AN3394 Application note Antenna design and impedance matching guidelines for CR95HF multiprotocol contactless transceiver IC Introduction The goal of this application note is to provide guidelines to design a CR95HF antenna which impedance matches to the CR95HF impedance. This allows to achieve the best RF communications between the CR95HF transceiver integrated circuit (IC) and ISO15693 or ISO14443 RF memory tags. The DEMO-CR95HF-A is a demonstration board for the CR95HF 13.56 MHz contactless transceiver. It is designed as a ready-to-use circuit board to interface with the CR95HF PC host demonstration software through an USB bus. The DEMO-CR95HF-A is powered by the USB bus and no external power supply is required. It is based on the CR95HF contactless transceiver with a 47x34 mm 13.56 MHz inductive etched antenna and its associated tuning components, and on a STM32F103CB 32-bit microcontroller that communicates with the CR95HF via the USB bus. This document is structured as follows: October 2011 ■ Description of the DEMO-CR95HF-A board – Definition of CR95HF output impedance – Use of inductive antenna – Impedance matching ■ Description of equivalent circuit – CR95HF RF circuit modeling and description of antenna impedance matching circuit – Calculation of the matching circuit optimized for ISO15693 memory tags ■ Read range estimate based on magnetic field calculation method for a rectangular antenna ■ Main criteria for key antenna design Doc ID 018754 Rev 5 1/29 www.st.com Contents AN3394 Contents 1 2 Description of DEMO-CR95HF-A and criteria for impedance matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Output impedance of the DEMO-CR95HF-A demonstration board output circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Inductive antenna impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Need for impedance matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Impedance matching circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5.1 Antenna circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5.2 Entire equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Application to DEMO-CR95HF-A demonstration board . . . . . . . . . . . . 13 2.1 2.2 Antenna parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Antenna serial equivalent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Antenna parallel equivalent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 CR95HF receiving circuit equivalent models . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 2.3 3 4 5 CR95HF receiving circuit parallel equivalent model . . . . . . . . . . . . . . . 14 Numerical application of C2, C6, C3 and C17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Read range estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Magnetic field calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Read range calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Main criteria for key antenna design . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 Inductance of a circular antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Inductance of a spiral antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Inductance of a square antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4 ST antenna calculation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Appendix A Demonstration of C11 and C22 calculation. . . . . . . . . . . . . . . . . . . . 23 A.1 2/29 Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Doc ID 018754 Rev 5 AN3394 6 Contents A.2 Serial to parallel equivalence RL impedance, and example of RL load . . 24 A.3 Serial to parallel equivalence RC impedance, and example of RC load . . 26 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Doc ID 018754 Rev 5 3/29 List of tables AN3394 List of tables Table 1. Table 2. Table 3. 