AP6900GH-HF Preliminary Advanced Power Electronics Corp. DUAL N-CHANNEL ENHANCEMENT MODE POWER MOSFET CH-1 BVDSS 30V ▼ Fast Switching Performance RDS(ON) 6.2mΩ ▼ Two Independent Device ▼ Halogen Free & RoHS Compliant Product ID BVDSS RDS(ON) ID 72A 30V 10mΩ 45A ▼ Simple Drive Requirement CH-2 Description Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness. D1 (TAB1) D2 (TAB2) S1 SDPAKTM used APEC innovated package and provides two independent device that is suitable and optimum for DC/DC power application. G1 S2 G2 SDPAKTM D2 D1 G2 G1 S1 S2 Absolute Maximum Ratings Symbol Parameter Rating Units Channel-1 Channel-2 VDS Drain-Source Voltage 30 30 V VGS Gate-Source Voltage + 20 + 20 V ID@TC=25℃ Continuous Drain Current ID@TA=25℃ ID@TA=70℃ 72 45 A 3 18 14.1 A 3 14 11.2 A 72 60 A Continuous Drain Current Continuous Drain Current 1 IDM Pulsed Drain Current PD@TA=25℃ Total Power Dissipation TSTG Storage Temperature Range -55 to 150 ℃ TJ Operating Junction Temperature Range -55 to 150 ℃ W 3 Thermal Data Symbol Parameter Rthj-c (CH-1) Maximum Thermal Resistance, Junction-case Rthj-c (CH-2) Maximum Thermal Resistance, Junction-case Rthj-a Maximum Thermal Resistance, Junction-ambient Data and specifications subject to change without notice 3 Value Unit 2.5 ℃/W 4.0 ℃/W 42 ℃/W 1 20090420pre AP6900GH-HF CH-1 Electrical Characteristics@Tj=25oC(unless otherwise specified) Symbol BVDSS RDS(ON) Parameter Test Conditions Drain-Source Breakdown Voltage Static Drain-Source On-Resistance 2 Min. Typ. Max. Units VGS=0V, ID=250uA 30 - - V VGS=10V, ID=18A - - 6.2 mΩ VGS=4.5V, ID=12A - - 12.5 mΩ VGS(th) Gate Threshold Voltage VDS=VGS, ID=250uA 1 - 3 V gfs Forward Transconductance VDS=10V, ID=18A - 32 - S IDSS Drain-Source Leakage Current VDS=30V, VGS=0V - - 10 uA IGSS Gate-Source Leakage VGS=+20V, VDS=0V - - +100 nA ID=18A - 10 16 nC 2 Qg Total Gate Charge Qgs Gate-Source Charge VDS=24V - 2.5 nC Qgd Gate-Drain ("Miller") Charge VGS=4.5V - 5.5 nC VDS=15V - 7 - ns 2 td(on) Turn-on Delay Time tr Rise Time ID=18A - 60 - ns td(off) Turn-off Delay Time RG=3.3Ω,VGS=10V - 18 - ns tf Fall Time RD=0.833Ω - 5 - ns Ciss Input Capacitance VGS=0V - 945 1510 pF Coss Output Capacitance VDS=25V - 295 - pF Crss Reverse Transfer Capacitance f=1.0MHz - 110 - pF Rg Gate Resistance f=1.0MHz - 1.3 2 Ω Min. Typ. IS=2.5A, VGS=0V - - 1.2 V Source-Drain Diode Symbol VSD Parameter 2 Forward On Voltage 2 Test Conditions Max. Units trr Reverse Recovery Time IS=10A, VGS=0V, - 30 - ns Qrr Reverse Recovery Charge dI/dt=100A/µs - 27 - nC 2 AP6900GH-HF o CH-2 Electrical Characteristics@Tj=25 C(unless otherwise specified) Symbol BVDSS RDS(ON) Parameter Test Conditions Drain-Source Breakdown Voltage Static Drain-Source On-Resistance 2 Min. Typ. Max. Units VGS=0V, ID=250uA 30 - - V VGS=10V, ID=12A - - 10 mΩ VGS=4.5V, ID=8A - - 22 mΩ VGS(th) Gate Threshold Voltage VDS=VGS, ID=250uA 1 - 3 V gfs Forward Transconductance VDS=10V, ID=12A - 30 - S IDSS Drain-Source Leakage Current VDS=30V, VGS=0V - - 10 uA IGSS Gate-Source Leakage VGS=+20V, VDS=0V - - +100 nA ID=12A - 5.7 9.2 nC 2 Qg Total Gate Charge Qgs Gate-Source Charge VDS=24V - 1.4 - nC Qgd Gate-Drain ("Miller") Charge VGS=4.5V - 3.2 - nC 2 td(on) Turn-on Delay Time VDS=15V - 6 - ns tr Rise Time ID=12A - 56 - ns td(off) Turn-off Delay Time RG=3.3Ω,VGS=10V - 14 - ns tf Fall Time RD=1.25Ω - 3.5 - ns Ciss Input Capacitance VGS=0V - 505 810 pF Coss Output Capacitance VDS=25V - 180 - pF Crss Reverse Transfer Capacitance f=1.0MHz - 70 - pF Rg Gate Resistance f=1.0MHz - 2.6 4 Ω Min. Typ. IS=2.5A, VGS=0V - - 1.2 V Source-Drain Diode Symbol VSD Parameter Forward On Voltage 2 2 Test Conditions Max. Units trr Reverse Recovery Time Is=10A, VGS=0V, - 24 - ns Qrr Reverse Recovery Charge dI/dt=100A/µs - 18 - nC Notes: 1.Pulse width limited by Max. junction temperature. 