Preliminary ...the world's most energy friendly microcontrollers EFM32GG942 DATASHEET F1024/F512 Preliminary • ARM Cortex-M3 CPU platform • High Performance 32-bit processor @ up to 48 MHz • Memory Protection Unit • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.4µA @ 3 V Shutoff Mode with RTC • 0.9 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 1.1 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 50 µA/MHz @ 3 V Sleep Mode • 200 µA/MHz @ 3 V Run Mode, with code executed from Flash • 1024/512 KB Flash • Read-while-write support • 128/128 KB RAM • 50 General Purpose I/O pins • Configurable Push-pull, Open-drain, pull resistor, drive strength • Configurable peripheral I/O locations • 16 asynchronous external interrupts • Output state retention and wakeup from Shutoff Mode • 12 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware AES with 128/256-bit keys in 54/75 cycles • Timers/Counters • 4× 16-bit Timer/Counter • 4×3 Compare/Capture/PWM channels • 16-bit Low Energy Timer • 1× 24-bit and 1× 32-bit Real-Time Counter • 3× 16/8-bit Pulse Counter with asynchronous operation • Watchdog Timer with dedicated RC oscillator @ 50 nA • Integrated LCD Controller for up to 8×16 segments • Voltage boost, adjustable contrast and autonomous animation • Backup Power Domain • RTC and retention registers in a separate power domain, available in all energy modes • Operation from backup battery when main power drains out • Communication interfaces • 3× Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S • 2× Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • 2× I C Interface with SMBus support • Address recognition in Stop Mode • Universal Serial Bus (USB) with Host and OTG support • Fully USB 2.0 compliant • On-chip PHY and embedded 5V to 3.3V regulator • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s Analog to Digital Converter • 8 single ended channels/4 differential channels • On-chip temperature sensor • 12-bit 500 ksamples/s Digital to Analog Converter • 2 single ended channels/1 differential channel • 2× Analog Comparator • Capacitive sensing with up to 4 inputs • 3× Operational Amplifier • 6.1 MHz GBW, Rail-to-rail, Programmable Gain • Supply Voltage Comparator • Low Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in Deep Sleep Mode • Wide range of sensors supported, including LC sensors and capacitive buttons • Ultra efficient Power-on Reset and Brown-Out Detector • Debug Interface • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • Embedded Trace Module v3.5 (ETM) • Pre-Programmed Serial Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.85 to 3.8 V • TQFP64 package 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4F microcontrollers for: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories • Alarm and security systems • Industrial and home automation • www.energymicro.com/gecko Preliminary ...the world's most energy friendly microcontrollers 1 Ordering Information Table 1.1 (p. 2) shows the available EFM32GG942 devices. Table 1.1. Ordering Information Ordering Code Flash (KB) RAM (KB) Max Speed (MHz) Supply Voltage (V) Temperature Package EFM32GG942F512-QFP64 512 128 48 1.85 - 3.8 -40 - 85 ºC TQFP64 EFM32GG942F1024-QFP64 1024 128 48 1.85 - 3.8 -40 - 85 ºC TQFP64 Visit www.energymicro.com for information on global distributors and representatives or contact [email protected] for additional information. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 2 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 2 System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32GG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also and shows a summary of the configuration for the EFM32GG942 devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32GG Reference Manual. A block diagram of the EFM32GG942 is shown in Figure 2.1 (p. 3) . Figure 2.1. Block Diagram GG942F512/1024 Core and Mem ory Clock Managem ent Mem ory Prot ect ion Unit ARM Cort ex™-M3 processor Flash Program Mem ory RAM Mem ory Debug Int erface w/ ETM Energy Managem ent High Freq. Cryst al Oscillat or High Freq RC Oscillat or Volt age Regulat or Volt age Com parat or Low Freq. Cryst al Oscillat or Low Freq. RC Oscillat or Brown-out Det ect or Power-on Reset DMA Cont roller Ult ra Low Freq. RC Oscillat or Back-up Power Dom ain 32-bit bus Peripheral Reflex Syst em Serial Int erfaces USART Low Energy UART USB I/O Port s Tim ers and Triggers UART 2 I C Ext ernal Int errupt s General Purpose I/O Pin Reset Pin Wakeup Tim er/ Count er LESENSE Low Energy Tim er Real Tim e Count er Pulse Count er Wat chdog Tim er Back-up RTC Analog Int erfaces ADC LCD Cont roller DAC Operat ional Am plifier Securit y Hardware AES Pulse Count er 2.1.1 ARM Cortex-M3 Core The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual. 2.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32GG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 3 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 2.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 2.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32GG. 2.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32GG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 2.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32GG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 2.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 2.1.10 Universal Serial Bus Controller (USB) The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device, On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both fullspeed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for supplying 5V to VBUS when operating as host. 2.1.11 Inter-Integrated Circuit Interface (I2C) 2 2 The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast- 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 4 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. 2 The interface provided to software by the I C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, I2S devices and IrDA devices. 2.1.13 Pre-Programmed Serial Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note. 2.1.14 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) TM The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.15 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications. 2.1.16 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.17 Backup Real Time Counter (BURTC) The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it operational even if the main power should drain out. 2.1.18 Low Energy Timer (LETIMER) TM The unique LETIMER , the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 5 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 2.1.19 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 – EM3. 2.1.20 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.21 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.22 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals. 2.1.23 Digital to Analog Converter (DAC) The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output. 2.1.24 Operational Amplifier (OPAMP) The EFM32GG942 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc. 2.1.25 Low Energy Sensor Interface (LESENSE) TM The Low Energy Sensor Interface (LESENSE ), is a highly configurable sensor interface with support for up to 4 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 2.1.26 Backup Power Domain The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 6 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers power domain enables the EFM32GG942 to keep track of time and retain data, even if the main power source should drain out. 2.1.27 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.28 General Purpose Input/Output (GPIO) In the EFM32GG942, there are 50 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advances configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. 2.1.29 Liquid Crystal Display Driver (LCD) The LCD driver is capable of driving a segmented LCD display with up to segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data. 2.2 Configuration Summary The features of the EFM32GG942 is a subset of the feature set described in the EFM32GG Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features. Table 2.1. Configuration Summary Module Configuration Pin Connections Cortex-M3 Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, DBG_SWO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA USB Full configuration USB_VBUS, USB_VBUSEN, USB_VREGI, USB_VREGO, USB_DM, USB_DMPU, USB_DP, USB_ID 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 7 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Module Configuration Pin Connections I2C0 Full configuration I2C0_SDA, I2C0_SCL I2C1 Full configuration I2C1_SDA, I2C1_SCL USART0 IrDA US0_TX, US0_RX. US0_CLK, US0_CS USART1 I2S US1_TX, US1_RX, US1_CLK, US1_CS USART2 I2S US2_TX, US2_RX, US2_CLK, US2_CS LEUART0 Full configuration LEU0_TX, LEU0_RX LEUART1 Full configuration LEU1_TX, LEU1_RX TIMER0 Full configuration with DTI. TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 Full configuration TIM1_CC[2:0] TIMER2 Full configuration TIM2_CC[2:0] TIMER3 Full configuration TIM3_CC[2:0] RTC Full configuration NA BURTC Full configuration NA LETIMER0 Full configuration LET0_O[1:0] PCNT0 PCNT0_S[1:0] PCNT1 8-bit count register PCNT1_S[1:0] PCNT2 8-bit count register PCNT2_S[1:0] ACMP0 Full configuration ACMP0_CH[3:0], ACMP0_O ACMP1 Full configuration ACMP1_CH[0], ACMP1_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[7:0] DAC0 Full configuration DAC0_OUT[1:0], DAC0_OUTxALT AES Full configuration NA GPIO 50 pins Available pins are shown in Table 4.3 (p. 54) LCD Full configuration LCD_SEG[15:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT OPAMP 2.3 Memory Map The EFM32GG942 memory map is shown in Figure 2.2 (p. 9) , with RAM and Flash sizes for the largest memory configuration. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 8 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 2.2. EFM32GG942 Memory Map with largest RAM and Flash sizes 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 9 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3 Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10) , by simulation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 10) , by simulation and/or technology characterisation unless otherwise specified. 