LCE6.5 thru LCE170A Transient Voltage Suppressor Breakdown Voltage 6.5 to 170 Volts Peak Pulse Power 1500 Watts Features CASE: DO-204AL (DO-27) Breakdown Voltages (VBR)from 6.5 to 170V 1500W peak pulse power capability with a 10/1000μs waveform, repetitive rate (duty cycle):0.01% Low capacitance Fast Response Time Excellent clamping capability High temperature soldering guaranteed: 265℃ /10 seconds, 0.375” (9.5mm) lead length, 5lbs. (2.3kg) tension 效 无 Application Use in sensitive electronics protection against voltage transients induced by inductive load switching and lighting on ICS, MOSFE, signal lines of sensor units for consumer, computer, industrial, automotive and telecommunication 印 打 Mechanical Data Dimensions in inches and (millimeters) Case: Void-free transfer molded thermosetting epoxy body meeting UL94V-O Terminals: Tin-Lead or ROHS Compliant annealed matte-Tin plating readily solderable per MIL-STD-750, Method 2026 Marking: Part number and cathode band Polarity: Cathode indicated by band Weight: 1.2g(Approximately) Maximum Ratings and Electrical Characteristics @ Symbol 25OC unless otherwise specified Value Unit 1500 W SEE TABLE1 A 5 W Steady state power dissipation at TA=25℃ when mounted on FR4 PC described for thermal resistance 1.52 W Maximum instantaneous forward voltage at 100A 3.5 V RθJL Thermal resistance junction to lead 22 ℃/W RθJA Thermal resistance junction to ambient 82 ℃/W -65 to +150 ℃ Conditions PPPM Peak pulse power capability with a 10/1000μs IPPM Peak pulse current with a 10/1000μs Steady state power dissipation at TL=40℃ ,Lead lengths 0.375”(10mm) PM(AV) VF TJ, TSTG Operating and Storage Temperature Document Number: LCE6.5 thru LCE170A Feb.29, 2012 www.smsemi.com 1 LCE6.5 thru LCE170A Electrical Characteristics @ 25°C (Unless Otherwise Noted) TABLE1 Breakdown Voltage VBR @ IBR Microsemi Part Number MIN LCE6.5 LCE6.5A LCE7.0 LCE7.0A LCE7.5 LCE7.5A LCE8.0 LCE8.0A LCE8.5 LCE8.5A LCE9.0 LCE9.0A LCE10 LCE10A LCE11 LCE11A LCE12 LCE12A LCE13 LCE13A LCE14 LCE14A LCE15 LCE15A LCE16 LCE16A LCE17 LCE17A LCE18 LCE18A LCE20 LCE20A LCE22 LCE22A LCE24 LCE24A LCE26 LCE26A LCE28 LCE28A LCE30 LCE30A LCE33 LCE33A LCE36 LCE36A LCE40 LCE40A LCE43 LCE43A LCE45 LCE45A LCE48 LCE48A LCE51 LCE51A MAX VBR(V) 7.22 8.82 7.22 7.98 7.78 9.51 7.78 8.60 8.33 10.2 8.33 9.21 8.89 10.9 8.89 9.83 9.44 11.5 9.44 10.4 10.0 12.2 10.0 11.1 11.1 13.6 11.1 12.3 12.2 14.9 12.2 13.5 13.3 16.3 13.3 14.7 14.4 17.6 14.4 15.9 15.6 19.1 15.6 17.2 16.7 20.4 16.7 18.5 17.8 21.8 17.8 19.7 18.9 23.1 18.9 20.9 20.0 24.4 20.0 22.1 22.2 27.1 22.2 24.5 24.4 29.8 24.4 26.9 26.7 32.6 26.7 29.5 28.9 35.3 28.9 31.9 31.1 38.0 31.1 34.4 33.3 40.7 33.3 36.8 36.7 44.9 36.7 40.6 40.0 48.9 40.0 44.2 44.4 54.3 44.4 49.1 47.8 58.4 47.8 52.8 50.0 61.1 50.0 55.3 53.3 65.1 53.3 58.9 56.7 69.3 56.7 62.7 IBR (mA) 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Reverse Stand Off Voltage Maximum Standby current ID @ VWM Maximum Peak Pulse Current IPP @ 10/ 1000µs Maximum Clamping Voltage VC @ IPP Maximum Capacitance @ 0V f=1MHZ VWM(V) 6.5 6.5 7.0 7.0 7.5 7.5 8.0 8.0 8.5 8.5 9.0 9.