IXYS IXSA20N60B2D1 High speed igbt Datasheet

IXSA 20N60B2D1
IXSP 20N60B2D1
High Speed IGBT
Short Circuit SOA Capability
VCES = 600 V
I C25
= 35 A
V CE(sat) = 2.5 V
Preliminary Data Sheet
Symbol
Test Conditions
Maximum Ratings
VCES
T J = 25°C to 150°C
600
V
VCGR
T J = 25°C to 150°C; RGE = 1 MΩ
600
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
TC = 25°C
35
A
IC110
TC = 110°C
20
A
11
A
60
A
ICM = 32
@ 0.8 VCES
A
10
μs
190
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
2
g
300
°C
260
°C
IF(110)
ICM
TC = 25°C, 1 ms
SSOA
(RBSOA)
VGE = 15 V, TJ = 125°C, RG = 82Ω
Clamped inductive load
tSC
(SCSOA)
VGE = 15 V, VCE = 360 V, TJ = 125°C
RG = 82 Ω, non repetitive
PC
TC = 25°C
TJ
Weight
Maximum lead temperature for soldering
1.6 mm (0.062 in.) from case for 10 s
Maximum tab temperature for soldering for 10s
Symbol
Test Conditions
Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
BVCES
IC
= 250 μA, VGE = 0 V
600
VGE(th)
IC
= 750 μA, VCE = VGE
3.5
ICES
VCE = VCES
VGE = 0 V
IGES
VCE = 0 V, VGE = ± 20 V
VCE(sat)
IC
= 16A, VGE = 15 V
TJ = 125 °C
TO-220 (IXSP)
C (TAB)
G
C
E
TO-220 (IXSA)
G
G = Gate
E = Emitter
C
C (TAB)
C = Collector
TAB = Collector
Features
• International standard packages
• Guaranteed Short Circuit SOA
capability
• Low VCE(sat)
- for low on-state conduction losses
• High current handling capability
• MOS Gate turn-on
- drive simplicity
• Fast fall time for switching speeds
up to 20 kHz
V
6.5
V
85
0.6
μA
mA
± 100
nA
2.5
V
Applications
• AC motor speed control
• Uninterruptible power supplies (UPS)
• Welding
Advantages
• High power density
DS99181B(12/05)
© 2004 IXYS All rights reserved
IXSA 20N60B2D1
IXSP 20N60B2D1
Symbol
Test Conditions
Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ.
max.
gfs
IC = 16A; VCE = 10 V, Note 1
3.5
7.0
S
800
pF
76
90
pF
pF
C res
28
pF
Qg
33
nC
12
nC
12
nC
Cies
Coes
Qge
VCE = 25 V, VGE = 0 V
f = 1 MHz
20N60B2D1
IC = 16A, VGE = 15 V, VCE = 0.5 VCES
Qgc
td(on)
Inductive load, TJ = 25°°C
30
ns
tri
IC = 16A, VGE = 15 V
VCE = 0.8 VCES, RG = 10 Ω
Switching times may increase for VCE
(Clamp) > 0.8 • VCES, higher TJ or
increased RG
30
ns
116
ns
td(off)
tfi
Eoff
126
380
td(on)
tri
Inductive load, TJ = 125°°C
Eon
IC = 16 A, VGE = 15 V
20N60B2
VCE = 0.8 VCES, RG = 10 Ω
20N60B2D1
Switching times may increase for
VCE (Clamp) > 0.8 • VCES, higher TJ
or increased RG
td(off)
tfi
Eoff
μJ
30
ns
30
ns
0.12
0.42
mJ
mJ
180
ns
210
ns
970
μJ
RthJC
Dim.
A
B
C
D
E
F
G
H
J
K
M
N
Q
R
Millimeter
Min.
Max.
12.70 13.97
14.73 16.00
9.91 10.66
3.54
4.08
5.85
6.85
2.54
3.18
1.15
1.65
2.79
5.84
0.64
1.01
2.54
BSC
4.32
4.82
1.14
1.39
0.35
0.56
2.29
2.79
Inches
Min.
Max.