3.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 10) . Table 3.1. Absolute Maximum Ratings Symbol Parameter TSTG Storage temperature range TS Maximum soldering temperature VDDMAX External main supply voltage VIOPIN Voltage on any I/O pin Condition Min Typ Max Unit 1 -40 150 Latest IPC/JEDEC J-STD-020 Standard °C 260 °C 0 3.8 V -0.3 VDD+0.3 V 1 Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 3.3 General Operating Conditions 3.3.1 General Operating Conditions Table 3.2. General Operating Conditions Symbol Parameter TAMB Ambient temperature range VDDOP Operating supply voltage fAPB Internal APB clock frequency 48 MHz fAHB Internal AHB clock frequency 48 MHz 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Min Typ -40 1.85 10 Max Unit 85 °C 3.8 V www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.3.2 Environmental Table 3.3. Environmental Symbol Parameter Condition Min Typ Max Unit VESDHBM ESD (Human Body Model HBM) TAMB=25°C 2 kV VESDCDM ESD (Charged Device Model, CDM) TAMB=25°C 1 kV Latch-up sensitivity test passed level A according to JEDEC JESD 78B method Class II, 85°C. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 11 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.4 Current Consumption Table 3.4. Current Consumption Symbol IEM0 IEM1 IEM2 IEM3 IEM4 Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. EM1 current Condition Min Typ Max Unit 32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 200 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 201 261 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 203 263 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 204 270 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 207 273 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 212 282 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 244 µA/ MHz 32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 50 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 52 69 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 53 71 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 56 77 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 57 80 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 62 92 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V 114 µA/ MHz EM2 current with RTC at 1 Hz, RTC prescaled to 1kHz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 1.1 µA EM2 current with RTC at 1 Hz, RTC prescaled to 1kHz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 4.0 8.0 µA VDD= 3.0 V, TAMB=25°C 0.9 µA VDD= 3.0 V, TAMB=85°C 3.8 7.8 µA VDD= 3.0 V, TAMB=25°C 0.02 µA VDD= 3.0 V, TAMB=85°C 0.25 0.7 µA EM2 current EM3 current EM4 current 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 12 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.5 Transition between Energy Modes Table 3.5. Energy Modes Transitions Symbol Parameter Min tEM10 Transition time from EM1 to EM0 tEM20 Typ Max Unit 1 HF core CLK cycles Transition time from EM2 to EM0 2 µs tEM30 Transition time from EM3 to EM0 2 µs tEM40 Transition time from EM4 to EM0 163 µs 0 1 Core wakeup time only. 3.6 Power Management Table 3.6. Power Management Symbol Parameter Condition Min Typ Max VBODextthr- BOD threshold on falling external supply voltage 1.82 1.85 V VBODintthr- BOD threshold on falling internally regulated supply voltage 1.62 1.68 V VBODextthr+ BOD threshold on rising external supply voltage VPORthr+ Power-on Reset (POR) threshold on rising external supply voltage tRESET Delay from reset is reApplies to Power-on Reset, leased until program execu- Brown-out Reset and pin retion starts set. CDECOUPLE Voltage regulator decoupling capacitor. CUSB_VREGO CUSB_VREGI 1.85 Unit V 1.98 V 163 µs X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF USB voltage regulator out decoupling capacitor. X5R capacitor recommended. Apply between USB_VREGO pin and GROUND 1 µF USB voltage regulator in decoupling capacitor. X5R capacitor recommended. Apply between USB_VREGI pin and GROUND 4.7 µF 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 13 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.7 Flash Table 3.7. Flash Symbol Parameter ECFLASH Flash erase cycles before failure Condition Min TAMB<150°C RETFLASH tW_PROG tPERASE tDERASE Flash data retention cycles 10000 h 10 years TAMB<70°C 20 years 20 µs < 512KB 20 20.4 20.8 ms >= 512KB, LPERASE == 0 20 20.4 20.8 ms >= 512KB, LPERASE == 1 40 40.4 40.8 ms < 512KB 40 40.8 41.6 ms Device erase time 161.6 ms < 512KB IWRITE VFLASH Unit 20000 >= 512KB IERASE Max TAMB<85°C Word (32-bit) programming time Page erase time Typ Erase current Write current 1 mA 1 mA 1 mA 1 mA 1 mA 1 mA 7 >= 512KB, LPERASE == 0 14 >= 512KB, LPERASE == 1 7 < 512KB 7 >= 512KB, LPWRITE == 0 14 >= 512KB, LPWRITE == 1 7 Supply voltage during flash erase and write 1.8 3.8 V 1 Measured at 25°C 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 14 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.8 General Purpose Input Output Table 3.8. GPIO Symbol Parameter VIOIL Input low voltage VIOIH Input high voltage VIOOH VIOOL Condition Min Typ Max Unit 0.3VDD V 0.7VDD V Sourcing 6 mA, VDD=1.8V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75VDD V Sourcing 6 mA, VDD=3.0V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.95VDD V Sourcing 20 mA, VDD=1.8V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.7VDD V Sourcing 20 mA, VDD=3.0V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.9VDD V Output high voltage Sinking 6 mA, VDD=1.8V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.25VDD V Sinking 6 mA, VDD=3.0V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.05VDD V Sinking 20 mA, VDD=1.8V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.3VDD V Sinking 20 mA, VDD=3.0V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.1VDD V Output low voltage IIOLEAK Input leakage current RPU I/O pin pull-up resistor 40 kOhm RPD I/O pin pull-down resistor 40 kOhm RIOESD Internal ESD series resistor 200 Ohm tIOGLITCH Pulse width of pulses to be removed by the glitch suppression filter tIOOF VIOHYST Output fall time I/O pin hysteresis (VIOTHR+ - VIOTHR-) 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 High Impedance IO connected to GROUND or Vdd +/-25 nA 10 50 ns 0.5 mA drive strength and load capacitance CL=12.5-25pF. 20+0.1CL 250 ns 2mA drive strength and load capacitance CL=350-600pF 20+0.1CL 250 ns VDD = 1.8 - 3.8 V 15 0.1VDD V www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.1. Typical Low-Level Output Current, 2V Supply Voltage 5 0.20 4 Low-Level Out put Current [ m A] Low-Level Out put Current [ m A] 0.15 0.10 3 2 0.05 1 -40° C 25° C 85° C 0.00 0.0 0.5 1.5 1.0 Low-Level Out put Volt age [ V] -40° C 25° C 85° C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 Low-Level Out put Volt age [ V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low-Level Out put Current [ m A] Low-Level Out put Current [ m A] 15 10 30 25 20 15 5 10 5 -40° C 25° C 85° C 0 0.0 0.5 1.5 1.0 Low-Level Out put Volt age [ V] 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 -40° C 25° C 85° C 0.5 1.5 1.0 Low-Level Out put Volt age [ V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 16 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.2. Typical High-Level Output Current, 2V Supply Voltage 0.00 0.0 -40°C 25°C 85°C -40°C 25°C 85°C –0.5 High-Level Out put Current [ m A] High-Level Out put Current [ m A] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 1.5 0.5 1.0 High-Level Out put Volt age [ V] –2.5 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 1.5 0.5 1.0 High-Level Out put Volt age [ V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 -40°C 25°C 85°C -40°C 25°C 85°C –10 High-Level Out put Current [ m A] High-Level Out put Current [ m A] –5 –10 –20 –30 –15 –40 –20 0.0 1.5 0.5 1.0 High-Level Out put Volt age [ V] –50 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 1.5 0.5 1.0 High-Level Out put Volt age [ V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 17 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 0.5 10 0.4 8 Low-Level Out put Current [ m A] Low-Level Out put Current [ m A] Figure 3.3. Typical Low-Level Output Current, 3V Supply Voltage 0.3 0.2 0.1 6 4 2 -40° C 25° C 85° C 0.0 0.0 0.5 1.5 1.0 2.0 Low-Level Out put Volt age [ V] 2.5 -40° C 25° C 85° C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low-Level Out put Volt age [ V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 40 50 35 40 Low-Level Out put Current [ m A] Low-Level Out put Current [ m A] 30 25 20 15 30 20 10 10 5 0 0.0 -40° C 25° C 85° C 0.5 1.5 1.0 2.0 Low-Level Out put Volt age [ V] 2.5 -40° C 25° C 85° C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 0.5 1.5 1.0 2.0 Low-Level Out put Volt age [ V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 18 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.4. Typical High-Level Output Current, 3V Supply Voltage 0.0 0 -40°C 25°C 85°C -40°C 25°C 85°C –1 High-Level Out put Current [ m A] High-Level Out put Current [ m A] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High-Level Out put Volt age [ V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 2.5 3.0 0 -40°C 25°C 85°C -40°C 25°C 85°C –10 High-Level Out put Current [ m A] –10 High-Level Out put Current [ m A] 1.5 1.0 2.0 High-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 High-Level Out put Volt age [ V] 2.5 –50 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 0.5 1.5 1.0 2.0 High-Level Out put Volt age [ V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 19 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.5. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 14 0.7 12 Low-Level Out put Current [ m A] Low-Level Out put Current [ m A] 0.6 0.5 0.4 0.3 10 8 6 4 0.2 2 0.1 0.0 0.0 -40° C 25° C 85° C 0.5 1.5 1.0 2.0 2.5 Low-Level Out put Volt age [ V] 3.0 -40° C 25° C 85° C 0 0.0 3.5 1.5 1.0 2.0 2.5 Low-Level Out put Volt age [ V] 3.0 50 50 40 40 30 20 10 30 20 10 -40° C 25° C 85° C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low-Level Out put Current [ m A] Low-Level Out put Current [ m A] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low-Level Out put Volt age [ V] 3.0 -40° C 25° C 85° C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 0.5 1.5 1.0 2.0 2.5 Low-Level Out put Volt age [ V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 20 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.6. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 –0.1 0 -40°C 25°C 85°C –1 -40°C 25°C 85°C –2 High-Level Out put Current [ m A] High-Level Out put Current [ m A] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High-Level Out put Volt age [ V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 -40°C 25°C 85°C -40°C 25°C 85°C –10 High-Level Out put Current [ m A] –10 High-Level Out put Current [ m A] 1.5 1.0 2.0 2.5 High-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High-Level Out put Volt age [ V] 3.0 –50 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 0.5 1.5 1.0 2.0 2.5 High-Level Out put Volt age [ V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 21 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.9 Oscillators 3.9.1 LFXO Table 3.9. LFXO Symbol Parameter Condition Min Typ Max Unit fLFXO Supported nominal crystal frequency ESRLFXO Supported crystal equivalent series resistance (ESR) CLFXOL Supported crystal external load range DCLFXO Duty cycle ILFXO Current consumption for core and buffer after startup. ESR=30 kOhm, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 190 nA tLFXO Start- up time. ESR=30 kOhm, CL=10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 400 ms 32.768 30 5 48 kHz 120 kOhm 25 pF 50 53.5 % For safe startup of a given crystal, the load capacitance should be larger than the value indicated in Figure 3.7 (p. 22) and in Table 3.10 (p. 23) for a given LFXOBOOST setting. The minimum supported load capacitance depends on the crystal shunt capacitance, C0, which is specified in crystal vendors’ datasheet. Figure 3.7. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup 20 LFXOBOOST= 0,REDLFXOBOOST= 1 LFXOBOOST= 0,REDLFXOBOOST= 0 LFXOBOOST= 1,REDLFXOBOOST= 1 LFXOBOOST= 1,REDLFXOBOOST= 0 18 16 CL [ pF] 14 12 10 8 6 4 2 0.6 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 0.8 1.0 1.4 1.2 C0 [ pF] 22 1.6 1.8 2.0 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Table 3.10. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup Symbol Capacitance [pF] Shunt Capacitance C0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 CLmin lfxoboost = 0 redlfxoboost = 1 3.7 4.0 4.3 4.5 4.8 5.0 5.3 5.5 5.7 5.9 6.0 6.2 6.4 6.5 6.7 6.9 CLmin lfxoboost = 1 redlfxoboost = 0 7.3 7.7 8.2 8.6 9.0 9.3 9.6 10.0 10.3 10.5 10.8 11.1 11.3 11.6 11.8 12.1 CLmin lfxoboost = 1 redlfxoboost = 1 10.0 10.6 11.1 11.6 12.1 12.6 13.0 13.4 13.8 14.1 14.5 14.8 15.1 15.4 15.7 16.0 CLmin lfxoboost = 1 redlfxoboost = 0 12.5 13.2 13.9 14.5 15.0 15.5 16.0 16.5 16.9 17.4 17.8 18.2 18.5 18.9 19.3 19.6 3.9.2 HFXO Table 3.11. HFXO Symbol Parameter fHFXO Supported nominal crystal Frequency Condition Min Typ Max 4 Unit 48 MHz Supported crystal equivalent series resistance (ESR) Crystal frequency 32 MHz 30 60 Ohm Crystal frequency 4 MHz 400 1500 Ohm gmHFXO The transconductance of the HFXO input transistor at crystal startup HFXOBOOST in CMU_CTRL equals 0b11 CHFXOL Supported crystal external load range DCHFXO Duty cycle ESRHFXO IHFXO tHFXO Current consumption for HFXO after startup Startup time 20 mS 5 25 pF 46 50 54 % 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 85 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 165 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 400 µs 3.9.3 LFRCO Table 3.12. LFRCO Symbol Parameter fLFRCO Oscillation frequency , VDD= 3.0 V, TAMB=25°C tLFRCO Startup time not including software calibration 150 µs ILFRCO Current consumption 190 nA TUNESTEPL- Frequency step for LSB change in TUNING value 1.5 % FRCO 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Condition Min Typ Max 32.768 23 Unit kHz www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.8. Calibrated LFRCO Frequency vs Temperature and Supply Voltage 42 42 -40° C 25° C 85° C 40 38 Frequency [ kHz] Frequency [ kHz] 40 36 38 34 34 32 32 30 1.8 2.2 2.6 3.0 3.4 30 –40 3.8 1.8 V 3V 3.8 V 36 –15 Vdd [ V] 5 45 25 Tem perat ure [ ° C] 65 85 3.9.4 HFRCO Table 3.13. HFRCO Symbol fHFRCO tHFRCO_settling IHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C Settling time after start-up Min Typ Max Unit 28 MHz frequency band 28 MHz 21 MHz frequency band 21 MHz 14 MHz frequency band 14 MHz 11 MHz frequency band 11 MHz 7 MHz frequency band 6.6 1 MHz 1 MHz frequency band 1.2 2 MHz fHFRCO = 14 MHz 0.6 Cycles fHFRCO = 28 MHz 106 µA fHFRCO = 21 MHz 93 µA fHFRCO = 14 MHz 77 µA fHFRCO = 11 MHz 72 µA fHFRCO = 6.6 MHz 63 µA fHFRCO = 1.2 MHz 22 µA Current consumption DCHFRCO Duty cycle TUNESTEPH- Frequency step for LSB change in TUNING value FRCO Condition fHFRCO = 14 MHz 48.5 50 51 % 0.3 % 1 7 MHz for devices with prod. rev. < 19. 1 MHz for devices with prod. rev. < 19. 2 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 24 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.9. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage 11.15 11.20 11.15 11.10 1.8 V 3V 3.8 V 11.10 11.00 10.95 Frequency [ MHz] Frequency [ MHz] 11.05 -40°C 25°C 85°C 11.05 11.00 10.95 10.90 10.90 10.85 10.80 1.8 10.85 2.2 2.6 3.0 3.4 10.80 –40 3.8 –15 Vdd [ V] 5 45 25 Tem perat ure [ ° C] 65 85 Figure 3.10. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage 14.15 14.15 -40° C 25° C 85° C 14.10 14.05 Frequency [ MHz] Frequency [ MHz] 14.10 14.00 14.05 14.00 13.95 13.95 13.90 13.90 13.85 1.8 2.2 2.6 3.0 3.4 13.85 –40 3.8 1.8 V 3V 3.8 V –15 Vdd [ V] 5 45 25 Tem perat ure [ ° C] 65 85 Figure 3.11. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage 21.2 21.2 -40° C 25° C 85° C 21.1 21.0 Frequency [ MHz] Frequency [ MHz] 21.1 20.9 21.0 20.9 20.8 20.8 20.7 20.7 20.6 1.8 2.2 2.6 3.0 3.4 20.6 –40 3.8 Vdd [ V] 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 25 1.8 V 3V 3.8 V –15 5 45 25 Tem perat ure [ ° C] 65 85 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.12. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage 28.1 28.0 28.0 27.9 27.9 Frequency [ MHz] Frequency [ MHz] 28.1 27.8 27.7 27.6 27.8 27.7 27.6 -40° C 25° C 85° C 27.5 27.4 1.8 1.8 V 3V 3.8 V 2.2 2.6 3.0 3.4 27.5 27.4 –40 3.8 –15 5 45 25 Tem perat ure [ ° C] Vdd [ V] 65 85 3.9.5 ULFRCO Table 3.14. ULFRCO Symbol Parameter Condition fULFRCO Oscillation frequency 25°C, 3V TCULFRCO Temperature coefficient VCULFRCO Supply voltage coefficient Min Typ Max 0.8 Unit 1.5 kHz 0.05 %/°C -18.2 %/V 3.10 Analog Digital Converter (ADC) Table 3.15. ADC Symbol Parameter VADCIN Input voltage range Condition Min Single ended Differential VADCREFIN Input range of external reference voltage, single ended and differential Typ Max Unit 0 VREF V -VREF/2 VREF/2 V 1.25 VDD V VADCREFIN_CH7 Input range of external negative reference voltage on channel 7 See VADCREFIN 0 VDD - 1.1 V VADCREFIN_CH6 Input range of external positive reference voltage on channel 6 See VADCREFIN 0.625 VDD V 0 VDD V VADCCMIN Common mode input range IADCIN Input current CMRRADC Analog input common mode rejection ratio 2pF sampling capacitors 1 MSamples/s, 12 bit, external reference IADC <100 nA 65 dB 351 µA 67 µA Average active current 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 26 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit MODE in ADCn_CTRL set to 0b00 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01 63 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10 64 µA Internal voltage reference 65 µA 2 pF IADCREF Current consumption of internal voltage reference CADCIN Input capacitance RADCIN Input ON resistance RADCFILT Input RC filter resistance 10 CADCFILT Input RC filter/decoupling capacitance 250 fADCCLK ADC Clock Frequency tADCCONV 1 MOhm Acquisition time tADCACQVDD3 Required acquisition time for VDD/3 reference fF 13 MHz 6 bit 7 ADCCLK Cycles 10 bit 11 ADCCLK Cycles 12 bit 13 ADCCLK Cycles 1 256 ADCCLK Cycles Conversion time tADCACQ kOhm Programmable 2 µs Startup time of reference generator and ADC core in NORMAL mode 5 µs Startup time of reference generator and ADC core in KEEPADCWARM mode 1 µs 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 59 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 1 MSamples/s, 12 bit, single ended, VDD reference 65 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 65 dB tADCSTART SNRADC Signal to Noise Ratio (SNR) 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 27 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol SNDRADC Parameter Signal to Noise-puls-Distortion Ratio (SNDR) 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Condition Min Typ Max Unit 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 67 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 69 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 200 kSamples/s, 12 bit, single ended, VDD reference 67 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 200 kSamples/s, 12 bit, differential, VDD reference 69 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 70 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 62 dB 1 MSamples/s, 12 bit, single ended, VDD reference 64 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 64 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 66 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 68 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 61 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 65 dB 28 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol SFDRADC Parameter Spurious-Free Dynamic Range (SFDR) 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Condition Min Typ Max Unit 200 kSamples/s, 12 bit, single ended, VDD reference 66 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 200 kSamples/s, 12 bit, differential, VDD reference 68 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 69 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 64 dBc 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 76 dBc 1 MSamples/s, 12 bit, single ended, VDD reference 73 dBc 1 MSamples/s, 12 bit, differential, internal 1.25V reference 66 dBc 1 MSamples/s, 12 bit, differential, internal 2.5V reference 77 dBc 1 MSamples/s, 12 bit, differential, VDD reference 76 dBc 1 MSamples/s, 12 bit, differential, 2xVDD reference 75 dBc 1 MSamples/s, 12 bit, differential, 5V reference 69 dBc 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 75 dBc 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 75 dBc 200 kSamples/s, 12 bit, single ended, VDD reference 76 dBc 200 kSamples/s, 12 bit, differential, internal 1.25V reference 79 dBc 200 kSamples/s, 12 bit, differential, internal 2.5V reference 79 dBc 200 kSamples/s, 12 bit, differential, 5V reference 78 dBc 200 kSamples/s, 12 bit, differential, VDD reference 79 dBc 29 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol VADCOFFSET Parameter Condition Min Typ Max Unit 200 kSamples/s, 12 bit, differential, 2xVDD reference 79 dBc After calibration, single ended 0.3 mV After calibration, differential 0.3 mV Offset voltage -1.92 mV/°C Thermometer output gradient -6.3 ADC Codes/ °C DNLADC Differential non-linearity (DNL) ±0.7 LSB INLADC Integral non-linearity (INL), End point method ±1.2 LSB MCADC No missing codes TGRADADCTH GAINED OFFSETED 1 11.999 12 bits 1.25V reference 0.01 2 0.033 2.5V reference 0.01 2 0.03 1.25V reference 0.2 2 0.7 2.5V reference 0.2 2 0.62 Gain error drift Offset error drift 3 %/°C 3 %/°C 3 LSB/°C 3 LSB/°C 1 On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue. 2 Typical numbers given by abs(Mean) / (85 - 25). 