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 13.0 14.0 14.0 15.0 15.0 16.0 16.0 17.0 17.0 18.0 18.0 20.0 20.0 22.0 22.0 24.0 24.0 26.0 26.0 28.0 28.0 30.0 30.0 33.0 33.0 36.0 36.0 40.0 40.0 43.0 43.0 45.0 45.0 48.0 48.0 51.0 51.0 ID(µA) 1000 1000 500 500 250 250 100 100 50 50 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 IPP (A) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 94.0 100.0 89.0 97.0 80.0 88.0 74.0 82.0 68.0 75.0 63.0 70.0 58.0 65.0 56.0 61.0 52.0 57.0 49.0 54.0 46.0 51.0 42.0 46.0 38.0 42.0 35.0 39.0 32.0 36.0 30.0 33.0 28.0 31.0 25.4 28.1 23.3 25.8 21.0 23.0 19.5 21.6 18.7 20.6 17.5 19.4 16.5 18.2 VC(V) 12.3 11.2 13.3 12.0 14.3 12.9 15.0 13.6 15.9 14.4 16.9 15.4 18.8 17.0 20.1 18.2 22.0 19.9 23.8 21.5 25.8 23.2 26.9 24.4 28.8 26.0 30.5 27.6 32.2 29.2 35.8 32.4 39.4 35.5 43.0 38.9 46.6 42.1 50.0 45.4 53.5 48.4 58.0 53.3 64.3 58.1 71.4 64.5 76.7 69.4 80.3 72.7 85.5 77.4 91.1 82.4 pF 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 VWIB(V) 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 150 150 150 150 150 150 150 150 IIB(μA) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Peak Inverse Blocking Voltage VPIB(V) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 200 200 200 200 200 效 无 印 打 Document Number: LCE6.5 thru LCE170A Feb.29, 2012 Working Inverse Blocking Voltage IIIB @VWIB www.smsemi.com 2 LCE6.5 thru LCE170A Microsemi Part Number Breakdown Voltage VBR @ IBR MIN Maximum Peak Pulse Current IPP @ 10/ 1000µs Maximum Standby current ID @ VWM Reverse Stand Off Voltage MAX Maximum Clamping Voltage VC @ IPP Maximum Capacitance @ 0V f=1MHZ IBR VBR(V) VWM(V) ID(µA) IPP (A) VC(V) (mA) LCE54 60.0 73.3 1 54.0 5 15.6 96.3 LCE54A 60.0 66.3 1 54.0 5 17.2 87.1 LCE58 64.4 78.7 1 58.0 5 14.6 103.0 LCE58A 64.4 71.2 1 58.0 5 16.0 93.6 LCE60 66.7 81.5 1 60.0 5 14.0 107.0 LCE60A 66.7 73.7 1 60.0 5 15.5 96.8 LCE64 71.1 86.9 1 64.0 5 13.2 114.0 LCE64A 71.1 78.6 1 64.0 5 14.6 103.0 LCE70 77.8 95.1 1 70.0 5 12.0 125.0 LCE70A 77.8 86.0 1 70.0 5 13.3 113.0 LCE75 83.3 102 1 75.0 5 11.2 134.0 LCE75A 83.3 92.1 1 75.0 5 12.4 121.0 LCE80 88.7 108 1 80.0 5 10.6 142.0 LCE80A 88.7 98.0 1 80.0 5 11.6 129.0 LCE90 100 122 1 90.0 5 9.4 160.0 LCE90A 100 111 1 90.0 5 10.3 146.0 LCE100 111 136 1 100.0 5 8.4 179.0 LCE100A 111 123 1 100.0 5 9.3 162.0 LCE110 122 149 1 110.0 5 7.7 196.0 LCE110 122 135 1 110.0 5 8.4 178.0 LCE120 133 163 1 120.0 5 7.0 214.0 LCE120A 