0.500 0.550
0.580 0.630
0.390 0.420
0.139 0.161
0.230 0.270
0.100 0.125
0.045 0.065
0.110 0.230
0.025 0.040
0.100
BSC
0.170 0.190
0.045 0.055
0.014 0.022
0.090 0.110
TO-263 (IXSA) Outline
0.66 K/W
0.3
RthCS
Reverse Diode (FRED)
Symbol
ns
600
TO-220 AB (IXSP) Outline
Test Conditions
K/W
Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
VF
IF = 10A, VGE = 0 V
TJ =150°C
IRM
trr
IF = 12A, VGE = 0 V, -diF/dt = 100 A/μs
VR = 100 V
trr
IF = 1 A; -di/dt = 100 A/μs; VR = 30 V
TJ = 100°C
TJ = 100°C
1.66
2.66
1.5
90
V
V
A
ns
30
ns
2.5 K/W
RthJC
Note 1: Pulse test, t ≤ 300 μs, duty cycle d ≤ 2 %
IXYS MOSFETs and IGBTs are covered by
one or moreof the following U.S. patents:
4,835,592
4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
Dim.
Millimeter
Min.
Max.
Inches
Min. Max.
A
A1
4.06
2.03
4.83
2.79
.160
.080
.190
.110
b
b2
0.51
1.14
0.99
1.40
.020
.045
.039
.055
c
c2
0.46
1.14
0.74
1.40
.018
.045
.029
.055
D
D1
8.64
7.11
9.65
8.13
.340
.280
.380
.320
E
E1
e
9.65
6.86
2.54
10.29
8.13
BSC
.380
.270
.100
.405
.320
BSC
L
L1
L2
L3
L4
14.61
2.29
1.02
1.27
0
15.88
2.79
1.40
1.78
0.38
.575
.090
.040
.050
0
.625
.110
.055
.070
.015
R
0.46
0.74
.018
.029
6,683,344
6,710,405B2
6,710,463
6,727,585
6,759,692
6771478 B2
IXSA 20N60B2D1
IXSP 20N60B2D1
Fig. 1. Output Characteristics
@ 25 ºC
Fig. 2. Extended Output Characteristics
@ 25 ºC
70
32
VGE = 17V
28
VGE = 17V
60
15V
15V
50
I C - Amperes
I C - Amperes
24
13V
20
16
11V
12
8
9V
4
7V
0
0.5
1
1.5
2
2.5
3
40
13V
30
20
11V
10
9V
0
3.5
4
0
V C E - Volts
Fig. 3. Output Characteristics
@ 125 ºC
6
8
10
12
V C E - Volts
14
16
18
20
1.8
VGE = 17V
28
1.7
15V
VGE = 15V
1.6
VC E (sat)- Normalized
24
13V
20
16
11V
12
9V
8
1.5
I C = 32A
1.4
1.3
1.2
I C = 16A
1.1
1.0
0.9
0.8
4
0.7
7V
I C = 8A
0.6
0
0.5
1
1.5
2
2.5
3
V CE - Volts
3.5
4
-50
4.5
-25
0
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Em itter Voltage
vs. Gate-to-Em itter voltage
Fig. 6. Input Adm ittance
8
60
TJ = 25ºC
6
I C = 32A
5
16A
8A
50
I C - Amperes
7
VC E - Volts
4
Fig. 4. Dependence of V CE(sat) on
Tem perature
32
I C - Amperes
2
4
3
40
30
20
TJ = 125ºC
10
2
25ºC
-40ºC
0
1
9
10
11
12
13
14
15
16
V G E - Volts
17
18
19
20
6
7
8
9
10
11
12
V G E - Volts
13
14
15
16
IXSA 20N60B2D1
IXSP 20N60B2D1
Fig. 8. Dependence of Turn-off
Fig. 7. Transconductance
Energy Loss on RG
9
2.6
2.4
8
2.2
6
E o f f - miiilJoules
g f s - Siemens
7
TJ = -40ºC
5
25ºC
125ºC
4
3
I C = 32A
2.0
TJ = 125ºC
1.8
1.6
VGE = 15V
1.4
VCE = 400V
I C = 16A
1.2
1.0
0.8
2
I C = 8A
0.6
1
0.4
0
0.2
0
10
20
30
40
50
60
10
20
30
40
I C - Amperes
Fig. 9. Dependence of Turn-Off
70
80
90
100
2.2
2.2
2.0
R G = 10Ω
2.0
R G = 10Ω
1.8
VGE = 15V
1.8
VGE = 15V
1.6
VCE = 400V
1.6
VCE = 400V
E o f f - milliJoules
E o f f - miiilJoules
60
Fig. 10. Dependence of Turn-off
Energy Loss on Tem perature
Energy Loss on IC
TJ = 125ºC
1.4
1.2
1.0
0.8
0.6
I C = 32A