3 Max number given by (abs(Mean) + 3x stddev) / (85 - 25). The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.13 (p. 30) and Figure 3.14 (p. 31) , respectively. Figure 3.13. Integral Non-Linearity (INL) Digit al ouput code INL= |[ (VD -VSS)/VLSBIDEAL] - D| where 0 < D < 2 N - 1 4095 4094 4093 4092 Act ual ADC t ranfer funct ion before offset and gain correct ion Act ual ADC t ranfer funct ion aft er offset and gain correct ion INL Error (End Point INL) 3 Ideal t ransfer curve 2 1 VOFFSET 0 Analog Input 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 30 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.14. Differential Non-Linearity (DNL) Digit al ouput code DNL= |[ (VD+ 1 - VD )/VLSBIDEAL] - 1| where 0 < D < 2 N - 2 Full Scale Range 4095 4094 Exa m p le : Adjacent input value VD+ 1 corrresponds t o digit al out put code D+ 1 4093 4092 Act ual t ransfer funct ion wit h one m issing code. Exa m p le : Input value VD corrresponds t o digit al out put code D Code widt h = 2 LSB DNL= 1 LSB Ideal t ransfer curve 5 0.5 LSB Ideal spacing bet ween t wo adjacent codes VLSBIDEAL= 1 LSB 4 3 2 1 Ideal 50% Transit ion Point Ideal Code Cent er 0 Analog Input 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 31 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.10.1 Typical performance Figure 3.15. ADC Frequency Spectrum, Vdd = 3V, Temp = 25° 0 0 –20 –20 –40 –40 Am plit ude [ dB] Am plit ude [ dB] –60 –80 –100 –60 –80 –100 –120 –120 –140 –140 –160 –180 0 20 40 60 Frequency [ kHz] –160 80 0 20 1.25V Reference 40 60 Frequency [ kHz] 80 2.5V Reference 0 0 –20 –20 –40 –40 Am plit ude [ dB] Am plit ude [ dB] –60 –80 –100 –60 –80 –100 –120 –120 –140 –140 –160 –180 0 20 40 60 Frequency [ kHz] –160 80 2XVDDVSS Reference 0 20 40 60 Frequency [ kHz] 80 5VDIFF Reference 0 –20 –40 Am plit ude [ dB] –60 –80 –100 –120 –140 –160 –180 0 20 40 60 Frequency [ kHz] 80 VDD Reference 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 32 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 1.5 1.5 1.0 1.0 0.5 0.5 INL (LSB) INL (LSB) Figure 3.16. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25° 0.0 0.0 –0.5 –0.5 –1.0 0 512 1024 1536 2048 2560 Out put code 3072 3584 –1.0 4096 0 512 1.25V Reference 1024 1536 2048 2560 Out put code 3072 3584 4096 3072 3584 4096 2.5V Reference 0.8 1.0 0.6 0.4 INL (LSB) INL (LSB) 0.5 0.2 0.0 0.0 –0.2 –0.4 –0.5 –0.6 0 512 1024 1536 2048 2560 Out put code 3072 3584 4096 0 2XVDDVSS Reference 512 1024 1536 2048 2560 Out put code 5VDIFF Reference 0.8 0.6 0.4 INL (LSB) 0.2 0.0 –0.2 –0.4 –0.6 –0.8 0 512 1024 1536 2048 2560 Out put code 3072 3584 4096 VDD Reference 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 33 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 1.0 1.0 0.5 0.5 DNL (LSB) DNL (LSB) Figure 3.17. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25° 0.0 –0.5 –1.0 0.0 –0.5 0 512 1024 1536 2048 2560 Out put code 3072 3584 –1.0 4096 0 512 1.0 1.0 0.5 0.5 0.0 –0.5 –1.0 1536 2048 2560 Out put code 3072 3584 4096 3072 3584 4096 2.5V Reference DNL (LSB) DNL (LSB) 1.25V Reference 1024 0.0 –0.5 0 512 1024 1536 2048 2560 Out put code 3072 3584 –1.0 4096 2XVDDVSS Reference 0 512 1024 1536 2048 2560 Out put code 5VDIFF Reference 1.0 DNL (LSB) 0.5 0.0 –0.5 –1.0 0 512 1024 1536 2048 2560 Out put code 3072 3584 4096 VDD Reference 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 34 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.18. ADC Absolute Offset, Common Mode = Vdd /2 5 2.0 Vref= 1V25 Vref= 2V5 Vref= 2XVDDVSS Vref= 5VDIFF Vref= VDD 4 1.5 2 Act ual Offset [ LSB] Act ual Offset [ LSB] 3 VRef= 1V25 VRef= 2V5 VRef= 2XVDDVSS VRef= 5VDIFF VRef= VDD 1 0 –1 1.0 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 –1.0 –40 3.8 Offset vs Supply Voltage, Temp = 25° –15 5 25 Tem p (C) 45 65 85 Offset vs Temperature, Vdd = 3V Figure 3.19. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [ dB] SNR [ dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 45 25 Tem perat ure [ ° C] 65 5VDIFF 1V25 85 78.0 –40 Signal to Noise Ratio (SNR) 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 –15 5 45 25 Tem perat ure [ ° C] 65 85 Spurious-Free Dynamic Range (SFDR) 35 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.20. ADC Temperature sensor readout 2600 Vdd= 1.8 Vdd= 3 Vdd= 3.8 Sensor readout 2500 2400 2300 2200 2100 –40 –25 –15 –5 5 15 25 35 45 Tem perat ure [ ° C] 55 65 75 85 3.11 Digital Analog Converter (DAC) Table 3.16. DAC Symbol VDACOUT VDACCM IDAC Parameter Condition Min Typ 0 VDD V VDD voltage reference, differential -VDD VDD V 0 VDD V Output voltage range Output common mode voltage range Active current including references for 2 channels 500 kSamples/s, 12bit 400 µA 100 kSamples/s, 12 bit 200 µA 38 µA Sample rate 500 ksamples/s Continuous Mode fDAC DAC clock frequency CYCDACCONV Clock cyckles per conversion tDACCONV Conversion time tDACSETTLE Settling time SNRDAC Unit VDD voltage reference, single ended 1 kSamples/s 12 bit NORMAL SRDAC Max Signal to Noise Ratio (SNR) 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 1000 kHz Sample/Hold Mode 250 kHz Sample/Off Mode 250 kHz 2 2 µs 5 µs 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 59 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 58 dB 36 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol SNDRDAC SFDRDAC VDACOFFSET Parameter Signal to Noise-pulse Distortion Ratio (SNDR) Spurious-Free Dynamic Range(SFDR) Condition Min Typ Max Unit 500 kSamples/s, 12 bit, differential, internal 2.5V reference 58 dB 500 kSamples/s, 12 bit, differential, VDD reference 59 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 57 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 54 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 56 dB 500 kSamples/s, 12 bit, differential, internal 2.5V reference 53 dB 500 kSamples/s, 12 bit, differential, VDD reference 55 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dBc 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 56 dBc 500 kSamples/s, 12 bit, differential, internal 1.25V reference 61 dBc 500 kSamples/s, 12 bit, differential, internal 2.5V reference 55 dBc 500 kSamples/s, 12 bit, differential, VDD reference 60 dBc After calibration, single ended 2 mV After calibration, differential 2 mV Offset voltage DNLDAC Differential non-linearity ±1 LSB INLDAC Integral non-linearity ±5 LSB MCDAC No missing codes 12 bits 3.12 Operational Amplifier (OPAMP) The electrical characteristics for the Operational Amplifiers are based on simulations. Table 3.17. OPAMP Symbol IOPAMP Parameter Active Current 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Condition Min Typ Max Unit (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain 400 µA (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain 100 µA 37 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, Unity Gain GOL GBWOPAMP PMOPAMP Open Loop Gain Gain Bandwidth Product Phase Margin RINPUT Input Resistance RLOAD Load Resistance ILOAD_DC DC Load Current VINPUT Input Voltage VOUTPUT VOFFSET Max 13 µA (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 101 dB (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 98 dB (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 91 dB (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 6.1 MHz (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 1.8 MHz (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 0.25 MHz (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, CL=75 pF 64 ° (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, CL=75 pF 58 ° (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, CL=75 pF 58 ° 100 200 NOPAMP Mohm Ohm 11 mA OPAxHCMDIS=0 VSS VDD V OPAxHCMDIS=1 VSS VDD-1.2 V VSS VDD V Output Voltage Unity Gain, VSS<Vin<DD, OPAxHCMDIS=0 6 mV Unity Gain, VSS<Vin<DD-1.2, OPAxHCMDIS=1 1 mV Input Offset Voltage VOFFSET_DRIFT Input Offset Voltage Drift SROPAMP Unit Slew Rate Voltage Noise 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 0.02 mV/°C (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 3.2 V/µs (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 0.8 V/µs (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 0.1 V/µs Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 101 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 141 µVRMS 38 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 196 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 229 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 1230 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 2130 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 1630 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 2590 µVRMS Figure 3.21. OPAMP Common Mode Rejection Ratio Figure 3.22. OPAMP Positive Power Supply Rejection Ratio 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 39 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.23. OPAMP Negative Power Supply Rejection Ratio Figure 3.24. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V Figure 3.25. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 40 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.13 Analog Comparator (ACMP) Table 3.18. ACMP Symbol Parameter VACMPIN Input voltage range 0 VDD V VACMPCM ACMP Common Mode voltage range 0 VDD V IACMP IACMPREF VACMPOFFSET VACMPHYST RCSRES Condition Active current Current consumption of internal voltage reference Min Typ Max Unit BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register 0.1 µA BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register 2.87 µA BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register 195 µA Internal voltage reference off. Using external voltage reference 0 µA Internal voltage reference 5 µA Single ended 10 mV Differential 10 mV Programmable 17 mV CSRESSEL=0b00 in ACMPn_INPUTSEL 39 kOhm CSRESSEL=0b01 in ACMPn_INPUTSEL 71 kOhm CSRESSEL=0b10 in ACMPn_INPUTSEL 104 kOhm CSRESSEL=0b11 in ACMPn_INPUTSEL 136 kOhm Offset voltage ACMP hysteresis Capacitive Sense Internal Resistance The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 41) . IACMPREF is zero if an external voltage reference is used. Total ACMP Active Current IACMPTOTAL = IACMP + IACMPREF 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 41 (3.1) www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 3.26. Typical ACMP Characteristics 4.5 2.5 HYSTSEL= 0.0 HYSTSEL= 2.0 HYSTSEL= 4.0 HYSTSEL= 6.0 4.0 3.5 Response Tim e [ us] Current [ uA] 2.0 1.5 1.0 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 0.0 12 Current consumption 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response time 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12.0 Hyst eresis [ m V] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 42 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.14 Voltage Comparator (VCMP) Table 3.19. VCMP Symbol Parameter Condition Min Typ Max Unit VVCMPIN Input voltage range VDD V VVCMPCM VCMP Common Mode voltage range VDD V BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register 0.1 µA 14.7 µA IVCMP Active current BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. tVCMPREF Startup time reference generator NORMAL 10 µs Single ended 10 mV VVCMPOFFSET Offset voltage Differential 10 mV 17 mV VVCMPHYST VCMP hysteresis The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VCMP Trigger Level as a Function of Level Setting VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 43 (3.2) www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 3.15 LCD Table 3.20. LCD Symbol Parameter Condition fLCDFR Frame rate NUMSEG Number of segments supported VLCD LCD supply voltage range Min Typ 30 ILCD Steady state current consumption. ILCDBOOST Steady state Current contribution of internal boost. Unit 200 Hz 16×8 Internal boost circuit enabled seg 2.0 3.8 V Display disconnected, static mode, framerate 32 Hz, all segments on. 250 nA Display disconnected, quadruplex mode, framerate 32 Hz, all segments on, bias mode to ONETHIRD in LCD_DISPCTRL register. 550 nA 0 µA Internal voltage boost on, boosting from 2.2 V to 3.0 V. 8.4 µA VBLEV of LCD_DISPCTRL register to LEVEL0 3.0 V VBLEV of LCD_DISPCTRL register to LEVEL1 3.08 V VBLEV of LCD_DISPCTRL register to LEVEL2 3.17 V VBLEV of LCD_DISPCTRL register to LEVEL3 3.26 V VBLEV of LCD_DISPCTRL register to LEVEL4 3.34 V VBLEV of LCD_DISPCTRL register to LEVEL5 3.43 V VBLEV of LCD_DISPCTRL register to LEVEL6 3.52 V VBLEV of LCD_DISPCTRL register to LEVEL7 3.6 V Internal voltage boost off VBOOST Max Boost Voltage The total LCD current is given by Equation 3.3 (p. 44) . ILCDBOOST is zero if internal boost is off. Total LCD Current Based on Operational Mode and Internal Boost ILCDTOTAL = ILCD + ILCDBOOST (3.3) 3.16 Digital Peripherals Table 3.21. Digital Peripherals Symbol Parameter Condition IUSART USART current USART idle current, clock enabled IUART UART current UART idle current, clock enabled 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Min 44 Typ Max Unit 7.5 µA/ MHz 5.63 µA/ MHz www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Symbol Parameter Condition ILEUART LEUART current LEUART idle current, clock enabled 150 nA II2C I2C current I2C idle current, clock enabled 6.25 µA/ MHz ITIMER TIMER current TIMER_0 idle current, clock enabled 8.75 µA/ MHz ILETIMER LETIMER current LETIMER idle current, clock enabled 150 nA IPCNT PCNT current PCNT idle current, clock enabled 100 nA IRTC RTC current RTC idle current, clock enabled 100 nA ILCD LCD current LCD idle current, clock enabled 100 nA IAES AES current AES idle current, clock enabled 2.5 µA/ MHz IGPIO GPIO current GPIO idle current, clock enabled 5.31 µA/ MHz IPRS PRS current PRS idle current 2,81 µA/ MHz IDMA DMA current Clock enable 8.12 µA/ MHz 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Min 45 Typ Max Unit www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 4 Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32GG942. 4.1 Pinout The EFM32GG942 pinout is shown in Figure 4.1 (p. 46) and Table 4.1 (p. 46). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 4.1. EFM32GG942 Pinout (top view, not to scale) Table 4.1. Device Pinout Pin Alternate Functionality / Description Pin # QFP64 Pin# and Name Pin Name Analog Timers Communication Other 1 PA0 LCD_SEG13 TIM0_CC0 #0/1/4 LEU0_RX #4 I2C0_SDA #0 PRS_CH0 #0 GPIO_EM4WU0 2 PA1 LCD_SEG14 TIM0_CC1 #0/1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 3 PA2 LCD_SEG15 TIM0_CC2 #0/1 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 46 CMU_CLK0 #0 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Pin # QFP64 Pin# and Name Pin Alternate Functionality / Description Pin Name Analog Timers Communication Other ETM_TD0 #3 4 PA3 LCD_SEG16 TIM0_CDTI0 #0 LES_ALTEX2 #0 ETM_TD1 #3 5 PA4 LCD_SEG17 TIM0_CDTI1 #0 LES_ALTEX3 #0 ETM_TD2 #3 6 PA5 LCD_SEG18 TIM0_CDTI2 #0 LEU1_TX #1 7 IOVDD_0 8 VSS 9 PB3 LCD_SEG20/ LCD_COM4 PCNT1_S0IN #1 US2_TX #1 10 PB4 LCD_SEG21/ LCD_COM5 PCNT1_S1IN #1 US2_RX #1 11 PB5 LCD_SEG22/ LCD_COM6 US2_CLK #1 12 PB6 LCD_SEG23/ LCD_COM7 US2_CS #1 13 PC4 DAC0_P0 #0/ OPAMP_P0 ACMP0_CH4 TIM0_CDTI2 #4 LETIM0_OUT0 #3 PCNT1_S0IN #0 US2_CLK #0 I2C1_SDA #0 LES_CH4 #0 14 PC5 DAC0_N0 #0/ OPAMP_N0 ACMP0_CH5 LETIM0_OUT1 #3 PCNT1_S1IN #0 US2_CS #0 I2C1_SCL #0 LES_CH5 #0 15 PB7 LFXTAL_P TIM1_CC0 #3 US0_TX #4 US1_CLK #0 16 PB8 LFXTAL_N TIM1_CC1 #3 US0_RX #4 US1_CS #0 17 PA12 LCD_BCAP_P TIM2_CC0 #1 18 PA13 LCD_BCAP_N TIM2_CC1 #1 19 PA14 LCD_BEXT TIM2_CC2 #1 20 RESETn 21 PB11 22 VSS 23 AVDD_1 24 PB13 HFXTAL_P US0_CLK #4/5 LEU0_TX #1 25 PB14 HFXTAL_N US0_CS #4/5 LEU0_RX #1 26 IOVDD_3 Digital IO power supply 3. 27 AVDD_0 Analog power supply 0. LES_ALTEX4 #0 ETM_TD3 #3 Digital IO power supply 0. Ground Reset input. Active low, with internal pull-up. DAC0_OUT0 #0/ OPAMP_OUT0 TIM1_CC2 #3 LETIM0_OUT0 #1 I2C1_SDA #1 Ground Analog power supply 1 . 28 PD0 ADC0_CH0 DAC0_OUT0ALT #4/ OPAMP_OUT0ALT DAC0_OUT2 #1/ OPAMP_OUT2 29 PD1 ADC0_CH1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT TIM0_CC0 #3 PCNT2_S1IN #0 US1_RX #1 DBG_SWO #2 30 PD2 ADC0_CH2 TIM0_CC1 #3 US1_CLK #1 USB_DMPU #0 DBG_SWO #3 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 PCNT2_S0IN #0 US1_TX #1 47 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # QFP64 Pin# and Name Pin Name Analog Timers Communication Other 31 PD3 ADC0_CH3 DAC0_N2 #0/ OPAMP_N2 TIM0_CC2 #3 US1_CS #1 ETM_TD1 #0/2 32 PD4 ADC0_CH4 DAC0_P2 #0/ OPAMP_P2 LEU0_TX #0 ETM_TD2 #0/2 33 PD5 ADC0_CH5 DAC0_OUT2 #0/ OPAMP_OUT2 LEU0_RX #0 ETM_TD3 #0/2 34 PD6 ADC0_CH6 DAC0_P1 #0/ OPAMP_P1 TIM1_CC0 #4 LETIM0_OUT0 #0 PCNT0_S0IN #3 US1_RX #2 I2C0_SDA #1 LES_ALTEX0 #0 ACMP0_O #2 ETM_TD0 #0 35 PD7 ADC0_CH7 DAC0_N1 #0/ OPAMP_N1 TIM1_CC1 #4 LETIM0_OUT1 #0 PCNT0_S1IN #3 US1_TX #2 I2C0_SCL #1 CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2 ETM_TCLK #0 36 PD8 BU_VIN 37 PC6 ACMP0_CH6 LEU1_TX #0 I2C0_SDA #2 LES_CH6 #0 ETM_TCLK #2 38 PC7 ACMP0_CH7 LEU1_RX #0 I2C0_SCL #2 LES_CH7 #0 ETM_TD0 #2 39 VDD_DREG Power supply for on-chip voltage regulator. 40 DECOUPLE Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. 41 PE4 LCD_COM0 US0_CS #1 42 PE5 LCD_COM1 US0_CLK #1 43 PE6 LCD_COM2 US0_RX #1 44 PE7 LCD_COM3 US0_TX #1 45 USB_VREGI USB Input to internal 3.3 V regulator. 46 USB_VREGO USB Decoupling for internal 3.3 V USB regulator and regulator output. 47 PF10 USB_DM #0 48 PF11 USB_DP #0 49 PF0 TIM0_CC0 #5 LETIM0_OUT0 #2 US1_CLK #2 LEU0_TX #3 I2C0_SDA #5 DBG_SWCLK #0/1/2/3 50 PF1 TIM0_CC1 #5 LETIM0_OUT1 #2 US1_CS #2 LEU0_RX #3 I2C0_SCL #5 DBG_SWDIO #0/1/2/3 GPIO_EM4WU3 51 PF2 TIM0_CC2 #5 LEU0_TX #4 ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4 52 USB_VBUS 53 PF12 54 PF5 55 IOVDD_5 56 VSS 57 PE8 LCD_SEG4 PCNT2_S0IN #1 58 PE9 LCD_SEG5 PCNT2_S1IN #1 59 PE10 LCD_SEG6 TIM1_CC0 #1 US0_TX #0 BOOTLOADER_TX 60 PE11 LCD_SEG7 TIM1_CC1 #1 US0_RX #0 LES_ALTEX5 #0 LCD_SEG0 CMU_CLK1 #1 USB 5.0 V VBUS input. USB_ID #0 LCD_SEG3 TIM0_CDTI2 #2/5 USB_VBUSEN #0 PRS_CH2 #1 Digital IO power supply 5. Ground 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 48 PRS_CH3 #1 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Pin # QFP64 Pin# and Name Pin Alternate Functionality / Description Pin Name Analog Timers Communication Other BOOTLOADER_RX TIM1_CC2 #1 US0_RX #3 US0_CLK #0 I2C0_SDA #6 CMU_CLK1 #2 LES_ALTEX6 #0 US0_TX #3 US0_CS #0 I2C0_SCL #6 LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5 61 PE12 LCD_SEG8 62 PE13 LCD_SEG9 63 PE14 LCD_SEG10 TIM3_CC0 #0 LEU0_TX #2 64 PE15 LCD_SEG11 TIM3_CC1 #0 LEU0_RX #2 4.2 Alternate functionality pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 49) . The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 4.2. Alternate functionality overview LOCATION Alternate Functionality 0 1 2 3 4 5 6 Description ACMP0_CH4 PC4 Analog comparator ACMP0, channel 4. ACMP0_CH5 PC5 Analog comparator ACMP0, channel 5. ACMP0_CH6 PC6 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 7. ACMP0_O PE13 PD6 Analog comparator ACMP0, digital output. ACMP1_O PF2 PD7 Analog comparator ACMP1, digital output. ADC0_CH0 PD0 Analog to digital converter ADC0, input channel number 0. ADC0_CH1 PD1 Analog to digital converter ADC0, input channel number 1. ADC0_CH2 PD2 Analog to digital converter ADC0, input channel number 2. ADC0_CH3 PD3 Analog to digital converter ADC0, input channel number 3. ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOTLOADER_RX PE11 Bootloader RX BOOTLOADER_TX PE10 Bootloader TX BU_VIN PD8 Battery input for Backup Power Domain CMU_CLK0 PA2 CMU_CLK1 PA1 DAC0_N0 / PC5 PD8 PD7 Clock Management Unit, clock output number 0. PE12 Clock Management Unit, clock output number 1. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Operational Amplifier 0 external negative input. 49 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description OPAMP_N0 DAC0_N1 / OPAMP_N1 PD7 Operational Amplifier 1 external negative input. DAC0_N2 / OPAMP_N2 PD3 Operational Amplifier 2 external negative input. DAC0_OUT0 / OPAMP_OUT0 PB11 Digital to Analog Converter DAC0_OUT0 / OPAMP output channel number 0. DAC0_OUT0ALT / OPAMP_OUT0ALT PD0 Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0. DAC0_OUT1ALT / OPAMP_OUT1ALT PD1 Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1. DAC0_OUT2 / OPAMP_OUT2 PD5 Digital to Analog Converter DAC0_OUT2 / OPAMP output channel number 2. DAC0_P0 / OPAMP_P0 PC4 Operational Amplifier 0 external positive input. DAC0_P1 / OPAMP_P1 PD6 Operational Amplifier 1 external positive input. DAC0_P2 / OPAMP_P2 PD4 Operational Amplifier 2 external positive input. DBG_SWCLK PF0 PF0 PF0 PF0 DBG_SWDIO PF1 PF1 PF1 PF1 DBG_SWO PF2 PD1 PD2 ETM_TCLK PD7 PC6 ETM_TD0 PD6 PC7 PA2 Embedded Trace Module ETM data 0. ETM_TD1 PD3 PD3 PA3 Embedded Trace Module ETM data 1. ETM_TD2 PD4 PD4 PA4 Embedded Trace Module ETM data 2. ETM_TD3 PD5 PD5 PA5 Embedded Trace Module ETM data 3. GPIO_EM4WU0 PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 PE13 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal (4 - 48 MHz) negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal (4 - 48 MHz) positive pin. I2C0_SCL PA1 PD7 PC7 PF1 PE13 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PC6 PF0 PE12 I2C0 Serial Data input / output. I2C1_SCL PC5 I2C1_SDA PC4 LCD_BCAP_N PA13 LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P. LCD_BCAP_P PA12 LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P. PD0 Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up. Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used. Embedded Trace Module ETM clock . I2C1 Serial Clock Line input / output. PB11 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 I2C1 Serial Data input / output. 50 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. LCD_BEXT PA14 An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO. LCD_COM0 PE4 LCD driver common line number 0. LCD_COM1 PE5 LCD driver common line number 1. LCD_COM2 PE6 LCD driver common line number 2. LCD_COM3 PE7 LCD driver common line number 3. LCD_SEG0 PF2 LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG3 PF5 LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG4 PE8 LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG5 PE9 LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG6 PE10 LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG7 PE11 LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG8 PE12 LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG9 PE13 LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG10 PE14 LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG11 PE15 LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG13 PA0 LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG14 PA1 LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG15 PA2 LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG16 PA3 LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4. LCD_SEG17 PA4 LCD segment line 17. Segments 16, 17, 18 and 19 are controlled by SEGEN4. LCD_SEG18 PA5 LCD segment line 18. Segments 16, 17, 18 and 19 are controlled by SEGEN4. LCD_SEG20/ LCD_COM4 PB3 LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4 LCD_SEG21/ LCD_COM5 PB4 LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5 LCD_SEG22/ LCD_COM6 PB5 LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6 LCD_SEG23/ LCD_COM7 PB6 LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7 LES_ALTEX0 PD6 LESENSE alternate exite output 0. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 51 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description LES_ALTEX1 PD7 LESENSE alternate exite output 1. LES_ALTEX2 PA3 LESENSE alternate exite output 2. LES_ALTEX3 PA4 LESENSE alternate exite output 3. LES_ALTEX4 PA5 LESENSE alternate exite output 4. LES_ALTEX5 PE11 LESENSE alternate exite output 5. LES_ALTEX6 PE12 LESENSE alternate exite output 6. LES_ALTEX7 PE13 LESENSE alternate exite output 7. LES_CH4 PC4 LESENSE channel 4. LES_CH5 PC5 LESENSE channel 5. LES_CH6 PC6 LESENSE channel 6. LES_CH7 PC7 LESENSE channel 7. LETIM0_OUT0 PD6 LETIM0_OUT1 PD7 LEU0_RX PD5 LEU0_TX PD4 LEU1_RX PC7 LEU1_TX PC6 LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. PB11 PF0 PC4 Low Energy Timer LETIM0, output channel 0. PF1 PC5 Low Energy Timer LETIM0, output channel 1. PB14 PE15 PF1 PA0 LEUART0 Receive input. PB13 PE14 PF0 PF2 LEUART0 Transmit output. Also used as receive input in half duplex communication. LEUART1 Receive input. LEUART1 Transmit output. Also used as receive input in half duplex communication. PA5 PCNT0_S0IN PD6 Pulse Counter PCNT0 input number 0. PCNT0_S1IN PD7 Pulse Counter PCNT0 input number 1. PCNT1_S0IN PC4 PB3 Pulse Counter PCNT1 input number 0. PCNT1_S1IN PC5 PB4 Pulse Counter PCNT1 input number 1. PCNT2_S0IN PD0 PE8 Pulse Counter PCNT2 input number 0. PCNT2_S1IN PD1 PE9 Pulse Counter PCNT2 input number 1. PRS_CH0 PA0 Peripheral Reflex System PRS, channel 0. PRS_CH1 PA1 Peripheral Reflex System PRS, channel 1. PRS_CH2 PF5 Peripheral Reflex System PRS, channel 2. PRS_CH3 PE8 Peripheral Reflex System PRS, channel 3. TIM0_CC0 PA0 PA0 PD1 PF0 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 PA1 PA1 PD2 PF1 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 PA2 PA2 PD3 PF2 Timer 0 Capture Compare input / output channel 2. TIM0_CDTI0 PA3 Timer 0 Complimentary Deat Time Insertion channel 0. TIM0_CDTI1 PA4 Timer 0 Complimentary Deat Time Insertion channel 1. TIM0_CDTI2 PA5 PF5 PA0 PC4 PF5 Timer 0 Complimentary Deat Time Insertion channel 2. TIM1_CC0 PE10 PB7 PD6 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 PE11 PB8 PD7 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 PE12 PB11 TIM2_CC0 PA12 Timer 2 Capture Compare input / output channel 0. TIM2_CC1 PA13 Timer 2 Capture Compare input / output channel 1. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 Timer 1 Capture Compare input / output channel 2. 52 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 TIM2_CC2 1 2 3 4 5 PA14 6 Description Timer 2 Capture Compare input / output channel 2. TIM3_CC0 PE14 Timer 3 Capture Compare input / output channel 0. TIM3_CC1 PE15 Timer 3 Capture Compare input / output channel 1. US0_CLK PE12 PE5 PB13 PB13 USART0 clock input / output. US0_CS PE13 PE4 PB14 PB14 USART0 chip select input / output. US0_RX PE11 PE6 USART0 Asynchronous Receive. PE12 PB8 USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. US0_TX PE10 PE7 PE13 PB7 USART0 Synchronous mode Master Output / Slave Input (MOSI). US1_CLK PB7 PD2 PF0 USART1 clock input / output. US1_CS PB8 PD3 PF1 USART1 chip select input / output. PD1 PD6 USART1 Asynchronous Receive. US1_RX USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. US1_TX PD0 PD7 USART1 Synchronous mode Master Output / Slave Input (MOSI). US2_CLK PC4 PB5 USART2 clock input / output. US2_CS PC5 PB6 USART2 chip select input / output. USART2 Asynchronous Receive. US2_RX PB4 USART2 Synchronous mode Master Input / Slave Output (MISO). USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. US2_TX PB3 USART2 Synchronous mode Master Output / Slave Input (MOSI). USB_DM PF10 USB D- pin. USB_DMPU PD2 USB D- Pullup control. USB_DP PF11 USB D+ pin. USB_ID PF12 USB ID pin. Used in OTG mode. USB_VBUS USB_VBUS USB 5 V VBUS input. USB_VBUSEN PF5 USB 5 V VBUS enable. USB_VREGI USB_VREGI USB Input to internal 3.3 V regulator USB_VREGO USV_VREGO USB Decoupling for internal 3.3 V USB regulator and regulator output 4.3 GPIO pinout overview The specific GPIO pins available in EFM32GG942 is shown in Table 4.3 (p. 54) . Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 53 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Table 4.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port A - PA14 PA13 PA12 - - - - - - PA5 PA4 PA3 PA2 PA1 PA0 Port B - PB14 PB13 - PB11 - - PB8 PB7 PB6 PB5 PB4 PB3 - - - Port C - - - - - - - - PC7 PC6 PC5 PC4 - - - - Port D - - - - - - - PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Port E PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8 PE7 PE6 PE5 PE4 - - - - Port F - - - PF12 PF11 PF10 - - - - PF5 - - PF2 PF1 PF0 4.4 Opamp pinout overview The specific opamp terminals available in EFM32GG942 is shown in Figure 4.2 (p. 54) . Figure 4.2. Opamp Pinout PB11 PC4 PC5 PD4 PD3 PD6 PD7 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 OUT0ALT + OPA0 OUT0 + OPA2 OUT2 OUT1ALT + OPA1 OUT1 - 54 PC12 PC13 PC14 PC15 PD0 PD1 PD5 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 4.5 TQFP64 Package Figure 4.3. LQFP64 Note: 1. 2. 3. 4. 5. All dimensions & tolerancing confirm to ASME Y14.5M-1994. The top package body size may be smaller than the bottom package body size. Datum 'A,B', and 'B' to be determined at datum plane 'H'. To be determined at seating place 'C'. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side. 'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and 'E1' shall be determined at datum plane 'H'. 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated. 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm 8. Exact shape of each corner is optional. 