Freescale Semiconductor Data Sheet: Technical Data Document Number: PXD10 Rev. 1, 09/2011 PXD10 416 TEPBGA 27 mm x 27 mm PXD10 Microcontroller Data Sheet The PXD10 family represents a new generation of 32-bit microcontrollers based on the Power Architecture®. These devices provide a cost-effective, single chip display solution for the industrial market. An integrated TFT driver with digital video input ability from an external video source, significant on-chip memory, and low power design methodologies provide flexibility and reliability in meeting display demands in rugged environments. The advanced processor core offers high performance processing optimized for low power consumption, operating at speeds as high as 64 MHz. The family itself is fully scalable from 512 KB to 1 MB internal flash memory. The memory capacity can be further expanded via the on-chip QuadSPI serial flash controller module. 176 LQFP 24 mm x 24 mm 1 2 3 The PXD10 family platform has a single level of memory hierarchy supporting on-chip SRAM and flash memories. The 1 MB flash version features 160 KB of on-chip graphics SRAM to buffer cost effective color TFT displays driven via the on-chip Display Control Unit (DCU). See Table 1 for specific memory size and feature sets of the product family members. The PXD10 family benefits from the extensive development infrastructure for Power Architecture devices, which is already well established. This includes full support from available software drivers, operating systems, and configuration code to assist with users’ implementations. See Section 3, Developer support, for more information. © Freescale Semiconductor, Inc., 2011. All rights reserved. 208 LQFP 28 mm x 28 mm 4 5 6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 PXD10 series blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 PXD10 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pinout and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 27 2.1 144 LQFP package pinouts . . . . . . . . . . . . . . . . . . . . . 27 2.2 176 LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Pad configuration during reset phases . . . . . . . . . . . . . 30 2.4 Voltage supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7 Debug pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8 Port pin summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 Electromagnetic compatibility (EMC) characteristics . . 65 3.7 Power management electrical characteristics . . . . . . . 67 3.8 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . 75 3.9 SSD specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.10 RESET electrical characteristics . . . . . . . . . . . . . . . . . 84 3.11 Fast external crystal oscillator (4–16 MHz) electrical characteristics87 3.12 Slow external crystal oscillator (32 KHz) electrical characteristics89 3.13 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . 91 3.14 Fast internal RC oscillator (16 MHz) electrical characteristics 92 3.15 Slow internal RC oscillator (128 kHz) electrical characteristics92 3.16 Flash memory electrical characteristics . . . . . . . . . . . . 93 3.17 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . 94 3.18 LCD driver electrical characteristics . . . . . . . . . . . . . . 101 3.19 Pad AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . 102 3.20 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.1 144 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.2 176 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Overview 1 Overview 1.1 Document overview This document describes the device features and highlights important electrical and physical characteristics. For functional characteristics, see the PXD10 Microcontroller Reference Manual. 1.2 Description The PXD10 family of chips is designed to enable the development of industrial HMI applications by providing a single-chip solution capable of hosting real-time applications and driving a TFT display directly using an on-chip color TFT display controller. PXD10 chips incorporate a cost-efficient host processor core compliant with the Power Architecture® embedded category. The processor is 100% user-mode compatible with the Power Architecture and capitalizes on the available development infrastructure of current Power Architecture devices with full support from available software drivers, operating systems and configuration code to assist with users' implementations. Offering high performance processing at speeds up to 64 MHz, the PXD10 family is optimized for low power consumption and supports a range of on-chip SRAM and internal flash memory sizes. The version with 1 MB of flash memory (PXD1010) features 160 KB of on-chip graphics SRAM. See Table 1 for specific memory and feature sets of the product family members. 1.3 Device comparison Table 1. PXD10 family feature set Feature PXD1005 CPU PXD1010 e200z0h Execution speed Static – 64 MHz Flash (ECC) 512 KB EEPROM Emulation Block (ECC) 1 MB 4 × 16 KB RAM (ECC) 48 KB Graphics RAM No 160 KB MPU 12 entry eDMA 16 channels Display Control Unit (DCU) No Yes Parallel Data Interface No Yes Stepper Motor Controller (SMC) 6 motors Stepper Stall Detect (SSD) Yes Sound Generation Logic (SGL) Yes PXD10 Microcontroller Data Sheet, Rev. 1 2 Freescale Semiconductor Overview Table 1. PXD10 family feature set (continued) Feature LCD driver PXD1005 PXD1010 64 × 6 40 × 4, 38 × 6 32 kHz slow external crystal oscillator Yes Real-Time Counter and Autonomous Periodic Interrupt Yes Periodic Interrupt Timer (PIT) 4 ch, 32-bit Software Watchdog Timer (SWT) Yes System Timer Module (STM) 4 ch, 32-bit Timed I/O (eMIOS) 8 ch, 16-bit IC/OC 16 ch, 16-bit PWM/IC/OC ADC 16 channels, 10-bit CAN (64 Mailboxes) 2 × CAN CAN Sampler Yes SCI 2 × UART SPI 2 × SPI 3 × SPI No Yes 2 4 GPIO 105 105 (144-pin package) 133 (176-pin package) Debug Nexus 1 Nexus 2+ 144 LQFP 144 LQFP 176 LQFP QuadSPI Serial Flash Interface 2 IC Package PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 3 Overview 1.4 PXD10 series blocks 1.4.1 Block diagram Figure 1 shows a high-level block diagram of the PXD10 series. PXD10 Block Diagram e200z0 Core Integer Execution Unit General Purpose Registers (32 x 32-bit) Multiply Unit INTC Branch Unit Instruction Unit VLE PLL Aux PLL BAM PIT VREG RTC SWT STM JTAG Nexus2+ Load/Store Unit Instruction Bus Oscillators eDMA Display Control Unit (TFTs) Data Bus Crossbar Switch (XBAR) Memory Protection Unit (MPU) Flash Controller Flash (ECC) ADC BAM CAN ECC eDMA eMIOS I2 C INTC JTAG LCD PIT PLL Flash (ECC) EEPROM (Emulation) RAM Controller Peripheral I/O Bridge (PBRIDGE) UART/LIN SPI CAN ADC I2C SIU LCD Seg eMIOS SMD SSD Graphics SRAM – Analog-to-digital converter – Boot assist module – Controller area network controller – Error correction code – Enhanced direct memory access controller – Timed input/output – Inter-integrated circuit controller – Interrupt controller – Joint Test Action Group interface – Liquid crystal display – Periodic interrupt timer – Phase-locked loop RTC SIU SMD SSD SPI SRAM STM SWT UART/LIN VLE VREG RAM Controller QuadSPI SRAM (ECC) – Real time clock – System integration unit – Stepper motor driver/stepper stall detect – Serial peripheral interface controller – Static random-access memory – System timer module – Software watchdog timer – Universal asynchronous receiver/transmitter/ local interconnect network – Variable-length execution set – Voltage regulator Figure 1. PXD10 series block diagram PXD10 Microcontroller Data Sheet, Rev. 1 4 Freescale Semiconductor Overview 1.5 1.5.1 • • • • • • • • • • • • • PXD10 features Summary Single issue, 32-bit Power Architecture technology compliant CPU core complex (e200z0h) — Compatible with Power Architecture instruction set — Includes variable length encoding (VLE) instruction set for smaller code size footprint; with the encoding of mixed 16-bit and 32-bit instructions, it is possible to achieve significant code size footprint reduction over conventional Book E compliant code On-chip ECC flash memory with flash controller — As much as 1 MB primary flash—two 512 KB modules with prefetch buffer and 128-bit data access port — 64 KB data flash—separate 416 KB flash block for EEPROM emulation with prefetch buffer and 128-bit data access port As much as 48 KB on-chip ECC SRAM with SRAM controller As much as 160 KB on-chip non-ECC graphics SRAM with SRAM controller Memory Protection Unit (MPU) with as many as 12 region descriptors and 32-byte region granularity to provide basic memory access permission Interrupt Controller (INTC) with as many as 127 peripheral interrupt sources and eight software interrupts Two Frequency-Modulated Phase-Locked Loops (FMPLLs) — Primary FMPLL provides a 64 MHz system clock — Auxiliary FMPLL is available for use as an alternate, modulated or non-modulated clock source to eMIOS modules and as alternate clock to the DCU for pixel clock generation Crossbar switch architecture enables concurrent access of peripherals, flash memory or RAM from multiple bus masters (AMBA 2.0 v6 AHB) 16-channel Enhanced Direct Memory Access controller (eDMA) with multiple transfer request sources using a DMA channel multiplexer Boot Assist Module (BAM) supports internal flash programming via a serial link (FlexCAN or LINFlex) Display Control Unit to drive TFT LCD displays — Includes processing of as many as four planes that can be blended together — Offers a direct unbuffered hardware bit-blitter of as many as 16 software-configurable dynamic layers in order to drastically minimize graphic memory requirements and provide fast animations — Programmable display resolutions are available up to WVGA Parallel Data Interface (PDI) for digital video input LCD segment driver module with two software programmable configurations: — As many as 40 frontplane drivers and four backplane drivers PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 5 Overview • • • • • • • • • • • • • • • — As many as 38 frontplane drivers and six backplane drivers Stepper Motor Controller (SMC) module with high-current drivers for as many as six stepper motors driven in full dual H-Bridge configuration including full diagnostics for short circuit detection Stepper motor return-to-zero and stall detection module Sound generation and playback utilizing PWM channels and eDMA; supports monotonic and polyphonic sound 24 eMIOS channels providing as many as 16 PWM and 24 input capture / output compare channels 10-bit Analog-to-Digital Converter (ADC) — Maximum conversion time of 1 µs — As many as 16 internal channels, expandable to 23 via external multiplexing As many as two Serial Peripheral Interface (DSPI) modules for full-duplex, synchronous, communications with external devices (extendable to include up to 8 multiplexed external channels) QuadSPI serial flash memory controller supporting single, dual and quad modes of operation to interface to external serial flash memory. QuadSPI can be configured to function as another DSPI module. Two Local Interconnect Network Flexible (LINFlex) controller modules capable of autonomous message handling (master), autonomous header handling (slave mode), and UART support. Compliant with LIN protocol rev 2.1 Two full