4/29 K1 and K2 values depending on layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DEMO-CR95HF-A component commended values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Doc ID 018754 Rev 5 AN3394 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. DEMO-CR95HF-A demonstration board equivalent circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 6 CR95HF equivalent output impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chip simplified equivalent impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Antenna demonstration board equivalent circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Impedance matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Antenna circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Equivalent circuit of the CR95HF and associated matching circuit. . . . . . . . . . . . . . . . . . . 10 CR95HF matching circuit intermediate simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 CR95HF parallel matching circuit intermediate simplification . . . . . . . . . . . . . . . . . . . . . . . 11 CR95HF final equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Antenna parameters without EMI filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Antenna serial-to-parallel RL equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 CR95HF serial-to-parallel RC circuit equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Circuit including Rinput internal resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Rectangular antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Read range evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Spiral antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Square antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 User interface for planar rectangular coil inductance calculation . . . . . . . . . . . . . . . . . . . . 20 Rectangular planar antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DEMO-CR95HF-A circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Final equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Serial-to-parallel RL equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Serial-to-parallel RC equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Doc ID 018754 Rev 5 5/29 Description of DEMO-CR95HF-A and criteria for impedance matching 1 Description of DEMO-CR95HF-A and criteria for impedance matching 1.1 Overview AN3394 Figure 1 shows the part of the circuit concerned by the impedance matching. Figure 1. DEMO-CR95HF-A demonstration board equivalent circuit !ND 28 2 48 Ω # /PEN # #2(& # 20! ,0! /PEN # Ω 48 28 2 -36 Legend and Abbreviations : : : : : : TX: RX: RPA: LPA: C2,C6: C3,C17: R1,R5: 6/29 EMC Filter: For information on the EMC filter, contact your local ST sales team. Matching circuit. Inductive antenna. Block. Pin. Component. CR95HF output driver. CR95HF receiver input stage. Antenna equivalent parallel resistor. [Ω] Antenna equivalent parallel inductance. [H] Serial capacitance of the matching circuit impedance. [F] Parallel capacitance of the matching circuit impedance. [F] 330 Ω. These resistors are used to limit the signal level on RX1-RX2. They must be considered in the calculation of the impedance matching circuit. Doc ID 018754 Rev 5 AN3394 1.2 Description of DEMO-CR95HF-A and criteria for impedance matching Output impedance of the DEMO-CR95HF-A demonstration board output circuit To generate the magnetic field, the antenna is excited by the two CR95HF differential generators (see Figure 2: CR95HF equivalent output impedance). Each generator has an output impedance of 13.5 Ω. Zout is the CR95HF differential output impedance between TX1 and TX2. It is a pure resistor. The resulting output impedance, Rout, can be measured as shown in Figure 3: Chip simplified equivalent impedance: Z out = R out = 27Ω Figure 2. CR95HF equivalent output Figure 3. impedance Ω Chip simplified equivalent impedance 48 ; =6 :OUT Ω ( 3V ) 48 ; =6 #HIP 2OUT Ω 6OUT 6 48 