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 10.All dimensions are in millimeters. Table 4.4. QFP64 (Dimensions in mm) DIM MIN NOM MAX DIM A - 1.10 1.20 L1 A1 0.05 - 0.15 R1 0.08 - - A2 0.95 1.00 1.05 R2 0.08 - 0.20 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 55 MIN NOM MAX - www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers DIM MIN NOM MAX DIM MIN NOM MAX b 0.17 0.22 0.27 S 0.20 - - b1 0.17 0.20 0.23 θ 0° 3.5° 7° c 0.09 - 0.20 θ1 0° - - C1 0.09 - 0.16 θ2 11° 12° 13° θ3 11° 12° 13° D 12.0 BSC D1 10.0 BSC e 0.50 BSC E 12.0 BSC E1 10.0 BSC L 0.45 0.60 0.75 The TQFP64 Package is 10 by 10 mm in size and has a 0.5 mm pin pitch. The TQFP64 Package uses Nickel-Palladium-Gold preplated leadframe. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 56 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 5 PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. TQFP64 PCB Land Pattern a p8 p7 p6 p1 b e c p2 p5 p3 p4 d Table 5.1. QFP64 PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dim. (mm) Symbol Pin number Symbol Pin number a 1.60 P1 1 P6 48 b 0.30 P2 16 P7 49 c 0.50 P3 17 P8 64 d 11.50 P4 32 - - e 11.50 P5 33 - - 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 57 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 5.2. TQFP64 PCB Solder Mask a b e c d Table 5.2. QFP64 PCB Solder Mask Dimensions (Dimensions in mm) Symbol Dim. (mm) a 1.72 b 0.42 c 0.50 d 11.50 e 11.50 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 58 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Figure 5.3. TQFP64 PCB Stencil Design a b e c d Table 5.3. QFP64 PCB Stencil Design Dimensions (Dimensions in mm) 1. 2. 3. 4. 5. Symbol Dim. (mm) a 1.50 b 0.20 c 0.50 d 11.50 e 11.50 The drawings are not to scale. All dimensions are in millimeters. All drawings are subject to change without notice. The PCB Land Pattern drawing is in compliance with IPC-7351B. Stencil thickness 0.125 mm. 5.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 59 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 6 Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 60) . If the revision says "ES" (Engineering Sample), the revision must be read out electronically as specified in the reference manual. 6.3 Errata Please see the dxxxx_efm32gg942_errata.pdf for description and resolution of device erratas. This document is available in Simplicity Studio and online at http://www.energymicro.com/downloads/datasheets. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 60 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers 7 Revision History 7.1 Revision 1.00 September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Other minor corrections. 7.2 Revision 0.98 May 25th, 2012 Corrected EM3 current consumption in the Electrical Characteristics section. 7.3 Revision 0.96 February 28th, 2012 Added reference to errata document. Corrected TQFP64 package drawing. Updated PCB land pattern, solder mask and stencil design. 7.4 Revision 0.95 September 28th, 2011 Flash configuration for Giant Gecko is now 1024KB or 512KB. For flash sizes below 512KB, see the Leopard Gecko Family. Corrected operating voltage from 1.8 V to 1.85 V. Added rising POR level to Electrical Characteristics section. Updated Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup. Added Gain error drift and Offset error drift to ADC table. Added Opamp pinout overview. Added reference to errata document. Corrected TQFP64 package drawing. Updated PCB land pattern, solder mask and stencil design. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 61 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers A Disclaimer and Trademarks A.1 Disclaimer Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Energy Micro products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Energy Micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Energy Micro shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Energy Micro. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Energy Micro products are generally not intended for military applications. Energy Micro products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. A.2 Trademark Information Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited. Other terms and product names may be trademarks of others. 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 62 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers B Contact Information B.1 Energy Micro Corporate Headquarters Postal Address Visitor Address Technical Support Energy Micro AS P.O. Box 4633 Nydalen N-0405 Oslo NORWAY Energy Micro AS Sandakerveien 118 N-0484 Oslo NORWAY support.energymicro.com Phone: +47 40 10 03 01 www.energymicro.com Phone: +47 23 00 98 00 Fax: + 47 23 00 98 01 B.2 Global Contacts Visit www.energymicro.com for information on global distributors and representatives or contact [email protected] for additional information. Americas Europe, Middle East and Africa Asia and Pacific www.energymicro.com/americas www.energymicro.com/emea 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 63 www.energymicro.com/asia www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers Table of Contents 1. Ordering Information .................................................................................................................................. 2 2. System Summary ...................................................................................................................................... 3 2.1. System Introduction ......................................................................................................................... 3 2.2. Configuration Summary .................................................................................................................... 7 2.3. Memory Map ................................................................................................................................. 8 3. Electrical Characteristics ........................................................................................................................... 10 3.1. Test Conditions ............................................................................................................................. 10 3.2. Absolute Maximum Ratings ............................................................................................................. 10 3.3. General Operating Conditions .......................................................................................................... 10 3.4. Current Consumption ..................................................................................................................... 12 3.5. Transition between Energy Modes .................................................................................................... 13 3.6. Power Management ....................................................................................................................... 13 3.7. Flash .......................................................................................................................................... 14 3.8. General Purpose Input Output ......................................................................................................... 15 3.9. Oscillators .................................................................................................................................... 22 3.10. Analog Digital Converter (ADC) ...................................................................................................... 26 3.11. Digital Analog Converter (DAC) ...................................................................................................... 36 3.12. Operational Amplifier (OPAMP) ...................................................................................................... 37 3.13. Analog Comparator (ACMP) .......................................................................................................... 41 3.14. Voltage Comparator (VCMP) ......................................................................................................... 43 3.15. LCD .......................................................................................................................................... 44 3.16. Digital Peripherals ....................................................................................................................... 44 4. Pinout and Package ................................................................................................................................. 46 4.1. Pinout ......................................................................................................................................... 46 4.2. Alternate functionality pinout ............................................................................................................ 49 4.3. GPIO pinout overview .................................................................................................................... 53 4.4. Opamp pinout overview .................................................................................................................. 54 4.5. TQFP64 Package .......................................................................................................................... 55 5. PCB Layout and Soldering ........................................................................................................................ 57 5.1. Recommended PCB Layout ............................................................................................................ 57 5.2. Soldering Information ..................................................................................................................... 59 6. Chip Marking, Revision and Errata ............................................................................................................ 60 6.1. Chip Marking ................................................................................................................................ 60 6.2. Revision ...................................................................................................................................... 60 6.3. Errata ......................................................................................................................................... 60 7. Revision History ...................................................................................................................................... 