
2.8
9.2
-
CLKoutX_ANLG_DLY = 0 to 3
3.4
11.2
-
CLKoutX_ANLG_DLY = 4 to 7
3.8
12.5
-
CLKoutX_ANLG_DLY = 8 to 11
4.2
13.9
-
CLKoutX_ANLG_DLY = 12 to 15
4.7
15.5
-
CLKoutX_ANLG_DLY = 16 to 23
5.2
17.2
-
2.8
9.2
-
14.3
47.2
-
EN_PLL2_REF_2X = 1
Analog Delay Value
Analog Delay
Clock Output Has Analog Delay Selected. Example:
CLKout0_ADLY_SEL = 1
Clock Output Buffers
LVDS
(1)
100 ohm differential termination
Power is dissipated externally in LVPECL emitter resistors. The externally dissipated power is calculated as twice the DC voltage level
of one LVPECL clock output pin squared over the emitter resistance. That is to say power dissipated in emitter resistors = 2 * Vem2 /
Rem.
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
103
LMK04906
SNAS589D – JUNE 2012 – REVISED MAY 2013
www.ti.com
Table 117. Typical Current Consumption for Selected Functional Blocks (TA = 25 °C, VCC = 3.3
V) (continued)
Block
Typical ICC
(mA)
Condition
LVPECL
LVCMOS
Power
dissipated
in device
(mW)
Power
dissipated
externally (1
)
(mW)
LVPECL 2.0 Vpp, AC coupled using 240 ohm emitter resistors
32
70.6
35
LVPECL 1.6 Vpp, AC coupled using 240 ohm emitter resistors
31
67.3
35
LVPECL 1.6 Vpp, AC coupled using 120 ohm emitter resistors
46
91.8
60
LVPECL 1.2 Vpp, AC coupled using 240 ohm emitter resistors
30
59
40
LVPECL 0.7 Vpp, AC coupled using 240 ohm emitter resistors
29
55.7
40
LVCMOS Pair (CLKoutX_TYPE
= 6 to 9)
CL = 5 pF
3 MHz
24
79.2
-
30 MHz
26.5
87.5
-
150 MHz
36.5
120.5
-
LVCMOS Single (CLKoutX_TYPE
= 10 to 13)
CL = 5 pF
3 MHz
15
49.5
-
30 MHz
16
52.8
-
150 MHz
21.5
71
-
THERMAL MANAGEMENT
Power consumption of the LMK04906 can be high enough to require attention to thermal management. For
reliability and performance reasons the die temperature should be limited to a maximum of 125 °C. That is, as an
estimate, TA (ambient temperature) plus device power consumption times θJA should not exceed 125 °C.
The package of the device has an exposed pad that provides the primary heat removal path as well as excellent
electrical grounding to a printed circuit board. To maximize the removal of heat from the package a thermal land
pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the
package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.
A recommended land and via pattern is shown in Figure 43. More information on soldering WQFN packages can
be obtained: http://www.ti.com/packaging.
A recommended footprint including recommended solder mask and solder paste layers can be found at:
http://www.ti.com/packaging for the NKD0064A package.
7.2 mm
0.2 mm
1.46 mm
1.15 mm
Figure 43. Recommended Land and Via Pattern
To minimize junction temperature it is recommended that a simple heat sink be built into the PCB (if the ground
plane layer is not exposed). This is done by including a copper area of about 2 square inches on the opposite
side of the PCB from the device. This copper area may be plated or solder coated to prevent corrosion but
should not have conformal coating (if possible), which could provide thermal insulation. The vias shown in
Figure 43 should connect these top and bottom copper layers and to the ground layer. These vias act as “heat
pipes” to carry the thermal energy away from the device side of the board to where it can be more effectively
dissipated.
104
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
LMK04906
www.ti.com
SNAS589D – JUNE 2012 – REVISED MAY 2013
REVISION HISTORY
Changes from Revision C (May 2013) to Revision D
•
Page
Changed layout of National Data Sheet to TI format. ....................................................................................................... 104
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Product Folder Links: LMK04906
105
PACKAGE OPTION ADDENDUM
www.ti.com
12-Jun-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LMK04906BISQ/NOPB
ACTIVE
WQFN
NKD
64
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-3-260C-168 HR
-40 to 85
K04906BISQ
LMK04906BISQE/NOPB
ACTIVE
WQFN
NKD
64
250
Green (RoHS
& no Sb/Br)
CU SN
Level-3-260C-168 HR
-40 to 85
K04906BISQ
LMK04906BISQX/NOPB
ACTIVE
WQFN
NKD
64
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-3-260C-168 HR
-40 to 85
K04906BISQ
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
12-Jun-2014
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
17-May-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
LMK04906BISQ/NOPB
WQFN
NKD
64
LMK04906BISQE/NOPB
WQFN
NKD
LMK04906BISQX/NOPB
WQFN
NKD
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
1000
330.0
16.4
9.3
9.3
1.3
12.0
16.0
Q1
64
250
178.0
16.4
9.3
9.3
1.3
12.0
16.0
Q1
64
2000
330.0
16.4
9.3
9.3
1.3
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
17-May-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LMK04906BISQ/NOPB
WQFN
NKD
64
1000
367.0
367.0
38.0
LMK04906BISQE/NOPB
WQFN
NKD
64
250
213.0
191.0
55.0
LMK04906BISQX/NOPB
WQFN
NKD
64
2000
367.0
367.0
38.0
Pack Materials-Page 2
PACKAGE OUTLINE
NKD0064A
WQFN - 0.8 mm max height
SCALE 1.600
WQFN
9.1
8.9
B
A
PIN 1 INDEX AREA
0.5
0.3
9.1
8.9
0.3
0.2
DETAIL
OPTIONAL TERMINAL
TYPICAL
0.8 MAX
C
SEATING PLANE
(0.1)
TYP
7.2 0.1
SEE TERMINAL
DETAIL
32
17
60X 0.5
33
16
4X
7.5
1
PIN 1 ID
(OPTIONAL)
48
64
49
64X
0.5
0.3
64X
0.3
0.2
0.1
0.05
C A
C
B
4214996/A 08/2013
NOTES:
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
www.ti.com
EXAMPLE BOARD LAYOUT
NKD0064A
WQFN - 0.8 mm max height
WQFN
(
7.2)
SYMM
64X (0.6)
64X (0.25)
64
SEE DETAILS
49
1
48
60X (0.5)
SYMM
(8.8)
(1.36)
TYP
( 0.2) VIA
TYP
8X (1.31)
16
33
32
17
(1.36) TYP
8X (1.31)
(8.8)
LAND PATTERN EXAMPLE
SCALE:8X
0.07 MIN
ALL AROUND
0.07 MAX
ALL AROUND
METAL
SOLDER MASK
OPENING
SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
(PREFERRED)
METAL
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4214996/A 08/2013
NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note
in literature No. SLUA271 (www.ti.com/lit/slua271).
www.ti.com
EXAMPLE STENCIL DESIGN
NKD0064A
WQFN - 0.8 mm max height
WQFN
SYMM
64X (0.6)
64X (0.25)
(1.36) TYP
64
49
1
48
(1.36)
TYP
60X (0.5)
SYMM
(8.8)
METAL
TYP
33
16
32
17
25X
(1.16)
(8.8)
SOLDERPASTE EXAMPLE
BASED ON 0.125mm THICK STENCIL
EXPOSED PAD
65% PRINTED SOLDER COVERAGE BY AREA
SCALE:10X
4214996/A 08/2013
NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
Similar pages