48 -36 -36 Where Zout: Matching impedance. [Ω] Rout: Matching resistor. [Ω] Vout: Supply voltage of the chip. [V] Doc ID 018754 Rev 5 7/29 Description of DEMO-CR95HF-A and criteria for impedance matching 1.3 AN3394 Inductive antenna impedance The CR95HF requires an inductive antenna to communicate at a frequency of 13,56 MHz. The equivalent impedance (Zload) of the inductive loop antenna is shown in Figure 7: Equivalent circuit of the CR95HF and associated matching circuit. DEMO-CR95HF-A antenna dimensions are 47 mm x 34 mm. Figure 4. Antenna demonstration board equivalent circuit 2! :LOAD ,! -36 Where Zload: Antenna equivalent parallel impedance. [Ω] 1.4 RA: Antenna equivalent series resistor. [Ω] LA: Antenna equivalent series inductance. [H] Need for impedance matching The maximum power transfer between the CR95HF and the load is obtained when the condition Zout = Zload* is satisfied. Zload* is the complex conjugate of Zload. The antenna equivalent impedance described in Section 1.3: Inductive antenna impedance does not meet this condition. The measure of Zload gives: Equation (I.4) Z load = ( 0.6 + j × 36.6 )Ω To achieve the maximum power transfer between the CR95HF and its inductive antenna, impedance matching must therefore be performed between Zout and Zload. It allows to: ● Optimize the read range ● Transmit the maximum power ● Optimize the chip consumption ● Maximize the radiated magnetic field Figure 5. Impedance matching :OUT 6OUT :LOAD -36 8/29 Doc ID 018754 Rev 5 AN3394 Description of DEMO-CR95HF-A and criteria for impedance matching 1.5 Impedance matching circuit 1.5.1 Antenna circuit description The impedance matching circuit is composed of a serial capacitance circuit (C2and C6) and a parallel capacitance circuit (C3and C17). Successive impedance transformation allows to simplify the antenna equivalent circuit and to calculate C2, C6, C3 and C17 capacitances easily. Figure 6. Antenna circuit description 28 2 48 2OUT #INPUT ˖ # /PEN 6OUT # # 20! ,0! /PEN ˖ 48 # 2 28 #2(& -ATCHING CIRCUIT ASSOCIATED COMPONENTS AND ANTENNA -36 Where R1,R5: 330 Ω. These resistors are used to limit the signal level on RX1-RX2. They must be considered in the calculation of the impedance matching circuit. Cinput: 22 pF. Cinput is the integrated capacitor between RX1-RX2. As R1,R5, it must be considered for the impedance matching circuit. Doc ID 018754 Rev 5 9/29 Description of DEMO-CR95HF-A and criteria for impedance matching 1.5.2 AN3394 Entire equivalent circuit Without the EMI filter, the circuit is reduced as shown in Figure 7: Equivalent circuit of the CR95HF and associated matching circuit: Figure 7. Equivalent circuit of the CR95HF and associated matching circuit 28 2 48 2OUT #INPUT # 6OUT # # 20! ,0! # 48 2 28 -36 From antenna point of view, the CR95HF receiving circuit impedance (R1, R5 and Cinput) is in parallel of C3,C17 as described in the equivalent circuit shown in Figure 8: CR95HF matching circuit intermediate simplification. R1 and R5 are equal and can be replaced by RRX. Figure 8. CR95HF matching circuit intermediate simplification 48 # 2OUT #INPUT # 6OUT # 20! ,0! 228 # 48 -36 Where : input impedance of the CR95HF reception circuit Both serial capacitances (C2and C6) are equivalent to a serial capacitance C11 = C2/2 = C6/2. Both parallel capacitances (C3 and C17) are equivalent to a parallel 10/29 Doc ID 018754 Rev 5 AN3394 Description of DEMO-CR95HF-A and criteria for impedance matching capacitance C22 = (C3+ C17).Cinput,and RRX can be transformed in a parallel equivalent circuit (see Figure 9: CR95HF parallel matching circuit intermediate simplification). Figure 9. CR95HF parallel matching circuit intermediate simplification 48 # 2OUT # 6OUT 48 #INPUT P 2280 20! ,0! -36 The resulting equivalent circuit allows to calculate the matching circuit composed of C11 and C22 that satisfies the condition Zout= Zeq* where Zeq* is