CAN 2.0B controllers with 64 configurable buffers each; bit rate programmable as fast as 1 Mbit/s As many as four inter-integrated circuit (I2C) internal bus controllers with master/slave bus interface As many as 133 configurable general purpose pins supporting input and output operations Real Time Counter (RTC) with multiple clock sources: — 128 kHz slow internal RC oscillator or 16 MHz fast internal RC oscillator supporting autonomous wakeup with 1 ms resolution with maximum timeout of 2 seconds — 32 KHz slow external crystal oscillator, supporting wakeup with 1 s resolution and maximum timeout of one hour — 4–16 MHz fast external crystal oscillator System timers: — Four-channel 32-bit System Timer Module (STM)—included in processor platform — Four-channel 32-bit Periodic Interrupt Timer (PIT) module — Software Watchdog Timer (SWT) System Integration Unit (SIU) module to manage resets, external interrupts, GPIO and pad control System Status and Configuration Module (SSCM) to provide information for identification of the device, last boot mode, or debug status and provides an entry point for the censorship password mechanism PXD10 Microcontroller Data Sheet, Rev. 1 6 Freescale Semiconductor Overview • • • • • • • • 1.6 1.6.1 Clock Generation Module (MC_CGM) to generate system clock sources and provide a unified register interface, enabling access to all clock sources Clock Monitor Unit (CMU) to monitor the integrity of the main crystal oscillator and the PLL and act as a frequency meter, measuring the frequency of one clock source and comparing it to a reference clock Mode Entry Module (MC_ME) to control the device power mode, i.e., RUN, HALT, STOP, or STANDBY, control mode transition sequences, and manage the power control, voltage regulator, clock generation and clock management modules Reset Generation Module (MC_RGM) to manage reset assertion and release to the device at initial power-up Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus standard Device/board boundary-scan testing supported per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) On-chip voltage regulator controller for regulating the 3.3 or 5 V supply voltage down to 1.2 V for core logic (requires external ballast transistor) The PXD10 microcontrollers are offered in the following packages:1 — 144 LQFP, 0.5 mm pitch, 20 mm 20 mm outline — 176 LQFP, 0.5 mm pitch, 24 mm 24 mm outline Details Low-power operation PXD10 devices are designed for optimized low-power operation and dynamic power management of the core processor and peripherals. Power management features include software-controlled clock gating of peripherals and multiple power domains to minimize leakage in low-power modes. There are two static low-power modes, STANDBY and STOP, and two dynamic power modes—RUN and HALT. Both low power modes use clock gating to halt the clock for all or part of the device. The STANDBY mode also uses power gating to automatically turn off the power supply to parts of the device to minimize leakage. STANDBY mode turns off the power to the majority of the chip to offer the lowest power consumption mode. The contents of the cores, on-chip peripheral registers and potentially some of the volatile memory are lost. STANDBY mode is configurable to make certain features available with the disadvantage that these consume additional current: • It is possible to retain the contents of the full RAM or only 8 KB. • It is possible to enable the internal 16 MHz or 128 kHz RC oscillator, the external 4–16 MHz oscillator, or the external 32 KHz oscillator. • It is possible to keep the LCD module active. 1. See the device comparison table or orderable parts summary for package offerings for each device in the family. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 7 Overview The device can be awakened from STANDBY mode via from any of as many as 19 I/O pins, a reset or from a periodic wake-up using a low power oscillator. STOP mode maintains power to the entire device allowing the retention of all on-chip registers and memory, and providing a faster recovery low power mode than the lowest STANDBY mode. There is no need to reconfigure the device before executing code. The clocks to the core and peripherals are halted and can be optionally stopped to the oscillator or PLL at the expense of a slower start-up time. STOP is entered from RUN mode only. Wake-up from STOP mode is triggered by an external event or by the internal periodic wake-up, if enabled. RUN modes are the main operating mode where the entire device can be powered and clocked and from which most processing activity is done. Four dynamic RUN modes are supported—RUN0 - RUN3. The ability to configure and select different RUN modes enables different clocks and power configurations to be supported with respect to each other and to allow switching between different operating conditions. The necessary peripherals, clock sources, clock speed and system clock prescalers can be independently configured for each of the four RUN modes of the device. HALT mode is a reduced activity, low power mode intended for moderate periods of lower processing activity. In this mode the core system clocks are stopped but user-selected peripheral tasks can continue to run. It can be configured to provide more efficient power management features (switch-off PLL, flash memory, main regulator, etc.) at the cost of longer wake up latency. The system returns to RUN mode as soon as an event or interrupt is pending. PXD10 Microcontroller Data Sheet, Rev. 1 8 Freescale Semiconductor Freescale Semiconductor Table 1 summarizes the operating modes of PXD10 devices. Table 1. Operating mode summary1 Flash RAM Graphics RAM Main PLL Auxiliary PLL 16 MHz IRC X OSC 128 kHz IRC 32 KHz X OSC Periodic Wake-up Wake-up input VREG mode VREG start-up IRC Wake-up Flash Recovery OSC Stabilization PLL Lock S/W Reconfig Mode switch over Wake-up time2 Peripherals Clock sources Core SOC features RUN On OP OP On On OP OP On OP On OP — — FP — — — — — — — HALT CG OP OP On On OP OP On OP On OP OP OP FP — — — — — — TBD STOP CG CG CG On 20 µs Off 3 Off Off Off Operating modes PXD10 Microcontroller Data Sheet, Rev. 1 STANDBY POR On CG CG OP OP On OP OP OP LP 50 µs 4 µs 1ms 200 µs — 24 µs Off 4 CG Off Off Off OP OP On OP OP OP LP 50 µs 8 µs 100 µs 1ms 200 µs Var 28 µs Off 8K5 Off Off Off OP OP On OP OP OP LP 50 µs 8 µs 100 µs 1ms 200 µs Var 28 µs 500 µs 8 µs 100 µs 1ms 200 µs BAM NOTES: 1 Table Key: On—Powered and clocked OP—Optionally configurable to be enabled or disabled (clock gated) CG—Clock Gated, Powered but clock stopped Off—Powered off and clock gated FP—VREG Full Performance mode LP—VREG Low Power mode, reduced output capability of VREG but lower power consumption Var—Variable duration, based on the required reconfiguration and execution clock speed BAM—Boot Assist Module Software and Hardware used for device start-up and configuration 2 A high level summary of some key durations that need to be considered when recovering from low power modes. This does not account for all durations at wake up. Other delays will be necessary to consider including, but not limited to the external supply start-up time. IRC Wake-up time must not be added to the overall wake-up time as it starts in parallel with the VREG. All other wake-up times must be added to determine the total start-up time 3 The LCD can optionally be kept running while the device is in STANDBY mode. 4 All of the RAM contents is retained, but not accessible in STANDBY mode. 5 8 KB of the RAM contents is retained, but not accessible in STANDBY mode. Overview 9 Overview Additional notes on low power operation: • Fast wake-up using the on-chip 16 MHz internal RC oscillator allows rapid execution from RAM on exit from low power modes • The 16 MHz internal RC oscillator supports low speed code execution and clocking of peripherals when it is selected as the system clock and can also be used as the PLL input clock source to provide fast start-up without the external oscillator delay • PXD10 devices include an internal voltage regulator that includes the following features: — Regulates input to generate all internal supplies — Manages power gating — Low power regulators support operation when in STOP and STANDBY modes to minimize power consumption — Startup on-chip regulators in <50 µs for rapid exit of STOP and STANDBY modes — Low voltage detection on main supply and 1.2 V regulated supplies 1.6.2 e200z0h core processor The e200z0h processor is similar to other processors in the e200zx series but supports only the VLE instruction set and does not include the signal processing extension for DSP applications or a floating point unit. The e200z0h has all the features of the e200z0 plus: • • Branch acceleration using Branch Target Buffer (BTB) Supports independent instruction and data accesses to different memory subsystems, such as SRAM and Flash memory via independent Instruction and Data BIUs The e200z0h processor uses a four stage in-order pipeline for instruction execution. The Instruction Fetch (stage 1), Instruction Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory Access (stage 3), and Register Writeback (stage 4) stages operate in an overlapped fashion, allowing single clock instruction execution for most instructions. The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a Count-Leading-Zeros unit (CLZ), an 8 × 32 Hardware Multiplier array, result feed-forward hardware, and a hardware divider. Most arithmetic and logical operations are executed in a single cycle with the exception of the divide and multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle. The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to minimize delays during change of flow operations. Branch target prefetching from the BTB is performed to accelerate certain taken branches. Sequential prefetching is performed to ensure a supply of instructions into the execution pipeline. Branch target prefetching is performed to accelerate taken branches. Prefetched instructions are placed into an instruction buffer capable of holding four instructions. Conditional branches not taken execute in a single clock. Branches with successful target prefetching have an effective execution time of one clock on e200z0h. All other taken branches have an execution time of two clocks. PXD10 Microcontroller Data Sheet, Rev. 1 10 Freescale Semiconductor Overview Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word instructions allow low overhead context save and restore operations. The load/store unit contains a dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use dependency does not incur any pipeline bubbles for most cases. The Condition Register unit supports the condition register (CR) and condition register operations defined by the Power Architecture. The condition register consists of eight 4-bit fields that reflect the results of certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions, and provide a mechanism for testing and branching. Vectored and autovectored interrupts are supported. Hardware vectored interrupt support is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead. The CPU includes support