133 147 1 120.0 5 7.8 193.0 LCE130 144 176 1 130.0 5 6.5 231.0 LCE130A 144 159 1 130.0 5 7.2 209.0 LCE150 167 204 1 150.0 5 5.6 268.0 LCE150A 167 185 1 150.0 5 6.2 243.0 LCE160 178 218 1 160.0 5 5.2 287.0 LCE160A 178 197 1 160.0 5 5.8 259.0 LCE170 189 231 1 170.0 5 4.9 304.0 LCE170A 189 209 1 170.0 5 5.4 275.0 Note1: A transient voltage suppressor is normally selected according to voltage (VWM), which greater than the dc or continuous peak operating voltage level. 10 tW IPP tW Half Sine tW=0.71p tp Square Wave tW Current Waveforms 1.0 0.1 0.1 1.0 pF VWIB(V) IIB(μA) 100 150 10 100 150 10 100 150 10 100 150 10 90 150 10 90 150 10 90 150 10 90 150 10 90 150 10 90 150 10 90 150 10 90 150 10 90 150 10 90 150 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 90 300 10 should be equal to or VPIB(V) 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 400 400 400 400 400 400 400 400 400 400 400 400 150 Impulse Exponential Decay 1.0 IPP 0.5 IPP - Peak Pulse Current - % IPP PPP - Peak Pulse Power (kW) 100 Peak Inverse Blocking Voltage 效 无 印 打 Characteristic Curve Working Inverse Blocking Voltage IIIB @VWIB 10 tw-Pulse Width (µs) 102 103 Peak Value IPP 100 Half Value IPP 2 10/1000µs Waveform as defined by R.E.A. 50 0 0 1.0 2.0 t-Time (ms) 3.0 4.0 Fig.2 Pulse Waveform for Exponential Surge Fig. 1 Peak Pulse Power vs. Pulse Time Document Number: LCE6.5 thru LCE170A Feb.29, 2012 tr=10µs www.smsemi.com 3 LCE6.5 thru LCE170A PPP-Peak Pulse Power or continuous Average Power in Percent of 25 ℃ (%) 100 Peak Pulse Power (Single pulse). 75 50 Average Power 25 0 0 50 100 150 Lead or Ambient Temperature (℃) 200 效 无 印 Fig.3 Derating Curve Schematic Applications The TVS low capacitance device configuration is shown in Fig.4. As a further option for unidirectional applications, an additional low capacitance rectifier diode may be used in parallel in the sane polarity direction as the TVS as shown in Fig.5. In applications where random high voltage transients occur, this will prevent reverse transients from damaging the internal low capacitance rectifier diode and also provide a low voltage conducting direction. The added rectifier diode should be of similar low capacitance and also have a higher reverse voltage rating than the TVS clamping voltage VC. If using two (2) low capacitance TVS devices in also provided. The unidirectional and bidirectional configurations in Fig.5 and 6 will both in twice the capacitance of Fig.4 + TVS 打 DIODE Fig.4 TVS with internal Low Capacitance Diode Document Number: LCE6.5 thru LCE170A Feb.29, 2012 IN Fig.5 Optional Unidirectional configuration (TVS and separate rectifier diode in parallel) OUT + Fig.6 Optional Bidirectional configuration (two TVS and devices in anti-parallel) www.smsemi.com 4