the complex conjugate of Zeq. Figure 10. CR95HF final equivalent circuit 2OUT # # 6OUT 2EQ 2280 20! ,0! #INPUT P -36 Where : Equivalent circuit. The calculation described in Equation (A.I.7) and Equation (A.I.9) leads to: R eq 1 C 11 = -------------------- × ⎛ ----------- – 1⎞ ⎝ R out ⎠ R eq × ω 1 C 22 = ---------------------2- – C 11 – C input – p L eq × ω Doc ID 018754 Rev 5 11/29 Description of DEMO-CR95HF-A and criteria for impedance matching Where 12/29 RRXP: Equivalent parallel resistor of RRX. [Ω] Req: Equivalent parallel resistor of RRX and RPA. [Ω] Cinput-p: Equivalent parallel capacitance of Cinput. [F] C11: Equivalent serial capacitance of C2and C6 capacitances. [F] C22: Equivalent serial capacitance of C3 and C17 capacitances. [F] Zeq: Equivalent impedance of circuits 2, 3 and 4. Doc ID 018754 Rev 5 AN3394 AN3394 2 Application to DEMO-CR95HF-A demonstration board Application to DEMO-CR95HF-A demonstration board This section describes in detail the numerical application corresponding to the DEMOCR95HF-A demonstration board. If your application requires a different antenna, use the DEMO-CR95HF-A Gerber files available for http://ww.st.com to design your own antenna. Guidelines on how to design an antenna can be found in Section 4: Main criteria for key antenna design. 2.1 Antenna parameters This section describes part 3 of circuit shown in Figure 9: CR95HF parallel matching circuit intermediate simplification. 2.1.1 Antenna serial equivalent model Figure 11. Antenna parameters without EMI filter 2! ,! -36 Where values from Equation (I.4) give: RA = O.6 Ω and LA = 36.6* ω. As a result, LA = 430 nH. The capacitance is included in the inductance presented above. As a result: Equation (II.1) [ IM ( Zload ) ] ω × L A Q A = --------------------------------- = ----------------- = 61, 1 RE ( Zload ) RA Where Q A: Antenna quality factor, defined with antenna parameter. IM(x): Imaginary part of the complex number x. RE(x): Real part of the complex number x. ω: Resonance pulsation [rad/s]. ω = 2π f with f = 13.56 MHz. Doc ID 018754 Rev 5 13/29 Application to DEMO-CR95HF-A demonstration board 2.1.2 AN3394 Antenna parallel equivalent model Figure 12. Antenna serial-to-parallel RL equivalent circuit 2! :LOAD :LOAD0 20! ,0! ,! -36 The values given hereafter are the numerical application of Equation (A.II.5) and Equation (A.II.6): RPA = 2238 Ω LPA = 430,1 nH Where Zload: Antenna equivalent series impedance. [Ω] ZloadP: Antenna equivalent parallel impedance. [Ω] 2.2 CR95HF receiving circuit equivalent models 2.2.1 CR95HF receiving circuit parallel equivalent model This section describes part 4 of the circuit shown in Figure 9: CR95HF parallel matching circuit intermediate simplification. Figure 13. CR95HF serial-to-parallel RC circuit equivalence 228 :28 :280 2280 #INPUT P #INPUT -36 The values hereafter are the numerical application of Equation (A.III.5) and Equation (A.III.6): RRXP = 1091 Ω Cinput-p = 8.69 pF The circuit includes a 80 kΩ Rinput in parallel with ZRXP, as shown in Figure 14: Circuit including Rinput internal resistor. For more details, refer to the CR95HF datasheet. Rinput resistance should be neglected as demonstrated below. 14/29 Doc ID 018754 Rev 5 AN3394 Application to DEMO-CR95HF-A demonstration board Figure 14. Circuit including Rinput internal resistor 2INPUT 2280 #INPUT P -36 Equation (II.2) 1 R RXP × R input R RXP = ------------------------------------R RXP + R input Numerical application of Equation (II.2): 1 R RXP = 1077Ω The coefficient error is: ΔR RXP 1091 – 1077 -----------------= --------------------------------- = 0, 67 1 1091 + 1077 R RXP % of error. Rinput is equivalent to an open circuit, and can be neglected. Where 2.3 ZRX: Antenna equivalent series impedance. [Ω] ZRXP: Antenna equivalent parallel impedance. [Ω] Rinput: Differential input resistor between RX1/RX2 inputs. [Ω] Numerical application