2.Pulse test 3.Rthja is determined with the device, mounted on 2oz FR4 board t ≦10s. THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION. USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED. APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. 3 AP6900GH-HF Channel-1 80 80 ID , Drain Current (A) T A = 25 C 10V 7.0V 6.0V 5.0V 60 V GS =4.0V 40 T A = 150 o C ID , Drain Current (A) o 20 10V 7.0V 6.0V 5.0V 60 V GS =4.0V 40 20 0 0 0 1 2 3 4 0 1 V DS , Drain-to-Source Voltage (V) 2 3 4 5 V DS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 13 1.6 I D = 18 A V G =10V I D = 12 A o T A =25 C 1.4 Normalized RDS(ON) RDS(ON) (mΩ) 11 9 1.2 1.0 7 0.8 5 0.6 2 4 6 8 10 -50 V GS ,Gate-to-Source Voltage (V) 0 50 100 150 o T j , Junction Temperature ( C) Fig 3. On-Resistance v.s. Gate Voltage Fig 4. Normalized On-Resistance v.s. Junction Temperature 2 20 Normalized VGS(th) (V) IS(A) 16 12 T j =150 o C T j =25 o C 8 1.5 1 0.5 4 0 0 0 0.2 0.4 0.6 0.8 1 V SD , Source-to-Drain Voltage (V) Fig 5. Forward Characteristic of Reverse Diode 1.2 -50 0 50 100 150 o T j , Junction Temperature ( C) Fig 6. Gate Threshold Voltage v.s. Junction Temperature 4 AP6900GH-HF Channel-1 10 f=1.0MHz 1600 I D = 18 A V DS =1 5 V V DS = 18 V V DS =24V 6 1200 C (pF) VGS , Gate to Source Voltage (V) 8 C iss 800 4 400 C oss 2 C rss 0 0 0 4 8 12 16 1 20 5 Q G , Total Gate Charge (nC) 9 13 17 21 25 29 V DS , Drain-to-Source Voltage (V) Fig 7. Gate Charge Characteristics Fig 8. Typical Capacitance Characteristics 100 1 100us 10 ID (A) 1ms 10ms 1 100ms 1s 0.1 o T A =25 C Single Pulse DC Normalized Thermal Response (Rthja) Duty factor=0.5 0.2 0.1 0.1 0.05 0.02 PDM 0.01 t 0.01 Single Pulse T Duty factor = t/T Peak Tj = PDM x Rthja + T a Rthja=75 oC/W 0.001 0.01 0.01 0.1 1 10 100 0.0001 0.001 0.01 V DS , Drain-to-Source Voltage (V) Fig 9. Maximum Safe Operating Area VDS 90% 0.1 1 10 100 1000 t , Pulse Width (s) Fig 10. Effective Transient Thermal Impedance VG QG 4.5V QGS QGD 10% VGS td(on) tr td(off) tf Fig 11. Switching Time Waveform Charge Q Fig 12. Gate Charge Waveform 5 AP6900GH-HF Channel-2 50 50 o o 40 ID , Drain Current (A) ID , Drain Current (A) 40 10V 7.0V 6.0V 5.0V T A = 150 C 10V 7.0V 6.0V 5.0V T A =25 C 30 V GS =4.0V 20 10 30 V GS =4.0V 20 10 0 0 0 1 2 3 4 0 1 V DS , Drain-to-Source Voltage (V) 2 3 4 V DS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 24 1.6 ID=8A I D =12A V G =10V T A =25 o C 1.4 Normalized RDS(ON) RDS(ON) (mΩ) 20 16 1.2 1.0 12 0.8 0.6 8 2 4 6 8 -50 10 0 50 100 150 T j , Junction Temperature ( o C) V GS , Gate-to-Source Voltage (V) Fig 3. On-Resistance v.s. Gate Voltage Fig 4. Normalized On-Resistance v.s. Junction Temperature 12 1.6 Normalized VGS(th) (V) 10 IS(A) 8 o o T j =150 C T j =25 C 6 4 1.2 0.8 2 0 0.4 0 0.2 0.4 0.6 0.8 1 V SD , Source-to-Drain Voltage (V) Fig 5. Forward Characteristic of Reverse Diode 1.2 -50 0 50 100 150 T j ,Junction Temperature ( o C) Fig 6. Gate Threshold Voltage v.s. Junction Temperature 6 AP6900GH-HF Channel-2 f=1.0MHz 800 I D = 12 A 8 600 V DS = 15 V V DS = 18 V V DS = 24 V 6 C (pF) VGS , Gate to Source Voltage (V) 10 C iss 400 4 C oss 200 2 C rss 0 0 0 2 4 6 8 1 10 5 9 13 17 21 25 29 V DS , Drain-to-Source Voltage (V) Q G , Total Gate Charge (nC) Fig 7. Gate Charge Characteristics Fig 8. Typical Capacitance Characteristics 100 1 10 ID (A) 1ms 10ms 1 100ms 1s 0.1 o T A =25 C Single Pulse DC 0.01 Normalized Thermal Response (Rthja) Duty factor=0.5 100us 0.2 0.1 0.1 0.05 0.02 0.02 0.01 PDM t 0.01 Single Pulse T Duty factor = t/T Peak Tj = PDM x Rthja + Ta Rthja=75oC/W 0.001 0.01 0.1 1 10 100 0.0001 0.001 0.01 V DS , Drain-to-Source Voltage (V) Fig 9. Maximum Safe Operating Area VDS 90% 0.1 1 10 100 1000 t , Pulse Width (s) Fig 10. Effective Transient Thermal Impedance VG QG 4.5V QGS QGD 10% VGS td(on) tr td(off) tf Fig 11. Switching Time Waveform Charge Q Fig 12. Gate Charge Waveform 7