for Variable Length Encoding (VLE) instruction enhancements. This allows the classic PowerPC instruction set to be represented by a modified instruction set made up from a mixture of 16-bit and 32-bit instructions. This results in a significantly smaller code size footprint without affecting performance noticeably. The CPU core is enhanced by an additional interrupt source—Non Maskable Interrupt. This interrupt source is routed directly from package pins, via edge detection logic in the SIU to the CPU, bypassing the Interrupt Controller completely. Once the edge detection logic is programmed, it can not be disabled, except by reset. The Non Maskable Interrupt is, as the name suggests, completely un-maskable and when asserted will always result in the immediate execution of the respective interrupt service routine. The Non maskable interrupt is not guaranteed to be recoverable. The CPU core has an additional ‘Wait for Interrupt’ instruction that is used in conjunction with low power STOP mode. When Low Power Stop mode is selected, this instruction is executed to allow the system clock to be stopped. An external interrupt source or the system wake-up timer is used to restart the system clock and allow the CPU to service the interrupt. Additional features include: • Load/store unit — 1-cycle load latency — Misaligned access support — No load-to-use pipeline bubbles • Thirty-two 32-bit general purpose registers (GPRs) • Separate instruction bus and load/store bus Harvard architecture • Reservation instructions for implementing read-modify-write constructs • Multi-cycle divide (divw) and load multiple (lmw) store multiple (smw) multiple class instructions, can be interrupted to prevent increases in interrupt latency • Extensive system development support through Nexus debug port PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 11 Overview 1.6.3 Display Control Unit (DCU) The DCU is a display controller designed to drive TFT LCD displays capable of driving up to WQVGA resolution screens with 16 layers and 4 planes with real time alpha-blending. The DCU generates all the necessary signals required to drive the display: up to 24-bit RGB data bus, Pixel Clock, Data Enable, Horizontal-Sync and Vertical-Sync. Internal memory resource of the PXD10 allows to easily handle complex graphics contents (pictures, icons, languages, fonts) on a color TFT panel in up to Wide Quarter Video Graphics Array (WQVGA) sizes. All the data fetches from internal and/or external memory are performed by the internal four-channel DMA of the DCU providing a high speed/low latency access to the system backbone. Control Descriptors (CDs) associated with each layer enable effective merging of different resolutions into one plane to optimize use of internal memory buffers. A layer may be constructed from graphic content of various resolutions including 1bpp, 2bpp, 4bpp, 8bpp, 16bpp, 24bpp and 24bpp+alpha. The ability of the DCU to handle input data in resolutions as low as 1bpp, 2bpp and 4bpp enables a highly efficient use of internal memory resources of the PXD10. A special tiled mode can be enabled on any of the 16 layers to repeat a pattern optimizing graphic memory usage. A hardware cursor can be managed independently of the layers at blending level increasing the efficient use of the internal DCU resources. To secure the content of all critical information to be displayed, a safety mode can be activated to check the integrity of critical data along the whole system data path from the memory to the TFT pads. The DCU features the following: • Display color depth: up to 24 bpp • Generation of all RGB and control signals for TFT • Four-plane blending • Maximum number of Input Layers: 16 (fixed priority) • Dynamic look-up table (color and gamma look-up) • blending range: as many as 256 levels • Transparency Mode • Gamma Correction • Tiled mode on all the layers • Hardware cursor • Critical display content integrity monitoring for functional safety support • Internal Direct Memory Access (DMA) module to transfer data from internal and/or external memory. PXD10 Microcontroller Data Sheet, Rev. 1 12 Freescale Semiconductor Overview 1.6.4 Parallel Data Interface (PDI) The PDI is a digital interface used to receive external digital video or graphic content into the DCU. The PDI input is directly injected into the DCU background plane FIFO. When the PDI is activated, all the DCU synchronization is extracted from the external video stream to guarantee the synchronization of the two video sources. The PDI can be used to: • Connect a video camera output directly to the PDI • Connect a secondary display driver as slave with a minimum of extra cost • Connect a device gathering various Video sources • Provide flexibility to allow the DCU to be used in slave mode (external synchronization) The PDI features the following: • Supported color modes: — 8-bit mono — 8-bit color multiplexed — RGB565 — 16-bit/18-bit RAW color • Supported synchronization modes: — Embedded ITU-R BT.656-4 (RGB565 mode 2) — HSYNC, VSYNC — Data Enable • Direct interface with DCU background plane FIFO • Synchronization generation for the DCU 1.6.5 Liquid Crystal Display (LCD) driver The LCD driver module has two configurations allowing a maximum of 160 or 228 LCD segments: • As many as 40 frontplane drivers and four backplane drivers • As many as 38 frontplane drivers and six backplane drivers Each segment is controlled and can be masked by a corresponding bit in the LCD RAM. Four to six multiplex modes (1/1, 1/2, 1/3, 1/4, 1/5, 1/6 duty), and three bias (1/1, 1/2, 1/3) methods are available. All frontplane and backplane pins can be multiplexed with other port functions. The LCD driver module features the following: • Programmable frame clock generator from different clock sources: — System clock — Internal RC oscillator • Programmable bias voltage level selector • On-chip generation of all output voltage levels PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 13 Overview • • • • • • 1.6.6 — LCD voltage reference taken from main 5V supply LCD RAM — Contains the data to be displayed on the LCD — Data can be read from or written to the display RAM at any time End of Frame interrupt — Optimizes the refresh of the data without visual artefact — Provides selectable number of frames between each interrupt Contrast adjustment using programmable internal voltage reference Remapping capability of four or six backplanes with frontplanes — Increase pin selection flexibility In low power modes, the LCD operation can be suspended under software control. The LCD can also operate in low power modes, clocked by the internal 128 kHz IRC or external 32 KHz crystal oscillator Selectable output current boost during transitions Stepper Motor Controller (SMC) The SMC module is a PWM motor controller suitable to drive loads requiring a PWM signal. The motor controller has twelve PWM channels associated with two pins each (24 pins in total). The SMC module includes the following features: • 10/11-bit PWM counter • 11-bit resolution with selectable PWM dithering function • Left, right, or center aligned PWM • Output slew rate control • Output Short Circuit Detection This module is suited for, but not limited to, driving small stepper and air core motors used in instrumentation applications. This module can be used for other motor control or PWM applications that match the frequency, resolution, and output drive capabilities of the module. 1.6.7 Stepper Stall Detector (SSD) The stepper stall detector (SSD) module provides a circuit to measure and integrate the induced voltage on the non-driven coil of a stepper motor using full steps when the gauge pointer is returning to zero (RTZ). The SSD module features the following: • Programmable full step state • Programmable integration polarity • Blanking (recirculation) state • 16-bit integration accumulator register • 16-bit modulus down counter with interrupt PXD10 Microcontroller Data Sheet, Rev. 1 14 Freescale Semiconductor Overview 1.6.8 Flash memory The PXD10 microcontroller has the following flash memory features: • As much as 1 MB of burst flash memory — Typical flash memory access time: 0 wait-state for buffer hits, 2 wait-states for page buffer miss at 64 MHz — Two 4 × 128-bit page buffers with programmable prefetch control – One set of page buffers can be allocated for code-only, fixed partitions of code and data, all available for any access – One set of page buffers allocated to Display Controller Unit and the eDMA — 64-bit ECC with single-bit correction, double-bit detection for data integrity — 64 KB data flash memory — separate 4 16 KB flash block for EEPROM emulation with prefetch buffer and 128-bit data access port • Small block flash memory arrangement to support features such as boot block, operating system block • Hardware managed flash memory writes, erase and verify sequence • Censorship protection scheme to prevent flash memory content visibility • Separate dedicated 64 KB data flash memory for EEPROM emulation — Four erase sectors each containing 16 KB of memory — Offers Read-While-Write functionality from main program space — Same data retention and program erase specification as main program flash memory array 1.6.9 Static random-access memory (SRAM) The PXD10 microcontrollers have as much as 48 KB general-purpose on-chip SRAM with the following features: • Typical SRAM access time: 0 wait-state for reads and 32-bit writes; 1 wait-state for 8- and 16-bit writes if back to back with a read to same memory block • 32-bit ECC with single-bit correction, double bit detection for data integrity • Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory • User transparent ECC encoding and decoding for byte, half word, and word accesses • Separate internal power domain applied to full SRAM block, 8 KB SRAM block during STANDBY modes to retain contents during low power mode. 1.6.10 On-chip graphics SRAM The PXD10 microcontroller has 160 KB on-chip graphics SRAM with the following features: • Usable as general purpose SRAM • Typical SRAM access time: 0 wait-state for reads and 32-bit writes • Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 15 Overview 1.6.11 QuadSPI serial flash controller The QuadSPI module enables use of external serial flash memories supporting single, dual and quad modes of operation. It features the following: • Memory mapping of external serial flash • Automatic serial flash read command generation by CPU, DMA or DCU read access on AHB bus • Supports single, dual and quad serial flash read commands • Flexible buffering scheme to maximize read bandwidth of serial flash • ‘Legacy’ mode allowing QuadSPI to be used as a standard SPI (no DSI or CSI mode) 1.6.12 Analog-to-digital converter (ADC) The ADC features the following: • 10-bit A/D resolution • 0 to 5 V common mode conversion range • Supports conversions speeds of as fast as 1 µs • 16 internal and 8 external channels support • As many as 16 single-ended inputs channels — All channels configured to have alternate function as general purpose input/output pins – 10-bit ±3 counts accuracy (TUE) • External multiplexer support to increase as many as 23 