of C2, C6, C3 and C17 This section gives the numerical application of part 2 of the circuit shown in Figure 9: CR95HF parallel matching circuit intermediate simplification. The numerical application for Equation (A.I.7) is: C11 = 82,2 pF C2 = C6 = 2.C11 = 164,4 pF The numerical application for Equation (A.I.9) is: C22 = C3 + C17 = 229,4 pF To keep the most possible C11 and C22 values and to optimize the performance, the following values have been chosen for C2, C6, C3 and C17: ● C2 = C6 = 150 pF ● C3 = 220 pF ● C17 = 15 pF Doc ID 018754 Rev 5 15/29 Read range estimate 3 AN3394 Read range estimate This section explains how to obtain the maximum read range between tag and CR95HF. 3.1 Magnetic field calculation For a rectangular antenna, the radiated magnetic field can be estimated using the following formula: Figure 15. Rectangular antenna B D( A D D(X I -36 Equation (III.1) 2×N×i×a×b 1 1 H x (d,r) = ----------------------------------------------------------- × ⎛⎝ --------------------------- + ---------------------------⎞ 2 2 2 2⎠ 2 2 2 a + 4 × d b + 4 × d π × (a + b + 4 × d ) Where 16/29 a: Antenna length. [m] b: Antenna width. [m] d: Distance from tag to antenna. [m] N: Number of turns i: Current in the antenna. [A rms] Hx : Magnetic field. [A/m rms] rms: Root mean square. Doc ID 018754 Rev 5 AN3394 Read range calculation Figure 16: Read range evolution shows the magnetic field strength radiated by the DEMOCR95HF-A demonstration board. Neglecting the effect of mutual coupling between the CR95HF antenna and tag, it is possible to estimate the read range for a given tag. As an example, the minimum operating fields for a M24LR64-R dual mode memory mounted on the ANT1-M24LR-A reference board is around 50 mA/m. Reporting this value on Figure 16: Read range evolution gives an estimated read range of 10 cm. Figure 16. Read range evolution ( ;!M RMS= 3.2 Read range estimate -36 Doc ID 018754 Rev 5 17/29 Main criteria for key antenna design 4 AN3394 Main criteria for key antenna design The following sections explain how to determine the antenna dimensions for a given value of antenna inductance (L). 4.1 Inductance of a circular antenna Equation 1 L ant = μ 0 × N 4.2 1.9 r × r × ln ⎛ ----⎞ , where: ⎝ r 0⎠ ● r is the radius in millimeters ● r0 is the wire diameter in millimeters ● N is the number of turns ● µ0 = 4π · 10–7 H/m ● Lant is expressed in Henry Inductance of a spiral antenna Equation 2 d ant 2 L ant = 31.33 × μ 0 × N × ------------------------------ , where: 8d ant + 11c ● dant is the mean antenna diameter in millimeters ● c is the thickness of the winding in micrometers ● N is the number of turns ● µ0 = 4π · 10–7 H/m ● Lant is expressed in Henry Figure 17. Spiral antenna AI 18/29 Doc ID 018754 Rev 5 AN3394 4.3 Main criteria for key antenna design Inductance of a square antenna Equation 3 d ant 2 L ant = K1 × μ 0 × N × ------------------------- , where: 1 + K2 ⋅ p ● dant= (dout + din)/2 in millimeters, where: dout = outer diameter din = inner diameter ● p = (dout – din)/(dout + din) in millimeters ● K1 and K2 depend on the layout (refer to Table 1 for values) Figure 18. Square antennas Table 1. K1 and K2 values depending on layout Layout 4.4 K1 K2 Square 2.34 2.75 Hexagonal 2.33 3.82 Octagonal 2.25 3.55 ST antenna calculation tool ST provides a simplified software tool (antenne.exe) to compute rectangular planar antenna inductances. This tool gives good approximations of the inductance value. It is recommended to verify the obtained results. ST tool is based on the Grover method (see Equation 4.1: Grover method). Equation 4.1: Grover method L ant = L 0 + ∑ M , where: ● M is the mutual inductance between each of the antenna segments ● L0 is as given by Equation 4.2 s L0 = ∑ Lj , where: j=1 ● s is the number of segments ● Lj is the self inductance of each segment Doc ID 018754 Rev 5 19/29 Main criteria for key antenna design AN3394 