61 7.1. Revision 1.00 ............................................................................................................................... 61 7.2. Revision 0.98 ............................................................................................................................... 61 7.3. Revision 0.96 ............................................................................................................................... 61 7.4. Revision 0.95 ............................................................................................................................... 61 A. Disclaimer and Trademarks ....................................................................................................................... 62 A.1. Disclaimer ................................................................................................................................... 62 A.2. Trademark Information ................................................................................................................... 62 B. Contact Information ................................................................................................................................. 63 B.1. Energy Micro Corporate Headquarters .............................................................................................. 63 B.2. Global Contacts ............................................................................................................................ 63 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 64 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32GG942 Memory Map with largest RAM and Flash sizes ........................................................................ 9 3.1. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 16 3.2. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. 17 3.3. Typical Low-Level Output Current, 3V Supply Voltage .................................................................................. 18 3.4. Typical High-Level Output Current, 3V Supply Voltage ................................................................................. 19 3.5. Typical Low-Level Output Current, 3.8V Supply Voltage ............................................................................... 20 3.6. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................... 21 3.7. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup ..................................................... 22 3.8. Calibrated LFRCO Frequency vs Temperature and Supply Voltage ................................................................ 24 3.9. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage ............................................ 25 3.10. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 25 3.11. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 25 3.12. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 26 3.13. Integral Non-Linearity (INL) ................................................................................................................... 30 3.14. Differential Non-Linearity (DNL) .............................................................................................................. 31 3.15. ADC Frequency Spectrum, Vdd = 3V, Temp = 25° ................................................................................... 32 3.16. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25° ..................................................................... 33 3.17. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25° ................................................................. 34 3.18. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 35 3.19. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 35 3.20. ADC Temperature sensor readout ......................................................................................................... 36 3.21. OPAMP Common Mode Rejection Ratio ................................................................................................. 39 3.22. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 39 3.23. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 40 3.24. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 40 3.25. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 40 3.26. Typical ACMP Characteristics ............................................................................................................... 42 4.1. EFM32GG942 Pinout (top view, not to scale) ............................................................................................. 46 4.2. Opamp Pinout ...................................................................................................................................... 54 4.3. LQFP64 .............................................................................................................................................. 55 5.1. TQFP64 PCB Land Pattern ..................................................................................................................... 57 5.2. TQFP64 PCB Solder Mask ..................................................................................................................... 58 5.3. TQFP64 PCB Stencil Design ................................................................................................................... 59 6.1. Example Chip Marking ........................................................................................................................... 60 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 65 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 7 3.1. Absolute Maximum Ratings ..................................................................................................................... 10 3.2. General Operating Conditions .................................................................................................................. 10 3.3. Environmental ....................................................................................................................................... 11 3.4. Current Consumption ............................................................................................................................. 12 3.5. Energy Modes Transitions ...................................................................................................................... 13 3.6. Power Management ............................................................................................................................... 13 3.7. Flash .................................................................................................................................................. 14 3.8. GPIO .................................................................................................................................................. 15 3.9. LFXO .................................................................................................................................................. 22 3.10. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup ................................................... 23 3.11. HFXO ................................................................................................................................................ 23 3.12. LFRCO .............................................................................................................................................. 23 3.13. HFRCO ............................................................................................................................................. 24 3.14. ULFRCO ............................................................................................................................................ 26 3.15. ADC .................................................................................................................................................. 26 3.16. DAC .................................................................................................................................................. 36 3.17. OPAMP ............................................................................................................................................. 37 3.18. ACMP ............................................................................................................................................... 41 3.19. VCMP ............................................................................................................................................... 43 3.20. LCD .................................................................................................................................................. 44 3.21. Digital Peripherals ............................................................................................................................... 44 4.1. Device Pinout ....................................................................................................................................... 46 4.2. Alternate functionality overview ................................................................................................................ 49 4.3. GPIO Pinout ........................................................................................................................................ 54 4.4. QFP64 (Dimensions in mm) .................................................................................................................... 55 5.1. QFP64 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 57 5.2. QFP64 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 58 5.3. QFP64 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 59 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 66 www.energymicro.com Preliminary ...the world's most energy friendly microcontrollers List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 41 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 43 3.3. Total LCD Current Based on Operational Mode and Internal Boost ................................................................. 44 2012-09-11 - EFM32GG942FXX - d0128_Rev1.00 67 www.energymicro.com