1.4
1.2
I C = 16A
1.0
0.8
0.6
TJ = 25ºC
0.4
I C = 8A
0.4
0.2
0.2
0.0
0.0
8
12
16
20
24
28
25
32
35
45
I C - Amperes
VGE = 15V
VCE = 400V
250
I C = 32A
200
I C = 16A
I C = 8A
150
100
Switching Time - nanoseconds
240
TJ = 125ºC
300
85
95
105 115 125
Sw itching Tim e on IC
tfi - - - - -
350
75
260
td(off)
400
65
Fig. 12. Dependence of Turn-off
Sw itching Tim e on RG
450
55
TJ - Degrees Centigrade
Fig. 11. Dependence of Turn-off
Switching Time - nanoseconds
50
R G - Ohms
td(off)
220
tfi - - - - -
200
TJ = 125ºC
180
R G = 10Ω
VGE = 15V
160
VCE = 400V
140
120
TJ = 25ºC
100
80
60
10
20
30
40
50
60
R G - Ohms
70
80
90
100
8
12
16
20
I C - Amperes
24
28
32
IXSA 20N60B2D1
IXSP 20N60B2D1
Fig. 13. Dependence of Turn-off
Sw itching Tim e on Tem perature
Fig. 14. Gate Charge
16
280
td(off)
260
tfi - - - - -
240
R G = 10Ω
220
VGE = 15V
200
VCE = 400V
I C = 32A
I C = 16A
I C = 8A
140
120
I G = 10mA
10
8
6
4
I C = 32A
100
I C = 16A
12
180
160
VCE = 480V
14
VG E - Volts
Switching Time - nanoseconds
300
2
80
0
25
35
45
55
65
75
85
95
105 115 125
TJ - Degrees Centigrade
0
10
15
20
25
30
35
Q G - nanoCoulombs
Fig. 16. Reverse-Bias Safe
Operating Area
Fig. 15. Capacitance
1,000
33
f = 1 MHz
30
C ies
27
24
100
I C - Amperes
Capacitance - p F
5
C oes
21
18
15
12
TJ = 125ºC
9
R G = 10Ω
6
C res
dV/dT < 10V/ns
3
10
0
0
5
10
15
20
25
V C E - Volts
30
35
40
100
200
300
400
500
600
V C E - Volts
Fig. 17. Maxim um Transient Therm al Resistance
R ( t h ) J C - ºC / W
1.00
0.50
0.10
1
10
Pulse Width - milliseconds
100
1,000
IXSA 20N60B2D1
IXSP 20N60B2D1
30
250
A
nC
25
IF = 5 A
150
TVJ = 100°C
15
IF = 10 A
8
IRM
Qr
20
IF = 5 A
A
VR = 300 V
200
TVJ = 150°C
IF
10
TVJ = 100°C
IF = 20 A
6
IF = 10 A
IF = 20 A
100
4
TVJ = 100°C
10
50
5
0
TVJ = 25°C
0
1
2
3
2
0
100
V
Fig. 19. Reverse recovery charge Qr
2.0
ns
400
600 A/μs
800 1000
-diF/dt
0.3
TVJ = 100°C
V
μs
IF = 10 A
VFR
40
IF = 5 A
80
tfr
0.2
IF = 10 A
1.0
IF = 20 A
IRM
60
20
tfr
VFR
0.5
Qr
0.0
200
Fig. 20. Peak reverse current IRM
VR = 300 V
trr
Kf
0
60
TVJ = 100°C
100
1.5
0
A/μs 1000
-diF/dt
VF
Fig. 18. Forward current IF versus VF
VR = 300 V
0
40
0.1
40
80
120 C 160
0
200
400
600
TVJ
800 1000
A/μs
0
0
200
400
-diF/dt
Fig. 21. Dynamic parameters Qr, IRM
Fig. 22. Recovery time trr versus -diF/dt
10
0.0
600 A/μs
800 1000
diF/dt
Fig. 23. Peak forward voltage VFR and
Constants for ZthJC calculation:
K/W
i
1
1
2
ZthJC
Rthi (K/W)
ti (s)
1.449
0.5578
0.0052
0.0003
0.1
0.01
0.001
0.00001
DSEP 8-06B
0.0001
0.001
0.01
0.1
s
t
1
Fig. 24. Transient thermal resistance junction-to-case
NOTE: Fig. 18 to Fig. 23 shows typical values
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered by
one or moreof the following U.S. patents:
4,835,592
4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,306,728 B1 6,534,343
6,259,123 B1 6,404,065 B1 6,583,505
6,683,344
6,710,405B2
Similar pages