A user interface allows to enter the antenna parameters which will be used to compute the antenna coil inductance: ● The number of turns ● The number of segments ● w: the conductor width in millimeters ● s: the conductor spacing in millimeters ● the conductor thickness in micrometers) ● Length in millimeters ● Width in millimeters The number of turns is incremented each time a segment is added to a complete turn. Figure 19 shows the user interface corresponding to the DEMO-CR95HF-A antenna and Figure 20 the characteristics of the rectangular planar antenna etched on the DEMOCR95HF-A PCB. The resulting impedance, Lant, is 423.07 nH instead of 430 nH, knowing that this value includes the parasitic capacitance. Without the parasitic capacitance, the measured value of Lant is 420.2 nH. Figure 19. User interface for planar rectangular coil inductance calculation 20/29 Doc ID 018754 Rev 5 AN3394 Main criteria for key antenna design Figure 20. Rectangular planar antennas 1 1 10 3 turns, 10 segments 8 2 turns, 8 segments w s Width thickness (cross-section) Length ai15815 Once the antenna coil inductance has been calculated, a prototype coil is realized. The value of the so-obtained prototype must then be validated by measurement. This can be done using either a contactless or a non-contactless method. Doc ID 018754 Rev 5 21/29 Conclusion 5 AN3394 Conclusion Figure 21. DEMO-CR95HF-A circuit 28 2 48 Ω # /PEN # #2(& # 20! ,0! /PEN # Ω 48 2 28 -36 The following table summarizes the component values mounted on the DEMO-CR95HF-A demonstration board: Table 2. DEMO-CR95HF-A component commended values Component 22/29 Recommended value C2 150 pF C6 150 pF C3 220 pF C17 15 pF RPA 2238 Ω LPA 430 nH R1 330 Ω R5 330 Ω Doc ID 018754 Rev 5 AN3394 Demonstration of C11 and C22 calculation Appendix A A.1 Demonstration of C11 and C22 calculation Equivalent circuit Ztot defines the input impedance of the matching circuit and the equivalent parallel antenna. Figure 22. Final equivalent circuit :TOT ## # 2EQ 2280 20! # # # 6OUT ,0! #INPUT P 1. -36 Calculation of Req: Equation (A.I.1) R RXP × R PA R eq = -------------------------------R RXP + R PA 2. Calculation of Ztot: Equation (A.I.2) 2 R eq × ( 1 – L PA × ω × ( C 22 + C 11 ) ) + j × ω × L PA 1 Z tot = --------------------------- × ----------------------------------------------------------------------------------------------------------------------------2 j × C 11 × ω R (1 – L × C × ω ) + j × ω × L eq 3. PA 22 PA Resonance pulsation: Z tot = R tot + j × X tot To determine the resonance pulsation, the imaginary part of Ztot must be cancelled. The conditions are: R tot = R out and X tot = 0 Equation (A.I.3) 2 2 2 2 – R eq × L PA × C 11 × ω × ( 1 – L PA × ω ( C 22 + C 11 ) + ω × L PA × R eq × C 11 × ( 1 – L PA × ω × C 22 ) ) R tot = --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 2 2 2 2 ( R eq × C 11 × ω ) × ( 1 – L PA × C 22 × ω ) + ( ω × L PA × C 11 ) Doc ID 018754 Rev 5 23/29 Demonstration of C11 and C22 calculation AN3394 Equation (A.I.4) 2 2 2 2 2 R eq × ( 1 – L PA × ω × C 22 ) ( 1 – L PA × ω × ( C 22 + C 11 ) ) + ω × L PA X tot = – ω × C 11 × -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 2 2 2 2 ( R eq × C 11 × ω ) × ( 1 – L PA × C 22 × ω ) + ( ω × L PA × C 11 ) Neglecting ω2 x LPA2, then resolving the numerator leads to two different resonance pulsation ω0 and ω1: Equation (A.I.5) ω0 = 1 -----------------------------------------------L PA × ( C 22 + C 11 ) Equation (A.I.6) ω1 = 1 -------------------------L PA × C 22 Finally inserting Equation (A.I.5) in Equation (A.I.3) leads to: Equation (A.I.7) R eq 1 C 11 = ----------------------- × ⎛⎝ ----------- – 1⎞⎠ R out R eq × ω 0 Equation (A.I.8) 1 C 22 = -------------------------2- – C 11 L PA × ω 0 Equation (A.I.9) 1 C 22 = -------------------------2- – C 11 – C input – p L PA × ω 0 In addition, Cinput-p is in parallel with C22, and Cinput-p