channels — Automatic 1 × 8 multiplexer control — External multiplexer connected to a dedicated input channel — Shared register between the 8 external channels • Result register available for every non-multiplexed channel • Configurable left- or right-aligned result format • Supports for one-shot, scan and injection conversion modes • Injection mode status bit implemented on adjacent 16-bit register for each result — Supports access to result and injection status with single 32-bit read • Independently enabling of function for channels: — Pre-sampling — Offset error cancellation — Offset refresh • Conversion Triggering support — Internal conversion triggering from periodic interrupt timer (PIT) • Four configurable analog comparator channels offering range comparison with triggered alarm — Greater than — Less than — Out of range PXD10 Microcontroller Data Sheet, Rev. 1 16 Freescale Semiconductor Overview • • • All unused analog inputs can be used as general purpose input and output pins Power down mode Optional support for DMA transfer of results 1.6.13 Sound generation logic (SGL) module The SGL module has two modes of operation: • Amplitude modulated PWM mode for low cost buzzers using any two eMIOS channels — Monophonic signal with amplitude control — 8-bit amplitude resolution — Ability to mix any two eMIOS channels. — Requires simple external RC lowpass filter • Digital sample mode for higher quality sound using one eMIOS channel and eDMA — Up to 10-bit audio amplitude resolution — Polyphonic sound synthesis — Playback of sample based waveforms — Text-to-speech possibility — Requires external lowpass filter 1.6.14 Serial communication interface module (UART) The PXD10 devices include as many as two UART modules and support UART Master mode, UART Slave mode and UART mode. The modules are UART state machine compliant to the UART 1.3 and 2.0 and 2.1 Specifications and handle UART frame transmission and reception without CPU intervention. The serial communication interface module offers the following: • • UART features: — Full-duplex operation — Standard non return-to-zero (NRZ) mark/space format — Data buffers with 4-byte receive, 4-byte transmit — Configurable word length (8-bit or 9-bit words) — Error detection and flagging – Parity, noise and framing errors — Interrupt driven operation with four interrupts sources — Separate transmitter and receiver CPU interrupt sources — 16-bit programmable baud-rate modulus counter and 16-bit fractional — Two receiver wake-up methods LIN features: — Autonomous LIN frame handling — Message buffer to store identifier and as many as 8 data bytes PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 17 Overview — — — — — — — Supports message length of as long as 64 bytes Detection and flagging of LIN errors Sync field; Delimiter; ID parity; Bit, Framing; Checksum and Timeout errors Classic or extended checksum calculation Configurable Break duration of up to 36-bit times Programmable Baud rate prescalers (13-bit mantissa, 4-bit fractional) Diagnostic features – Loop back – Self Test – LIN bus stuck dominant detection — Interrupt driven operation with 16 interrupt sources — LIN slave mode features – Autonomous LIN header handling – Autonomous LIN response handling – Discarding of irrelevant LIN responses using as many as 16 ID filters 1.6.15 Serial Peripheral Interface (SPI) module The SPI modules provide a synchronous serial interface for communication between the PXD10 MCU and external devices. The SPI features the following: • As many as two SPI modules • Full duplex, synchronous transfers • Master or slave operation • Programmable master bit rates • Programmable clock polarity and phase • End-of-transmission interrupt flag • Programmable transfer baud rate • Programmable data frames from four to 16 bits • As many as six chip select lines available, depending on package and pin multiplexing, enable 64 external devices to be selected using external muxing from a single SPI • Eight clock and transfer attributes registers • Chip select strobe available as alternate function on one of the chip select pins for deglitching • FIFOs for buffering as many as four transfers on the transmit and receive side • General purpose I/O functionality on pins when not used for SPI • Queueing operation possible through use of eDMA PXD10 Microcontroller Data Sheet, Rev. 1 18 Freescale Semiconductor Overview 1.6.16 Controller Area Network (CAN) module The PXD10 contains two CAN modules that offer the following features: • Compliant with CAN protocol specification, Version 2.0B active • 64 mailboxes, each configurable as transmit or receive — Mailboxes configurable while module remains synchronized to CAN bus • Transmit features — Supports configuration of multiple mailboxes to form message queues of scalable depth — Arbitration scheme according to message ID or message buffer number — Internal arbitration to guarantee no inner or outer priority inversion — Transmit abort procedure and notification • Receive features — Individual programmable filters for each mailbox — 8 mailboxes configurable as a 6-entry receive FIFO — 8 programmable acceptance filters for receive FIFO • Programmable clock source — System clock — Direct oscillator clock to avoid PLL jitter • Listen only mode capabilities • CAN Sampler — Can catch the first message sent on the CAN network while the PXD10 is stopped. This guarantees a clean startup of the system without missing messages on the CAN network. — The CAN sampler is connected to one of the CAN RX pins. 1.6.17 Inter-IC Communications (I2C) module The I2C module features the following: • As many as four I2C modules supported • Two-wire bi-directional serial bus for on-board communications • Compatibility with I2C bus standard • Multimaster operation • Software-programmable for one of 256 different serial clock frequencies • Software-selectable acknowledge bit • Interrupt-driven, byte-by-byte data transfer • Arbitration-lost interrupt with automatic mode switching from master to slave • Calling address identification interrupt • Start and stop signal generation/detection • Repeated START signal generation • Acknowledge bit generation/detection • Bus-busy detection PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 19 Overview 1.6.18 Real Time Counter (RTC) The Real Timer Counter supports wake-up from Low Power modes or Real Time Clock generation • Configurable resolution for different timeout periods — 1 s resolution for >1 hour period — 1 ms resolution for 2 second period • Selectable clock sources from external 32 KHz crystal, external 4–16 MHz crystal, internal 128 kHz RC oscillator or divided internal 16 MHz RC oscillator 1.6.19 Enhanced Modular Input/Output System (Timers, PWM) PXD10 microcontrollers have two eMIOS modules—one with 16 channels and one with 8—with input/output channels supporting a range of 16-bit input capture, output compare, and Pulse Width Modulation functions. The modules are configurable and can implement 8-channel, 16-bit input capture/output compare or 16-channel, 16-bit output pulse width modulation/input compare/output compare. As many as five additional channels are configurable as modulus counters. eMIOS features include: • Selectable clock source from main FMPLL, auxiliary FMPLL, external 4–16 MHz oscillator or 16 MHz Internal RC oscillator • Timed I/O channels with 16-bit counter resolution • Buffered updates • Support for shifted PWM outputs to minimize occurrence of concurrent edges • Edge aligned output pulse width modulation — Programmable pulse period and duty cycle — Supports 0% and 100% duty cycle — Shared or independent time bases • Programmable phase shift between channels • Selectable combination of pairs of eMIOS outputs to support sound generation • DMA transfer support • Selectable clock source from the primary FMPLL, auxiliary FMPLL, external 4–16 MHz oscillator or the 16 MHz internal RC oscillator. The channel configuration options for the 16-channel eMIOS module are summarized in Table 2. PXD10 Microcontroller Data Sheet, Rev. 1 20 Freescale Semiconductor Overview Table 2. 16-channel eMIOS module channel configuration Channel number 8 9–15 16 17–22 23 IC/OC Counter IC/OC PWM Counter PWM PWM Counter General Purpose Input/Output X X X X X Single Action Input Capture X X X X X Single Action Output Compare X X X X X Modulus Counter Buffered1 X Channel mode X X Output Pulse Width and Frequency Modulation Buffered X X X Output Pulse Width Modulation Buffered X X X NOTES: 1 Modulus up and down counters to support driving local and global counter busses The channel configuration options for the 8-channel eMIOS module are summarized in Table 3. Table 3. 8-Channel eMIOS module channel configuration Channel number Channel mode 16 PWM Counter 17–22 PWM 23 PWM Counter General Purpose Input/Output X X X Single Action Input Capture X X X Single Action Output Compare X X X Modulus Counter Buffered1 X Output Pulse Width and Frequency Modulation Buffered X X X Output Pulse Width Modulation Buffered X X X X NOTES: 1 Modulus up and down counters to support driving local and global counter busses 1.6.20 Periodic interrupt timer (PIT) module The PIT features the following: • Four general purpose interrupt timers • As many as two dedicated interrupt timers for triggering ADC conversions • 32-bit counter resolution • Clocked by system clock frequency • 32-bit counter for Real Time Interrupt, clocked from main external oscillator PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 21 Overview 1.6.21 System Timer Module (STM) The STM is a 32-bit timer that supports commonly required system and application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare channels with a separate interrupt source for each channel. The counter is driven by the system clock divided by an 8-bit prescale value (1 to 256). • • • • One 32-bit up counter with 8-bit prescaler Four 32-bit compare channels Independent interrupt source for each channel Counter can be stopped in debug mode 1.6.22 Software Watchdog Timer (SWT) The SWT features the following: • Watchdog supporting software activation or enabled out of reset • Supports normal or windowed mode • Watchdog timer value writable once after reset • Watchdog supports optional halting during low power modes • Configurable response on timeout: reset, interrupt, or interrupt followed by reset • Selectable clock source for main system clock or internal 16 MHz RC oscillator clock 1.6.23 Interrupt Controller (INTC) The INTC provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource can not preempt each other. Multiple processors can assert interrupt requests to each other through software settable interrupt requests. These same software settable interrupt requests also can be used to break the work involved in servicing an interrupt request into a high priority portion and a low priority portion. The high priority portion is initiated by a peripheral interrupt request, but then the ISR asserts a software settable interrupt request to finish the servicing in a lower priority ISR. Therefore these software settable interrupt requests can be used instead of the peripheral ISR scheduling a task through the RTOS. The INTC provides the following features: • Unique 9-bit vector for each of the possible 128 separate interrupt sources • Eight software-triggerable interrupt sources PXD10 Microcontroller Data Sheet, Rev. 1 22 Freescale Semiconductor Overview • • • • 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source Ability to modify the ISR or task priority. — Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources. External non-maskable interrupt directly accessing the main core critical interrupt mechanism 32 external interrupts 1.6.24 System Integration Unit (SIU) The SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation. The GPIO features the following: • As many as four levels of internal pin multiplexing, allowing exceptional flexibility in the allocation of device functions for each package • Centralized general purpose input output (GPIO) control of as many as 132 input/output pins (package dependent) • All GPIO pins can be independently configured to support pull-up, pull down, or no pull • Reading and writing to GPIO supported both as individual pins and 16-bit wide ports • All peripheral pins can be alternatively configured as both general purpose input or output pins except ADC channels which support alternative configuration as general purpose inputs • Direct readback of the pin value supported on all digital output pins through the SIU • Configurable digital input filter that can be applied to as many as 14 general purpose input pins for noise elimination on external interrupts • Register configuration protected against change with soft lock for temporary guard or hard lock to prevent modification until next reset. 1.6.25 System Clocks and Clock Generation Modules The system clock on the PXD10 can be derived from an external oscillator, an on-chip FMPLL, or the internal 16 MHz oscillator. • The source system clock frequency can be changed via an on-chip programmable clock divider (1 to 2). • Additional programmable peripheral bus clock divider ratio (1 to 16) • The PXD10 has two on-chip FMPLLs—the primary module and an auxiliary module. — Each features the following: – Input clock frequency from 4 MHz to 16 MHz – Lock detect circuitry continuously monitors lock status – Loss Of Clock (LOC) detection for reference and feedback clocks – On-chip loop filter (for improved electromagnetic interference performance and reduction of number of external components required) PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 23 Overview • • • • – Support for frequency ramping from PLL — The primary FMPLL module is for use as a system clock source. The auxiliary FMPLL is available for use as an alternate, modulated or non-modulated clock source to eMIOS modules and as alternate clock to the DCU for pixel clock generation. The main oscillator provides the following features: — Input frequency range 4–16 MHz — Square-wave input mode — Oscillator input mode 3.3 V (5.0 V) — Automatic level control — PLL reference PXD10 includes a 32 KHz low power external oscillator for slow execution, low power, and Real Time Clock Dedicated internal 128 kHz RC oscillator for low power mode operation and self wake-up — ±10% accuracy across voltage and temperature (after factory trimming) — Trimming registers to support improved accuracy with in-application calibration Dedicated 16 MHz internal RC oscillator — Used as default clock source out of reset — Provides a clock for rapid start-up from low power modes — Provides a back-up clock in the event of PLL or External Oscillator clock failure — Offers an independent clock source for the Watchdog timer — ±5% accuracy across voltage and temperature (after factory trimming) — Trimming registers to support frequency adjustment with in-application calibration 1.6.26 Crossbar Switch (XBAR) The XBAR multi-port crossbar switch supports simultaneous connections between four master ports and four slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width. The crossbar allows four concurrent transactions to occur from any master port to any slave port but one of those transfers must be an instruction fetch from internal flash. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. Requesting masters having equal priority are granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following features: • Four master ports — e200z0h core instruction port — e200z0h core complex load/store data port — eDMA controller — Display control unit PXD10 Microcontroller Data Sheet, Rev. 1 24 Freescale Semiconductor Overview • • Four slave ports — One flash port dedicated to the CPU — Platform SRAM — QuadSPI serial flash controller — One slave port combining: – Flash port dedicated to the Display Control Unit and eDMA module – Graphics SRAM – Peripheral bridge 32-bit internal address bus, 32-bit internal data bus 1.6.27 Enhanced Direct Memory Access (eDMA) The eDMA module is a controller capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size. The eDMA module provides the following features: • 16 channels support independent 8-, 16- or 32-bit single value or block transfers • Supports variable sized queues and circular queues • Source and destination address registers are independently configured to post-increment or remain constant • Each transfer is initiated by a peripheral, CPU, periodic timer interrupt or eDMA channel request • Each DMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer • DMA transfers possible between system memories, QuadSPI, SPIs, I2C, ADC, eMIOS and General Purpose I/Os (GPIOs) • Programmable DMA Channel Mux allows assignment of any DMA source to any available DMA channel with a total of as many as 64 potential request sources. 1.6.28 Memory Protection Unit (MPU) The MPU features the following: • 12 region descriptors for per-master protection • Start and end address defined with 32-byte granularity • Overlapping regions supported • Protection attributes can optionally include process ID • Protection offered for 3 concurrent read ports • Read and write attributes for all masters • Execute and supervisor/user mode attributes for processor masters PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 25 Overview 1.6.29 Boot Assist Module (BAM) The BAM is a block of read-only memory that is programmed once by Freescale. The BAM program is executed every time the MCU is powered-on or reset in normal mode. The BAM supports different modes of booting. They are: • Booting from internal flash memory • Serial boot loading (A program is downloaded into RAM via CAN or UART and then executed) • Booting from external memory Additionally, the BAM: • Enables and manages the transition of the MCU from reset to user code execution • Configures device for serial bootload • Enables multiple bootcode starting locations out of reset through implementation of search for valid Reset Configuration Halfword • Enables or disables software watchdog timer out of reset through BAM read of the Reset Configuration Halfword option bit 1.6.30 IEEE 1149.1 JTAG Controller (JTAGC) JTAGC features the following: • Backward compatible to standard JTAG IEEE 1149.1-2001 test access port (TAP) interface • Support for boundary scan testing 1.6.31 Nexus Development Interface (NDI) Nexus features the following: • Per IEEE-ISTO 5001-2003 • Nexus 2 Plus features supported — Static debug — Watchpoint messaging — Ownership trace messaging — Program trace messaging — Real time read/write of any internally memory mapped resources through JTAG pins — Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information — Watchpoint triggering, watchpoint triggers program tracing • Configured via the IEEE 1149.1 (JTAG) port • Nexus Auxiliary port supported on the 176 LQFP package FOR DEVELOPMENT ONLY — Narrow Auxiliary Nexus port supporting support trace, with two MDO pins — Wide Auxiliary Nexus port supporting higher bandwidth trace, with four MDO pins PXD10 Microcontroller Data Sheet, Rev. 1 26 Freescale Semiconductor Pinout and signal descriptions 2 Pinout and signal descriptions 2.1 144 LQFP package pinouts This section shows the pinouts for the 144-pin LQFP packages. 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PA9/GPIO[9]/DCU_G1/eMIOSB18/SDA_2/FP14 PA8/GPIO[8]/DCU_G0/eMIOSB23/SCL_2/FP15 PA7/GPIO[7]/DCU_R7/eMIOSA16/FP16 PA6/GPIO[6]/DCU_R6/eMIOSA15/FP17 PA5/GPIO[5]/DCU_R5/eMIOSA17/FP18 PA4/GPIO[4]/DCU_R4/eMIOSA18/FP19 PA3/GPIO[3]/DCU_R3/eMIOSA19/FP20 PA2/GPIO[2]/DCU_R2/eMIOSA20/FP21 PA1/GPIO[1]/DCU_R1/eMIOSA21/FP22 PA0/GPIO[0]/DCU_R0/eMIOSA22/SOUND/FP23 VSS12 VDD12 PF15/GPIO[85]/SCK_2/FP24 PF14/GPIO[84]/SOUT_2/CANTX_1/FP25 PF13/GPIO[83]/SIN_2/CANRX_1/FP26 PF12/GPIO[82]/eMIOSB16/PCS2_2/FP27 PF11/GPIO[81]/eMIOSB23/PCS1_2/FP28 PF10/GPIO[80]/eMIOSA16/PCS0_2/FP29 PG12/GPIO[98]/eMIOSA23/SOUND/eMIOSA8/FP VSSE_A VDDE_A PF9/GPIO[79]/SCL_1/PCS0_1/TXD_1/FP31 PF8/GPIO[78]/SDA_1/PCS1_1/RXD_1/FP32 PF7/GPIO[77]/SCL_0/PCS2_1/FP33 PF6/GPIO[76]/SDA_0/FP34 VSS12 VDD12 PF5/GPIO[75]/eMIOSA9/DCU_TAG/FP35 PF4/GPIO[74]/eMIOSA10/PDI7/FP36 PF3/GPIO[73]/eMIOSA11/PDI6/FP37 PF1/GPIO[71]/eMIOSA12/PDI5/eMIOSA21/FP38 PF0/GPIO[70]/eMIOSA13/PDI4/eMIOSA22/FP39 PB2/GPIO[18]/TXD_0 PB3/GPIO[19]/RXD_0 VSSE_E VDDE_E CAUTION Any pins labeled “NC” must not be connected to any external circuit. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144-Pin LQFP PXD1010 Detail: FP13/eMIOSB20/DCU_G2/GPIO[10]/PA10 – FP12/eMIOSA13/DCU_G3/GPIO[11]/PA11 – FP11/eMIOSA12/DCU_G4/GPIO[12]/PA12 – FP10/eMIOSA11/DCU_G5/GPIO[13]/PA13 – FP9/eMIOSA10/DCU_G6/GPIO[14]/PA14 – FP8/eMIOSA9/DCU_G7/GPIO[15]/PA15 – FP7/SOUND/SCL_3/DCU_B0/GPIO[86]/PG0 – FP5/eMIOSB19/DCU_B2/GPIO[88]/PG2 – FP4/eMIOSB21/DCU_B3/GPIO[89]/PG3 – FP3/eMIOSB17/DCU_B4/GPIO[90]/PG4 – 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 PB11/GPIO[27]/CANTX_1/PDI3/eMIOSA16 PB10GPIO[26]//CANRX_1/PDI2/eMIOSA23 PB0/GPIO[16]/CANTX_0/PDI1 PB1/GPIO[17]/CANRX_0/PDI0 VSS12 VDD12 PE7/GPIO[69]/M5C1P/SSD5_3/eMIOSA8 PE6/GPIO[68]/M5C1M/SSD5_2/eMIOSA9 PE5/GPIO[67]/M5C0P/SSD5_1/eMIOSA10 PE4/GPIO[66]/M5C0M/SSD5_0/eMIOSA11 VSSMC VDDMC PE3/GPIO[65]/M4C1P/SSD4_3/eMIOSA12 PE2/GPIO[64]/M4C1M/SSD4_2/eMIOSA13 PE1/GPIO[63]/M4C0P/SSD4_1/eMIOSA14 PE0/GPIO[62]/M4C0M/SSD4_0/eMIOSA15 PD15/GPIO[61]/M3C1P/SSD3_3 PD14/GPIO[60]/M3C1M/SSD3_2 PD13/GPIO[59]/M3C0P/SSD3_1 PD12/GPIO[58/M3C0M/SSD3_0 VSSMB VDDMB PD11/GPIO[57]/M2C1P/SSD2_3 PD10/GPIO[56]/M2C1M/SSD2_2 PD9/GPIO[55]/M2C0P/SSD2_1 PD8/GPIO[54]/M2C0M/SSD2_0 PD7/GPIO[53]/M1C1P/SSD1_3/eMIOSB16 PD6/GPIO[52]/M1C1M/SSD1_2/eMIOSB17 PD5/GPIO[51]/M1C0P/SSD1_1/eMIOSB18 PD4/GPIO[50]/M1C0M/SSD1_0/eMIOSB19 VSSMA VDDMA PD3/GPIO[49]/M0C1P/SSD0_3/eMIOSB20 PD2/GPIO[48]/M0C1M/SSD0_2/eMIOSB21 PD1/GPIO[47]/M0C0P/SSD0_1/eMIOSB22 PD0/GPIO[46]/M0C0M/SSD0_0/eMIOSB23 NMI/GPIO[72]/PF2 VDDE_B VSSE_B PCS2_0/eMIOSB19/RXD_1/GPIO[28]/PB12 PCS1_0/eMIOSB18/TXD_1/GPIO[29]/PB13 VDD12 VSS12 eMIOSB20/SCK_0/GPIO[25]/PB9 eMIOSB21/SOUT_0/GPIO[24]/PB8 eMIOSB22/SIN_0/GPIO[23]/PB7 CLKOUT/eMIOSB16/PCS0_0/GPIO[103]/PH4 MA0/SCK_1/GPIO[20]/PB4 FABM/MA1/SOUT_1/GPIO[21]/PB5 ABS[0]/MA2/SIN_1/GPIO[22]/PB6 VDD12 VSS12 VDDA VSSA XTAL32/ANS15/GPIO[45]/PC15 EXTAL32/ANS14/GPIO[44]/PC14 PCS0_1/MA2/ANS13/GPIO[43]/PC13 PCS1_1/MA1/ANS12/GPIO[42]/PC12 PCS2_1/MA0/ANS11/GPIO[41]/PC11 SOUND/ANS10(mux)/GPIO[40]/PC10 ANS9/GPIO[39]/PC9 ANS8/GPIO[38]/PC8 VDDE_C VSSE_C ANS7/GPIO[37]/PC7 ANS6/GPIO[36]/PC6 ANS5/GPIO[35]/PC5 ANS4/GPIO[34]/PC4 ANS3/GPIO[33]/PC3 ANS2/GPIO[32]/PC2 ANS1/GPIO[31]/PC1 ANS0/GPIO[30]/PC0 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 (see detail inset) PA10 (see detail inset) PA11 (see detail inset) PA12 (see detail inset) PA13 (see detail inset) PA14 (see detail inset) PA15 VDDE_A VSSE_A (see detail inset) PG0 FP6/SDA_3/DCU_B1/GPIO[87]/PG1 (see detail inset) PG2 (see detail inset) PG3 (see detail inset) PG4 FP2/eMIOSA8/DCU_B5/GPIO[91]/PG5 FP1/DCU_B6/GPIO[92]/PG6 FP0/DCU_B7/GPIO[93]/PG7 BP0/DCU_VSYNC/GPIO[94]/PG8 BP1/DCU_HSYNC/GPIO[95]/PG9 BP2/DCU_DE/GPIO[96]/PG10 BP3/DCU_PCLK/GPIO[97]/PG11 VLCD/GPIO[104]/PH5 VDDR VSSR RESET VRC_CTRL VPP XTAL VSSOSC EXTAL VSSPLL VDDPLL VREG_BYPASS TDI/GPIO[100]/PH1 TDO/GPIO[101]/PH2 TMS/GPIO[102]/PH3 TCK/GPIO[99]/PH0 Figure 2. 