has to be subtracting to C22. A.2 Serial to parallel equivalence RL impedance, and example of RL load Figure 23. Serial-to-parallel RL equivalent circuit 2! :LOAD :LOAD0 20! ,0! ,! -36 24/29 Doc ID 018754 Rev 5 AN3394 Demonstration of C11 and C22 calculation Z load = Z loadP R PA × L PA × j × ω R A + j × ω × L A = --------------------------------------------R PA + L PA × j × ω Equation (A.II.1) 2 2 2 R PA × L PA × ω R PA × L PA × ω - + j × -----------------------------------------------R A + j × ω × L A = -----------------------------------------------2 2 2 2 R PA + ( L PA × ω ) R PA + ( L PA × ω ) Consider that: Equation (A.II.2) ℑ ( Z load ) ℜ ( Z loadP ) ω × LA R PA Q A = -------------------------- = ----------------- = ----------------------------- = -------------------ℜ ( Z load ) RA ℑ ( Z loadP ) L PA × ω Equation (A.II.2) in equation (A.II.1) leads to: Q A × R PA R PA R A + j × ω × L A = -------------------2- + j × -----------------------2 1 + QA 1 + QA Identify the real part and the imaginary parts: Equation (A.II.3) R PA R A = -------------------21 + QA Equation (A.II.4) Q A × R PA ω × L A = -----------------------2 1 + QA From equation (A.II.3): Equation (A.II.5) 2 R PA = R A × ( 1 + Q A ) By equation (A.II.4): Equation (A.II.6) 2 L PA ( 1 + QA ) = L A × -----------------------2 QA Doc ID 018754 Rev 5 25/29 Demonstration of C11 and C22 calculation A.3 AN3394 Serial to parallel equivalence RC impedance, and example of RC load Figure 24. Serial-to-parallel RC equivalent circuit 228 :28 2280 :280 #INPUT P #INPUT -36 Z RX = Z RXP R RXP 1 2 × R RX + ---------------------------------- = -----------------------------------------------------------------------j × ω × C input j × ω × R RXP × C input – p + 1 So: Equation (A.III.1) 2 R RXP × C input – p × ω R RXP 1 2 × R RX – j × -------------------------- = ------------------------------------------------------------------------2- – j × ------------------------------------------------------------------------2ω × C input 1 + ( R RXP × C input – p × ω ) 1 + ( R RXP × C input – p × ω ) Consider that: Equation (A.III.2) IM ( Z RX ) 1 Q RX = ------------------------- = ----------------------------------------------------- = ω × C input – p × R RXP RE ( Z RX ) 2 × ω × C input × R RX Equation (A.III.2) in equation (A.III.1) leads to: 2 Q RX R RXP 1 1 2 × R RX – j × -------------------------- = -----------------------2- – j × -----------------------2- × --------------------------------C ω × C input input – p × ω 1 + Q RX 1 + Q RX Identify the real and the imaginary parts: 26/29 Doc ID 018754 Rev 5 AN3394 Demonstration of C11 and C22 calculation Equation (A.III.3) R RXP 2 × R RX = -----------------------21 + Q RX Equation (A.III.4) 2 Q RX 1 1 -------------------------- = -----------------------2- × --------------------------------ω × C input C input – p × ω 1 + Q RX By equation (A.III.3): Equation (A.III.5) 2 R RXP = 2 × R RX × ( 1 + Q RX ) By equation (A.III.4): Equation (A.III.6) 2 Q RX C input – p = C input × -----------------------21 + Q RX Where QRX = quality coefficient. Doc ID 018754 Rev 5 27/29 Revision history 6 AN3394 Revision history Table 3. 28/29 Document revision history Date Revision Changes 10-June-2011 1 Initial release. 12-Jul-2011 2 Updated DEMO-CR95HF-A antenna dimensions Section 1.3: Inductive antenna impedance. 25-Jul-2011 3 Corrected C22 equivalent serial capacitance name in Section 1.5.2: Entire equivalent circuit 22-Aug-2011 4 Modified document title. Updated Introduction. Updated Section 2: Application to DEMO-CR95HF-A demonstration board overview to add the case of user-designed antenna. Added Section 4: Main criteria for key antenna design. Updated disclaimer on last page. 03-Oct-2011 5 Modified C3 and C17 in Table 2: DEMO-CR95HF-A component commended values. Doc ID 018754 Rev 5 AN3394 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 018754 Rev 5 29/29