144-pin LQFP pinout for PXD1010 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 27 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PA9/GPIO[9]/eMIOSB18/FP14 PA8/GPIO[8]/eMIOSB23/FP15 PA7/GPIO[7]/eMIOSA16/FP16 PA6/GPIO[6]/eMIOSA15/FP17 PA5/GPIO[5]/eMIOSA17/FP18 PA4/GPIO[4]/eMIOSA18/FP19 PA3/GPIO[3]/eMIOSA19/FP20 PA2/GPIO[2]/eMIOSA20/FP21 PA1/GPIO[1]/eMIOSA21/FP22 PA0/GPIO[0]/eMIOSA22/SOUND/FP23 VSS12 VDD12 PF15/GPIO[85]/FP24 PF14/GPIO[84]/CANTX_1/FP25 PF13/GPIO[83]/CANRX_1/FP26 PF12/GPIO[82]/eMIOSB16/FP27 PF11/GPIO[81]/eMIOSB23/FP28 PF10/GPIO[80]/eMIOSA16/FP29 PG12/GPIO[98]/eMIOSA23/SOUND/eMIOSA8/FP30 VSSE_A VDDE_A PF9/GPIO[79]/SCL_1/PCS1_0/TXD_1/FP31 PF8/GPIO[78]/SDA_1/PCS1_1/RXD_1/FP32 PF7/GPIO[77]/SCL_0/PCS2_1/FP33 PF6/GPIO[76]/SDA_0/FP34 VSS12 VDD12 PF5/GPIO[75]/eMIOSA9/FP35 PF4/GPIO[74]/eMIOSA10/FP36 PF3/GPIO[73]/eMIOSA11/FP37 PF1/GPIO[71]/eMIOSA12/eMIOSA21/FP38 PF0/GPIO[70]/eMIOSA13/eMIOSA22/FP39 PB2/GPIO[18]/TXD_0 PB3/GPIO[19]/RXD_0 VSSE_E VDDE_E Pinout and signal descriptions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144-pin LQFP PXD1005 Detail: FP13/eMIOSB20/GPIO[10]/PA10 – FP12/eMIOSA13/GPIO[11]/PA11 – FP11/eMIOSA12/GPIO[12]/PA12 – FP10/eMIOSA11/GPIO[13]/PA13 – FP9/eMIOSA10/GPIO[14]/PA14 – FP8/eMIOSA9/GPIO[15]/PA15 – FP7/SOUND/GPIO[86]/PG0 – FP5/eMIOSB19/GPIO[88]/PG2 – FP4/eMIOSB21/GPIO[89]/PG3 – FP3/eMIOSB17/GPIO[90]/PG4 – 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 PB11/GPIO[27]/CANTX_1/eMIOSA16 PB10GPIO[26]//CANRX_1/eMIOSA23 PB0/GPIO[16]/CANTX_0 PB1/GPIO[17]/CANRX_0 VSS12 VDD12 PE7/GPIO[69]/M5C1P/SSD5_3/eMIOSA8 PE6/GPIO[68]/M5C1M/SSD5_2/eMIOSA9 PE5/GPIO[67]/M5C0P/SSD5_1/eMIOSA10 PE4/GPIO[66]/M5C0M/SSD5_0/eMIOSA11 VSSMC VDDMC PE3/GPIO[65]/M4C1P/SSD4_3/eMIOSA12 PE2/GPIO[64]/M4C1M/SSD4_2/eMIOSA13 PE1/GPIO[63]/M4C0P/SSD4_1/eMIOSA14 PE0/GPIO[62]/M4C0M/SSD4_0/eMIOSA15 PD15/GPIO[61]/M3C1P/SSD3_3 PD14/GPIO[60]/M3C1M/SSD3_2 PD13/GPIO[59]/M3C0P/SSD3_1 PD12/GPIO[58/M3C0M/SSD3_0 VSSMB VDDMB PD11/GPIO[57]/M2C1P/SSD2_3 PD10/GPIO[56]/M2C1M/SSD2_2 PD9/GPIO[55]/M2C0P/SSD2_1 PD8/GPIO[54]/M2C0M/SSD2_0 PD7/GPIO[53]/M1C1P/SSD1_3/eMIOSB16 PD6/GPIO[52]/M1C1M/SSD1_2/eMIOSB17 PD5/GPIO[51]/M1C0P/SSD1_1/eMIOSB18 PD4/GPIO[50]/M1C0M/SSD1_0/eMIOSB19 VSSMA VDDMA PD3/GPIO[49]/M0C1P/SSD0_3/eMIOSB20 PD2/GPIO[48]/M0C1M/SSD0_2/eMIOSB21 PD1/GPIO[47]/M0C0P/SSD0_1/eMIOSB22 PD0/GPIO[46]/M0C0M/SSD0_0/eMIOSB23 NMI/GPIO[72]/PF2 VDDE_B VSSE_B PCS2_0/eMIOSB19/RXD_1/GPIO[28]/PB12 PCS1_0/eMIOSB18/TXD_1/GPIO[29]/PB13 VDD12 VSS12 eMIOSB20/SCK_0/GPIO[25]/PB9 eMIOSB21/SOUT_0/GPIO[24]/PB8 eMIOSB22/SIN_0/GPIO[23]/PB7 CLKOUT/eMIOSB16/PCS0_0/GPIO[103]/PH4 MA0/SCK_1/GPIO[20]/PB4 FABM/MA1/SOUT_1/GPIO[21]/PB5 ABS[0]/MA2/SIN_1/GPIO[22]/PB6 VDD12 VSS12 VDDA VSSA XTAL32/ANS15/GPIO[45]/PC15 EXTAL32/ANS14/GPIO[44]/PC14 PCS0_1/MA2/ANS13/GPIO[43]/PC13 PCS1_1/MA1/ANS12/GPIO[42]/PC12 PCS2_1/MA0/ANS11/GPIO[41]/PC11 SOUND/ANS10(mux)/GPIO[40]/PC10 ANS9/GPIO[39]/PC9 ANS8/GPIO[38]/PC8 VDDE_C VSSE_C ANS7/GPIO[37]/PC7 ANS6/GPIO[36]/PC6 ANS5/GPIO[35]/PC5 ANS4/GPIO[34]/PC4 ANS3/GPIO[33]/PC3 ANS2/GPIO[32]/PC2 ANS1/GPIO[31]/PC1 ANS0/GPIO[30]/PC0 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 (see detail inset) PA10 (see detail inset) PA11 (see detail inset) PA12 (see detail inset) PA13 (see detail inset) PA14 (see detail inset) PA15 VDDE_A VSSE_A (see detail inset) PG0 FP6/GPIO[87]/PG1 (see detail inset) PG2 (see detail inset) PG3 (see detail inset) PG4 FP2/eMIOSA8/GPIO[91]/PG5 FP1/GPIO[92]/PG6 FP0/GPIO[93]/PG7 BP0/GPIO[94]/PG8 BP1/GPIO[95]/PG9 BP2/GPIO[96]/PG10 BP3/GPIO[97]/PG11 VLCD/GPIO[104]/PH5 VDDR VSSR RESET VRC_CTRL VPP XTAL VSSOSC EXTAL VSSPLL VDDPLL VREG_BYPASS TDI/GPIO[100]/PH1 TDO/GPIO[101]/PH2 TMS/GPIO[102]/PH3 TCK/GPIO[99]/PH0 Figure 3. 144-pin LQFP pinout for PXD1005 PXD10 Microcontroller Data Sheet, Rev. 1 28 Freescale Semiconductor Pinout and signal descriptions 2.2 176 LQFP package pinout Figure 4 shows the pinout for the 176-pin LQFP package. 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 PA9/GPIO[9]/DCU_G1/eMIOSB18/SDA_2/FP14 PA8/GPIO[8]/DCU_G0/eMIOSB23/SCL_2/FP15 PA7/GPIO[7]/DCU_R7/eMIOSA16/FP16 PA6/GPIO[6]/DCU_R6/eMIOSA15/FP17 PA5/GPIO[5]/DCU_R5/eMIOSA17/FP18 VSSE_A VDDE_A PA4/GPIO[4]/DCU_R4/eMIOSA18/FP19 PA3/GPIO[3]/DCU_R3/eMIOSA19/FP20 PA2/GPIO[2]/DCU_R2/eMIOSA20/FP21 PA1/GPIO[1]/DCU_R1/eMIOSA21/FP22 PA0/GPIO[0]/DCU_R0/eMIOSA22/SOUND/FP23 VSS12 VDD12 PF15/GPIO[85]/SCK_2/FP24 PF14/GPIO[84]/SOUT_2/CANTX_1/FP25 PF13/GPIO[83]/SIN_2/CANRX_1/FP26 PF12/GPIO[82]/eMIOSB16/PCS2_2/FP27 PF11/GPIO[81]/eMIOSB23/PCS1_2/FP28 PF10/GPIO[80]/eMIOSA16/PCS0_2/FP29 PG12/GPIO[98]/eMIOSA23/SOUND/eMIOSA8/FP30 VSSE_A VDDE_A PF9/GPIO[79]/SCL_1/PCS0_1/TXD_1/FP31 PF8/GPIO[78]/SDA_1/PCS1_1/RXD_1/FP32 PF7/GPIO[77]/SCL_0/PCS2_1/FP33 PF6/GPIO[76]/SDA_0/FP34 VSS12 VDD12 PF5/GPIO[75]/eMIOSA9/DCU_TAG/FP35 PF4/GPIO[74]/eMIOSA10/PDI7/FP36 PF3/GPIO[73]/eMIOSA11/PDI6/FP37 PF1/GPIO[71]/eMIOSA12/PDI5/eMIOSA21/FP38 PF0/GPIO[70]/eMIOSA13/PDI4/eMIOSA22/FP39 PK1/GPIO[122]/PDI13/eMIOSA17 PK0/GPIO[121]/PDI12/eMIOSA18/DCU_TAG PB2/GPIO[18]/TXD_0 PB3/GPIO[19]/RXD_0 PJ15/GPIO[120]/PDI11/eMIOSA19 PJ14/GPIO[119]/PDI10/eMIOSA20 PJ13/GPIO[118]/PDI9/eMIOSB20 PJ12/GPIO[117]/PDI8/eMIOSB17 VSSE_E VDDE_E CAUTION Any pins labeled “NC” must not be connected to any external circuit. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176-Pin LQFP Detail: FP13/eMIOSB20/DCU_G2/GPIO[10]/PA10 – FP12/eMIOSA13/DCU_G3/GPIO[11]/PA11 – FP11/eMIOSA12/DCU_G4/GPIO[12]/PA12 – FP10/eMIOSA11/DCU_G5/GPIO[13]/PA13 – FP9/eMIOSA10/DCU_G6/GPIO[14]/PA14 – FP8/eMIOSA9/DCU_G7/GPIO[15]/PA15 – FP7/SOUND/SCL_3/DCU_B0/GPIO[86]/PG0 – FP6/SDA_3/DCU_B1/GPIO[87]/PG1 – FP5/eMIOSB19/DCU_B2/GPIO[88]/PG2 – FP4/eMIOSB21/DCU_B3/GPIO[89]/PG3 – FP3/eMIOSB17/DCU_B4/GPIO[90]/PG4 – FP2/eMIOSA8/DCU_B5/GPIO[91]/PG5 – BP0/DCU_VSYNC/GPIO[94]/PG8 – BP1/DCU_HSYNC/GPIO[95]/PG9 – BP3/DCU_PCLK/GPIO[97]/PG11 – 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PB11/GPIO[27]/CANTX_1/PDI3/eMIOSA16 PB10/GPIO[26]/CANRX_1/PDI2/eMIOSA23 PB0/GPIO[16]/CANTX_0/PDI1 PB1/GPIO[17]/CANRX_0/PDI0 PJ11/GPIO[116]/PDI7 PJ10/GPIO[115]/PDI6 PJ9/GPIO[114]/PDI5 PJ8/GPIO[113]/PDI4 VSS12 VDD12 PJ3/GPIO[108]/PDI_PCLK PJ2/GPIO[107]/PDI_VSYNC PJ1/GPIO[106]/PDI_HSYNC PJ0/GPIO[105]/PDI_DE PE7/GPIO[69]/M5C1P/SSD5_3/eMIOSA8 PE6/GPIO[68]/M5C1M/SSD5_2/eMIOSA9 PE5/GPIO[67]/M5C0P/SSD5_1/eMIOSA10 PE4/GPIO[66]/M5C0M/SSD5_0/eMIOSA11 VSSMC VDDMC PE3/GPIO[65]/M4C1P/SSD4_3/eMIOSA12 PE2/GPIO[64]/M4C1M/SSD4_2/eMIOSA13 PE1/GPIO[63]/M4C0P/SSD4_1/eMIOSA14 PE0/GPIO[62]/M4C0M/SSD4_0/eMIOSA15 PD15/GPIO[61]/M3C1P/SSD3_3 PD14/GPIO[60]/M3C1M/SSD3_2 PD13/GPIO[59]/M3C0P/SSD3_1 PD12/GPIO[58]/M3C0M/SSD3_0 VSSMB VDDMB PD11/GPIO[57]/M2C1P/SSD2_3 PD10/GPIO[56]/M2C1M/SSD2_2 PD9/GPIO[55]/M2C0P/SSD2_1 PD8/GPIO[54]/M2C0M/SSD2_0 PD7/GPIO[53]/M1C1P/SSD1_3/eMIOSB16 PD6/GPIO[52]/M1C1M/SSD1_2/eMIOSB17 PD5/GPIO[51]/M1C0P/SSD1_1/eMIOSB18 PD4/GPIO[50]/M1C0M/SSD1_0/eMIOSB19 VSSMA VDDMA PD3/GPIO[49]/M0C1P/SSD0_3/eMIOSB20 PD2/GPIO[48]/M0C1M/SSD0_2/eMIOSB21 PD1/GPIO[47]/M0C0P/SSD0_1/eMIOSB22 PD0/GPIO[46]/M0C0M/SSD0_0/eMIOSB23 NMI/GPIO[72]/PF2 VDDE_B VSSE_B PCS2_0/eMIOSB19/RXD_1/GPIO[28]/PB12 PCS1_0/eMIOSB18/TXD_1/GPIO[29]/PB13 VDD12 VSS12 eMIOSA15/SDA_1/GPIO[131]/PK10 eMIOSA14/SCL_1/GPIO[132]/PK11 eMIOSB20/SCK_0/GPIO[25]/PB9 eMIOSB21/SOUT_0/GPIO[24]/PB8 eMIOSB22/SIN_0/GPIO[23]/PB7 CANRX_0/PDI0/GPIO[109]/PJ4 CANTX_0/PDI1/GPIO[110]/PJ5 eMIOSA22/CANRX_1/PDI2/GPIO[111]/PJ6 eMIOSA21/CANTX_1/PDI3/GPIO[112]/PJ7 CLKOUT/eMIOSB16/PCS0_0/GPIO[103]/PH4 MA0/SCK_1/GPIO[20]/PB4 FABM/MA1/SOUT_1/GPIO[21]/PB5 VDDE_B VSSE_B ABS[0]/MA2/SIN_1/GPIO[22]/PB6 VDD12 VSS12 VDDA VSSA XTAL32/ANS15/GPIO[45]/PC15 EXTAL32/ANS14/GPIO[44]/PC14 PCS0_1/MA2/ANS13/GPIO[43]/PC13 PCS1_1/MA1/ANS12/GPIO[42]/PC12 PCS2_1/MA0/ANS11/GPIO[41]/PC11 SOUND/ANS10(mux)/GPIO[40]/PC10 ANS9/GPIO[39]/PC9 ANS8/GPIO[38]/PC8 VDDE_C VSSE_C ANS7/GPIO[37]/PC7 ANS6/GPIO[36]/PC6 ANS5/GPIO[35]/PC5 ANS4/GPIO[34]/PC4 ANS3/GPIO[33]/PC3 ANS2/GPIO[32]/PC2 ANS1/GPIO[31]/PC1 ANS0/GPIO[30]/PC0 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 (see detail inset) PA10 (see detail inset) PA11 (see detail inset) PA12 (see detail inset) PA13 (see detail inset) PA14 (see detail inset) PA15 VDDE_A VSSE_A (see detail inset) PG0 (see detail inset) PG1 (see detail inset) PG2 (see detail inset) PG3 (see detail inset) PG4 (see detail inset) PG5 FP1/DCU_B6/GPIO[92]/PG6 FP0/DCU_B7/GPIO[93]/PG7 (see detail inset) PG8 (see detail inset) PG9 BP2/DCU_DE/GPIO[96]/PG10 (see detail inset) PG11 VLCD/GPIO[104]/PH5 VDDR VSSR RESET VRC_CTRL VPP XTAL VSSOSC EXTAL VSSPLL VDDPLL VREG_BYPASS PDI10/MCKO/GPIO[123]/PK2 PDI11/MSEO/GPIO[124]/PK3 PDI12/EVTO/GPIO[125]/PK4 TDI/GPIO[100]/PH1 PDI13/EVTI/GPIO[126]/PK5 PDI14/MDO0/GPIO[127]/PK6 TDO/GPIO[101]/PH2 PDI15/MDO1/GPIO[128]/PK7 TMS/GPIO[102]/PH3 PDI16/MDO2/GPIO[129]/PK8 TCK/GPIO[99]/PH0 PDI17/MDO3/GPIO[130]/PK9 Figure 4. 176-pin LQFP pinout PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 29 Pinout and signal descriptions 2.3 Pad configuration during reset phases All pads have a fixed configuration under reset. During the power-up phase, all pads are forced to tristate. After power-up phase, all pads are floating with the following exceptions: • PB[5] (FAB) is pull-down. Without external strong pullup the device starts fetching from flash. • RESET pad is driven low. This is released only after PHASE2 reset completion. • Main oscillator pads (EXTAL, XTAL) are tristate. • Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output. • The following pads are pullup: — PB[6] — PH[0] — PH[1] — PH[3] — EVTI 2.4 Voltage supply pins Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization. There is a preferred power-up sequence for devices in the PXD10 family. That sequence is described in the following paragraphs. Broadly, the supply voltages can be grouped as follows: • VREG HV supply (VDDR) • Generic I/O supply — VDDA — VDDE_A — VDDE_B — VDDE_C — VDDE_E — VDDMA — VDDMB — VDDMC — VDDPLL • LV supply (VDD12) The preferred order of ramp up is as follows: 1. Generic I/O supply PXD10 Microcontroller Data Sheet, Rev. 1 30 Freescale Semiconductor Pinout and signal descriptions 2. VREG HV supply (VDDR - Should be the last HV supply to ramp up. It is also OK if all HV and generic I/O supplies including VDDR ramp up together) 3. LV supply The reason for following this sequence is to ensure that when VREG releases its LVDs, the I/O and other HV segments are powered properly. This is important because the PXD10 does not monitor LVDs on I/O HV supplies. Table 2. Voltage supply pin descriptions Pin number Supply Pin VDD121 VDDA Function 1.2 V core supply 3.3 V/5 V ADC supply source 144 LQFP 176 LQFP 42, 51, 103, 118, 133 50, 67, 123, 148, 163 53 69 VDDE_A 3.3 V/5 V I/O supply 7, 124 7, 154, 170 VDDE_B 3.3 V/5 V I/O supply 38 46, 64 VDDE_C 3.3 V/5 V I/O supply 63 79 VDDE_E 3.3 V/5 V I/O supply 109 133 VDDMA2 Motor pads 5 V supply 77 93 2 VDDMB Motor pads 5 V supply 87 103 VDDMC2 Motor pads 5 V supply 97 113 VDDPLL 1.2 V PLL supply 31 31 VDDR VREG reg supply 22 22 VPP 9 V - 12 V flash test analog write signal 26 26 VSS Digital ground 8, 23, 39, 43, 52, 64, 104, 110, 119, 125, 134 8, 23, 47, 51, 68, 80, 124, 134, 149, 155, 164, 65, 171 ADC ground 54 70 VSSMA Stepper motor ground 78 94 VSSMB Stepper motor ground 88 104 VSSMC Stepper motor ground 98 114 VSSOSC MHz oscillator ground 28 28 VSSPLL PLL ground 30 30 3 VSSA NOTES: 1 Decoupling capacitors must be connected between these pins and the nearest VSS12 pin. 2 All stepper motor supplies need to be at same level (3.3 V or 5 V). 3 This signal needs to be connected to ground during normal operation. 2.5 Pad types The pads available for system pins and functional port pins are described in: • The port pin summary table • The pad type descriptions PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 31 Pinout and signal descriptions • • 2.6 The description of the pad configuration registers in Chapter 37, System Integration Unit Lite (SIUL) The device data sheet System pins The system pins are listed in Table 3. Table 3. System pin descriptions Pin No. System pin Function RESET Bidirectional reset with Schmitt-Trigger characteristics and noise filter. EXTAL Analog output of the oscillator amplifier circuit. Input for the clock generator in bypass mode. XTAL I/O direction Pad type RESET config I/O M Input, weak pull up 24 24 J1 X — 29 29 M1 I X — 27 27 K1 — — — 25 25 P1 I X — 32 32 M4 Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator bypass mode is used. VRC_CTRL VREG ballast control gain VREG_ BYPASS1 Pin used for factory testing 144 LQFP 176 LQFP 208 MAPBG A NOTES: 1 VREG_BYPASS should be pulled down externally. 2.7 Debug pins The debug pins are listed in Table 4 and Table 5. Table 4. Debug pin descriptions Pin number Debug pin Function Pad type I/O direction Reset Configuration 144 LQFP 176 LQFP 208 MAPB 1 GA EVTI Nexus event input M I/O None — 37 A11 EVTO Nexus event output M I/O None — 35 D12 MCKO Nexus message clock output F I/O None — 33 B12 MDO0 Nexus message clock output M I/O None — 38 B11 PXD10 Microcontroller Data Sheet, Rev. 1 32 Freescale Semiconductor Pinout and signal descriptions Table 4. Debug pin descriptions (continued) Pin number Debug pin Function Pad type I/O direction Reset Configuration 144 LQFP 176 LQFP 208 MAPB 1 GA MDO1 Nexus message clock output M I/O None — 40 C11 MDO2 Nexus message clock output M I/O None — 42 D11 MDO3 Nexus message clock output M I/O None — 44 A10 MSEO Nexus message clock output M I/O None — 34 C12 NOTES: 1 On the 176 LQFP package options the Nexus pins are multiplexed with other GPIO. On the 208 TEPBGA package, there are additional dedicated Nexus pins. Table 5. Debug pin descriptions Pin number Debug pin Function Pad type I/O direction Reset Configuration 144 LQFP 176 LQFP TEPBGA2 08 1 EVTI Nexus event input M I/O Input, Pull Up — — T3 EVTO Nexus event output M I/O Input, Pull Up — — R3 MCKO Nexus message clock output F I/O Input, Pull Up — — T1 MDO0 Nexus message clock output M I/O Input, Pull Up — — T5 MDO1 Nexus message clock output M I/O Input, Pull Up — — P5 MDO2 Nexus message clock output M I/O Input, Pull Up — — P4 MDO3 Nexus message clock output M I/O Input, Pull Up — — L4 MSEO Nexus message clock output M I/O Input, Pull Up — — T2 NOTES: 1 The dedicated (208 pin package only) Nexus output pins (Message Data outputs 0:3 [MDO] and Message Start/End outputs 0:1 [MSEO]) may drive an unknown value (high or low) immediately after power up but before-the 1st clock edge propagates through the device (instead of being weakly pulled low). This may cause high currents if the pins are tied directly to a supply/ground or any low resistance-driver (when used as a general purpose input [GPI] in the application). PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 33 Port pin summary The functional port pins are listed in Table 6. Table 6. Port pin summary PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Freescale Semiconductor I/O direction Pad type4 RESET config.5 PA[0] PCR[0] Option 0 Option 1 Option 2 Option 3 GPIO[0] DCU_R0 eMIOSA[22] SOUND FP23 SIUL DCU PWM/Timer Sound I/O M1 PA[1] PCR[1] Option 0 Option 1 Option 2 Option 3 GPIO[1] DCU_R1 eMIOSA[21] — FP22 SIUL DCU PWM/Timer — I/O PA[2] PCR[2] Option 0 Option 1 Option 2 Option 3 GPIO[2] DCU_R2 eMIOSA[20] — FP21 SIUL DCU PWM/Timer — PA[3] PCR[3] Option 0 Option 1 Option 2 Option 3 GPIO[3] DCU_R3 eMIOSA[19] — FP20 PA[4] PCR[4] Option 0 Option 1 Option 2 Option 3 GPIO[4] DCU_R4 eMIOSA[18] — PA[5] PCR[5] Option 0 Option 1 Option 2 Option 3 PA[6] PCR[6] PA[7] PCR[7] Function Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 135 165 M1 None, None 136 166 I/O M1 None, None 137 167 SIUL DCU PWM/Timer — I/O M1 None, None 138 168 FP19 SIUL DCU PWM/Timer — I/O M1 None, None 139 169 GPIO[5] DCU_R5 eMIOSA[17] — FP18 SIUL DCU PWM/Timer — I/O M1 None, None 140 172 Option 0 Option 1 Option 2 Option 3 GPIO[6] DCU_R6 eMIOSA[15] — FP17 SIUL DCU PWM/Timer — I/O M1 None, None 141 173 Option 0 Option 1 Option 2 Option 3 GPIO[7] DCU_R7 eMIOSA[16] — FP16 SIUL DCU PWM/Timer — I/O M1 None, None 142 174 Pinout and signal descriptions 34 2.8 Freescale Semiconductor Table 6. Port pin summary (continued) PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Pad type4 RESET config.5 PA[8] PCR[8] Option 0 Option 1 Option 2 Option 3 GPIO[8] DCU_G0 eMIOSB[23] SCL_2 FP15 SIUL DCU PWM/Timer I2C_2 I/O M1 PA[9] PCR[9] Option 0 Option 1 Option 2 Option 3 GPIO[9] DCU_G1 eMIOSB[18] SDA_2 FP14 SIUL DCU PWM/Timer I2C_2 I/O PA[10] PCR[10] Option 0 Option 1 Option 2 Option 3 GPIO[10] DCU_G2 eMIOSB[20] — FP13 SIUL DCU PWM/Timer — PA[11] PCR[11] Option 0 Option 1 Option 2 Option 3 GPIO[11] DCU_G3 eMIOSA[13] — FP12 PA[12] PCR[12] Option 0 Option 1 Option 2 Option 3 GPIO[12] DCU_G4 eMIOSA[12] — PA[13] PCR[13] Option 0 Option 1 Option 2 Option 3 PA[14] PCR[14] PA[15] PCR[15] Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 143 175 M1 None, None 144 176 I/O M1 None, None 1 1 SIUL DCU PWM/Timer — I/O M1 None, None 2 2 FP11 SIUL DCU PWM/Timer — I/O M1 None, None 3 3 GPIO[13] DCU_G5 eMIOSA[11] — FP10 SIUL DCU PWM/Timer — I/O M1 None, None 4 4 Option 0 Option 1 Option 2 Option 3 GPIO[14] DCU_G6 eMIOSA[10] — FP9 SIUL DCU PWM/Timer — I/O M2 None, None 5 5 Option 0 Option 1 Option 2 Option 3 GPIO[15] DCU_G7 eMIOSA[9] — FP8 SIUL DCU PWM/Timer — I/O M1 None, None 6 6 35 Pinout and signal descriptions I/O direction Function PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Freescale Semiconductor I/O direction Pad type4 RESET config.5 PB[0] PCR[16] Option 0 Option 1 Option 2 Option 3 GPIO[16] CANTX_0 PDI1 — — SIUL FlexCAN_0 PDI — I/O M1 PB[1] PCR[17] Option 0 Option 1 Option 2 Option3 GPIO[17] CANRX_0 PDI0 — — SIUL FlexCAN_0 PDI — I/O PB[2] PCR[18] Option 0 Option 1 Option 2 Option3 GPIO[18] TXD_0 — — — SIUL LINFlex_0 — — PB[3] PCR[19] Option 0 Option 1 Option 2 Option3 GPIO[19] RXD_0 — — — PB[4] PCR[20] Option 0 Option 1 Option 2 Option 3 GPIO[20] SCK_1 MA0 — PB[5] PCR[21] Option 0 Option 1 Option 2 Option 3 PB[6] PCR[22] PB[7] PCR[23] Function Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 106 130 S None, None 105 129 I/O S None, None 112 140 SIUL LINFlex_0 — — I/O S None, None 111 139 — SIUL DSPI_1 ADC — I/O M1 None, None 48 62 GPIO[21] SOUT_1 MA1 FABM — SIUL DSPI_1 ADC Control I/O M1 Input, Pulldown 49 63 Option 0 Option 1 Option 2 Option 3 GPIO[22] SIN_1 MA2 ABS[0] — SIUL DSPI_1 ADC Control I/O S Input, Pullup 50 66 Option 0 Option 1 Option 2 Option 3 GPIO[23] SIN_0 eMIOSB[22] — — SIUL DSPI_0 PWM/Timer — I/O S None, None 46 56 Pinout and signal descriptions 36 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Pad type4 RESET config.5 PB[8] PCR[24] Option 0 Option 1 Option 2 Option 3 GPIO[24] SOUT_0 eMIOSB[21] — — SIUL DSPI_0 PWM/Timer — I/O M1 PB[9] PCR[25] Option 0 Option 1 Option 2 Option 3 GPIO[25] SCK_0 eMIOSB[20] — — SIUL DSPI_0 PWM/Timer — I/O PB[10] PCR[26] Option 0 Option 1 Option 2 Option 3 GPIO[26] CANRX_1 PDI2 eMIOSA[23] — SIUL FlexCAN_1 PDI PWM/Timer PB[11] PCR[27] Option 0 Option 1 Option 2 Option 3 GPIO[27] CANTX_1 PDI3 eMIOSA[16] — PB[12] PCR[28] Option 0 Option 1 Option 2 Option 3 GPIO[28] RXD_1 eMIOSB[19] PCS2_0 PB[13] PCR[29] Option 0 Option 1 Option 2 Option 3 PB[14] — PB[15] — PC[0] PCR[30] PC[1] PCR[31] Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 45 55 M1 None, None 44 54 I/O S None, None 107 131 SIUL FlexCAN_1 PDI PWM/Timer I/O M1 None, None 108 132 — SIUL LINFlex_1 PWM/Timer DSPI_0 I/O S None, None 40 48 GPIO[29] TXD_1 eMIOSB[18] PCS1_0 — SIUL LINFlex_1 PWM/Timer DSPI_0 I/O S None, None 41 49 — Reserved — — — — — — — — Reserved — — — — — — — Option 0 Option 1 Option 2 Option 3 GPIO[30] — — — ANS[0] SIUL — — — I/O J None, None 72 88 Option 0 Option 1 Option 2 Option 3 GPIO[31] — — — ANS[1] SIUL — — — I/O J None, None 71 87 37 Pinout and signal descriptions I/O direction Function PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Freescale Semiconductor I/O direction Pad type4 RESET config.5 PC[2] PCR[32] Option 0 Option 1 Option 2 Option 3 GPIO[32] — — — ANS[2] SIUL — — — I/O J PC[3] PCR[33] Option 0 Option 1 Option 2 Option 3 GPIO[33] — — — ANS[3] SIUL — — — I/O PC[4] PCR[34] Option 0 Option 1 Option 2 Option 3 GPIO[34] — — — ANS[4] SIUL — — — PC[5] PCR[35] Option 0 Option 1 Option 2 Option 3 GPIO[35] — — — ANS[5] PC[6] PCR[36] Option 0 Option 1 Option 2 Option 3 GPIO[36] — — — PC[7] PCR[37] Option 0 Option 1 Option 2 Option 3 PC[8] PCR[38] PC[9] PCR[39] Function Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 70 86 J None, None 69 85 I/O J None, None 68 84 SIUL — — — I/O J None, None 67 83 ANS[6] SIUL — — — I/O J None, None 66 82 GPIO[37] — — — ANS[7] SIUL — — — I/O J None, None 65 81 Option 0 Option 1 Option 2 Option 3 GPIO[38] — — — ANS[8] SIUL — — — I/O J None, None 62 78 Option 0 Option 1 Option 2 Option 3 GPIO[39] — — — ANS[9] SIUL — — — I/O J None, None 61 77 Pinout and signal descriptions 38 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Pad type4 RESET config.5 PC[10] PCR[40] Option 0 Option 1 Option 2 Option 3 GPIO[40] — SOUND — ANS[10] SIUL — SGL — I/O J PC[11] PCR[41] Option 0 Option 1 Option 2 Option 3 GPIO[41] — MA0 PCS2_1 ANS[11] SIUL — ADC DSPI_1 I/O PC[12] PCR[42] Option 0 Option 1 Option 2 Option 3 GPIO[42] — MA1 PCS1_1 ANS[12] SIUL — ADC DSPI_1 PC[13] PCR[43] Option 0 Option 1 Option 2 Option 3 GPIO[43] — MA2 PCS0_1 ANS[13] PC[14] PCR[44] Option 0 Option 1 Option 2 Option 3 GPIO[44] — — — PC[15] PCR[45] Option 0 Option 1 Option 2 Option 3 GPIO[45] — — — PD[0] PCR[46] Option 0 Option 1 Option 2 Option 3 GPIO[46] M0C0M SSD0_0 eMIOSB[23] PD[1] PCR[47] Option 0 Option 1 Option 2 Option 3 GPIO[47] M0C0P SSD0_1 eMIOSB[22] Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 60 76 J None, None 59 75 I/O J None, None 58 74 SIUL — ADC DSPI_1 I/O J None, None 57 73 ANS[14] EXTAL32 SIUL — — — I/O J None, None 56 72 ANS[15] XTAL32 SIUL — — — I/O J None, None 55 71 — SIUL SMC SSD PWM/Timer I/O SMD None, None 73 89 — SIUL SMC SSD PWM/Timer I/O SMD None, None 74 90 39 Pinout and signal descriptions I/O direction Function PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Freescale Semiconductor I/O direction Pad type4 RESET config.5 PD[2] PCR[48] Option 0 Option 1 Option 2 Option 3 GPIO[48] M0C1M SSD0_2 eMIOSB[21] — SIUL SMC SSD PWM/Timer I/O SMD PD[3] PCR[49] Option 0 Option 1 Option 2 Option 3 GPIO[49] M0C1P SSD0_3 eMIOSB[20] — SIUL SMC SSD PWM/Timer I/O PD[4] PCR[50] Option 0 Option 1 Option 2 Option 3 GPIO[50] M1C0M SSD1_0 eMIOSB[19] — SIUL SMC SSD PWM/Timer PD[5] PCR[51] Option 0 Option 1 Option 2 Option 3 GPIO[51] M1C0P SSD1_1 eMIOSB[18] — PD[6] PCR[52] Option 0 Option 1 Option 2 Option 3 GPIO[52] M1C1M SSD1_2 eMIOSB[17] PD[7] PCR[53] Option 0 Option 1 Option 2 Option 3 PD[8] PCR[54] PD[9] PCR[55] Function Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 75 91 SMD None, None 76 92 I/O SMD None, None 79 95 SIUL SMC SSD PWM/Timer I/O SMD None, None 80 96 — SIUL SMC SSD PWM/Timer I/O SMD None, None 81 97 GPIO[53] M1C1P SSD1_3 eMIOSB[16] — SIUL SMC SSD PWM/Timer I/O SMD None, None 82 98 Option 0 Option 1 Option 2 Option 3 GPIO[54] M2C0M SSD2_0 — — SIUL SMC SSD — I/O SMD None, None 83 99 Option 0 Option 1 Option 2 Option 3 GPIO[55] M2C0P SSD2_1 — — SIUL SMC SSD — I/O SMD None, None 84 100 Pinout and signal descriptions 40 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Pad type4 RESET config.5 PD[10] PCR[56] Option 0 Option 1 Option 2 Option 3 GPIO[56] M2C1M SSD2_2 — — SIUL SMC SSD — I/O SMD PD[11] PCR[57] Option 0 Option 1 Option 2 Option 3 GPIO[57] M2C1P SSD2_3 — — SIUL SMC SSD — I/O PD[12] PCR[58] Option 0 Option 1 Option 2 Option 3 GPIO[58] M3C0M SSD3_0 — — SIUL SMC SSD — PD[13] PCR[59] Option 0 Option 1 Option 2 Option 3 GPIO[59] M3C0P SSD3_1 — — PD[14] PCR[60] Option 0 Option 1 Option 2 Option 3 GPIO[60] M3C1M SSD3_2 — PD[15] PCR[61] Option 0 Option 1 Option 2 Option 3 PE[0] PCR[62] PE[1] PCR[63] Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 85 101 SMD None, None 86 102 I/O SMD None, None 89 105 SIUL SMC SSD — I/O SMD None, None 90 106 — SIUL SMC SSD — I/O SMD None, None 91 107 GPIO[61] M3C1P SSD3_3 — — SIUL SMC SSD — I/O SMD None, None 92 108 Option 0 Option 1 Option 2 Option 3 GPIO[62] M4C0M SSD4_0 eMIOSA[15] — SIUL SMC SSD PWM/Timer I/O SMD None, None 93 109 Option 0 Option 1 Option 2 Option 3 GPIO[63] M4C0P SSD4_1 eMIOSA[14] — SIUL SMC SSD PWM/Timer I/O SMD None, None 94 110 41 Pinout and signal descriptions I/O direction Function PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 I/O direction Pad type4 RESET config.5 PE[2] PCR[64] Option 0 Option 1 Option 2 Option 3 GPIO[64] M4C1M SSD4_2 eMIOSA[13] — SIUL SMC SSD PWM/Timer I/O SMD PE[3] PCR[65] Option 0 Option 1 Option 2 Option 3 GPIO[65] M4C1P SSD4_3 eMIOSA[12] — SIUL SMC SSD PWM/Timer I/O PE[4] PCR[66] Option 0 Option 1 Option 2 Option 3 GPIO[66] M5C0M SSD5_0 eMIOSA[11] — SIUL SMC SSD PWM/Timer PE[5] PCR[67] Option 0 Option 1 Option 2 Option 3 GPIO[67] M5C0P SSD5_1 eMIOSA[10] — PE[6] PCR[68] Option 0 Option 1 Option 2 Option 3 GPIO[68] M5C1M SSD5_2 eMIOSA[9] PE[7] PCR[69] Option 0 Option 1 Option 2 Option 3 PE[8] — PE[9] Function Special function2 Peripheral3 Pin number Freescale Semiconductor 144 LQFP 176 LQFP None, None 95 111 SMD None, None 96 112 I/O SMD None, None 99 115 SIUL SMC SSD PWM/Timer I/O SMD None, None 100 116 — SIUL SMC SSD PWM/Timer I/O SMD None, None 101 117 GPIO[69] M5C1P SSD5_3 eMIOSA[8] — SIUL SMC SSD PWM/Timer I/O SMD None, None 102 118 — Reserved — — — — — — — — — Reserved — — — — — — — PE[10] — — Reserved — — — — — — — PE[11] — — Reserved — — — — — — — PE[12] — — Reserved — — — — — — — PE[13] — — Reserved — — — — — — — PE[14] — — Reserved — — — — — — — PE[15] — — Reserved — — — — — — — Pinout and signal descriptions 42 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) PXD10 Microcontroller Data Sheet, Rev. 1 PCR register Alternate function1 I/O direction Pad type4 RESET config.5 PF[0] PCR[70] Option 0 Option 1 Option 2 Option 3 GPIO[70] eMIOSA[13] PDI4 eMIOSA[22] FP39 SIUL PWM/Timer PDI PWM/Timer I/O S PF[1] PCR[71] Option 0 Option 1 Option 2 Option 3 GPIO[71] eMIOSA[12] PDI5 eMIOSA[21] FP38 SIUL PWM/Timer PDI PWM/Timer I/O PF[2] PCR[72] Option 0 Option 1 Option 2 Option 3 GPIO[72] NMI — — SIUL NMI — — PF[3] PCR[73] Option 0 Option 1 Option 2 Option 3 GPIO[73] eMIOSA[11] PDI6 — FP37 PF[4] PCR[74] Option 0 Option 1 Option 2 Option 3 GPIO[74] eMIOSA[10] PDI7 — PF[5] PCR[75] Option 0 Option 1 Option 2 Option 3 PF[6] PCR[76] PF[7] PCR[77] Function Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 113 143 S None, None 114 144 I/O S None, None 37 45 SIUL PWM/Timer PDI — I/O M1 None, None 115 145 FP36 SIUL PWM/Timer PDI — I/O M1 None, None 116 146 GPIO[75] eMIOSA[9] DCU_TAG — FP35 SIUL PWM/Timer DCU — I/O M1 None, None 117 147 Option 0 Option 1 Option 2 Option 3 GPIO[76] SDA_0 — — FP34 SIUL I2C_0 — — I/O S None, None 120 150 Option 0 Option 1 Option 2 Option 3 GPIO[77] SCL_0 PCS2_1 — FP33 SIUL I2C_0 DSPI_1 — I/O S None, None 121 151 — 43 Pinout and signal descriptions Port pin PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Freescale Semiconductor I/O direction Pad type4 RESET config.5 PF[8] PCR[78] Option 0 Option 1 Option 2 Option 3 GPIO[78] SDA_1 PCS1_1 RXD_1 FP32 SIUL I2C_1 DSPI_1 LINFlex_1 I/O S PF[9] PCR[79] Option 0 Option 1 Option 2 Option 3 GPIO[79] SCL_1 PCS0_1 TXD_1 FP31 SIUL I2C_1 DSPI_1 LINFlex_1 I/O PF[10] PCR[80] Option 0 Option 1 Option 2 Option 3 GPIO[80] eMIOSA[16] PCS0_2 — FP29 SIUL PWM/Timer QuadSPI — PF[11] PCR[81] Option 0 Option 1 Option 2 Option 3 GPIO[81] eMIOSB[23] IO2/PCS1_26 — FP28 PF[12] PCR[82] Option 0 Option 1 Option 2 Option 3 GPIO[82] eMIOSB[16] IO3/PCS2_26 — PF[13] PCR[83] Option 0 Option 1 Option 2 Option 3 PF[14] PCR[84] PF[15] PCR[85] Function Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 122 152 S None, None 123 153 I/O M1 None, None 127 157 SIUL PWM/Timer QuadSPI — I/O M1 None, None 128 158 FP27 SIUL PWM/Timer QuadSPI — I/O M1 None, None 129 159 GPIO[83] IO0/SIN_26 CANRX_1 — FP26 SIUL QuadSPI FlexCAN_1 — I/O M1 None, None 130 160 Option 0 Option 1 Option 2 Option 3 GPIO[84] IO1/SOUT_26 CANTX_1 — FP25 SIUL QuadSPI FlexCAN_1 — I/O M1 None, None 131 161 Option 0 Option 1 Option 2 Option 3 GPIO[85] SCK_2 — — FP24 SIUL QuadSPI — — I/O F None, None 132 162 Pinout and signal descriptions 44 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) PXD10 Microcontroller Data Sheet, Rev. 1 Port pin PCR register Alternate function1 Pad type4 RESET config.5 PG[0] PCR[86] Option 0 Option 1 Option 2 Option 3 GPIO[86] DCU_B0 SCL_3 SOUND FP7 SIUL DCU I2C_3 SGL I/O M2 PG[1] PCR[87] Option 0 Option 1 Option 2 Option 3 GPIO[87] DCU_B1 SDA_3 — FP6 SIUL DCU I2C_3 — I/O PG[2] PCR[88] Option 0 Option 1 Option 2 Option 3 GPIO[88] DCU_B2 eMIOSB[19] — FP5 SIUL DCU PWM/Timer — PG[3] PCR[89] Option 0 Option 1 Option 2 Option 3 GPIO[89] DCU_B3 eMIOSB[21] — FP4 PG[4] PCR[90] Option 0 Option 1 Option 2 Option 3 GPIO[90] DCU_B4 eMIOSB[17] — PG[5] PCR[91] Option 0 Option 1 Option 2 Option 3 PG[6] PCR[92] PG[7] PCR[93] Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP None, None 9 9 M1 None, None 10 10 I/O M2 None, None 11 11 SIUL DCU PWM/Timer — I/O M1 None, None 12 12 FP3 SIUL DCU PWM/Timer — I/O M2 None, None 13 13 GPIO[91] DCU_B5 eMIOSA[8] — FP2 SIUL DCU PWM/Timer — I/O M1 None, None 14 14 Option 0 Option 1 Option 2 Option 3 GPIO[92] DCU_B6 — — FP1 SIUL DCU — — I/O M2 None, None 15 15 Option 0 Option 1 Option 2 Option 3 GPIO[93] DCU_B7 — — FP0 SIUL DCU — — I/O M1 None, None 16 16 45 Pinout and signal descriptions I/O direction Function PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor Port pin PCR register Alternate function1 I/O direction Pad type4 RESET config.5 PG[8] PCR[94] Option 0 Option 1 Option 2 Option 3 GPIO[94] DCU_VSYNC — — BP0 SIUL DCU — — I/O M2 PG[9] PCR[95] Option 0 Option 1 Option 2 Option 3 GPIO[95] DCU_HSYNC — — BP1 SIUL DCU — — I/O PG[10] PCR[96] Option 0 Option 1 Option 2 Option 3 GPIO[96] DCU_DE — — BP2 SIUL DCU — — PG[11] PCR[97] Option 0 Option 1 Option 2 Option 3 GPIO[97] DCU_PCLK — — BP3 PG[12] PCR[98] Option 0 Option 1 Option 2 Option 3 GPIO[98] eMIOSA[23] SOUND eMIOSA[8] FP30 PG[13] — — Reserved — PG[14] — — Reserved PG[15] — — PH[0]7 PCR[99] PH[1]7 PCR[100] Option 0 Option 1 Option 2 Option 3 Option 0 Option 1 Option 2 Option 3 Function Special function2 Peripheral3 Pin number 144 LQFP 176 LQFP Input, None 17 17 M1 Input, None 18 18 I/O M2 None, None 19 19 SIUL DCU — — I/O M1 None, None 20 20 SIUL PWM/Timer SGL PWM/Timer I/O S None, None 126 156 — — — — — — — — — — — — — Reserved — — — — — — — GPIO[99] TCK — — — SIUL JTAG — — I/O S Input, Pullup 36 43 GPIO[100] TDI — — — SIUL JTAG — — I/O S Input, Pullup 33 36 Pinout and signal descriptions 46 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) Port pin PCR register Alternate function1 Function Special function2 Peripheral3 I/O direction Pad type4 RESET config.5 Pin number 144 LQFP 176 LQFP PXD10 Microcontroller Data Sheet, Rev. 1 PH[2]7 PCR[101] Option 0 Option 1 Option 2 Option 3 GPIO[101] TDO — — — SIUL JTAG — — I/O M1 Output, None 34 39 PH[3]7 PCR[102] Option 0 Option 1 Option 2 Option 3 GPIO[102] TMS — — — SIUL JTAG — — I/O S Input, Pullup 35 41 PH[4] PCR[103] Option 0 Option 1 Option 2 Option 3 GPIO[103] PCS0_0 eMIOSB[16] CLKOUT — SIUL DSPI_0 PWM/Timer Control I/O F None, None 47 61 PH[5] PCR[104] Option 0 Option 1 Option 2 Option 3 GPIO[104] VLCD8 — — — SIUL LCD — — I/O S None, None 21 21 — — Reserved — — — — — — — PH[7] — — Reserved — — — — — — — PH[8] — — Reserved — — — — — — — PH[9] — — Reserved — — — — — — — PH[10] — — Reserved — — — — — — — PH[11] — — Reserved — — — — — — — PH[12] — — Reserved — — — — — — — PH[13] — — Reserved — — — — — — — PH[14] — — Reserved — — — — — — — PH[15] — — Reserved — — — — — — — GPIO[105] PDI_DE — — — I/O S None, None — 119 PJ[0] PCR[105] Option 0 Option 1 Option 2 Option 3 SIUL PDI — — 47 Pinout and signal descriptions PH[6] Port pin PCR register Alternate function1 Function Special function2 Peripheral3 I/O direction Pad type4 RESET config.5 Pin number 144 LQFP 176 LQFP PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor PJ[1] PCR[106] Option 0 Option 1 Option 2 Option 3 GPIO[106] PDI_HSYNC — — — SIUL PDI — — I/O S None, None — 120 PJ[2] PCR[107] Option 0 Option 1 Option 2 Option 3 GPIO[107] PDI_VSYNC — — — SIUL PDI — — I/O S None, None — 121 PJ[3] PCR[108] Option 0 Option 1 Option 2 Option 3 GPIO[108] PDI_PCLK — — — SIUL PDI — — I/O M1 None, None — 122 PJ[4] PCR[109] Option 0 Option 1 Option 2 Option 3 GPIO[109] PDI[0] CANRX_0 — — SIUL PDI FlexCAN_0 — I/O S None, None — 57 PJ[5] PCR[110] Option 0 Option 1 Option 2 Option 3 GPIO[110] PDI[1] CANTX_0 — — SIUL PDI FlexCAN_0 — I/O M1 None, None — 58 PJ[6] PCR[111] Option 0 Option 1 Option 2 Option 3 GPIO[111] PDI[2] CANRX_1 eMIOSA[22] — SIUL PDI FlexCAN_1 PWM/Timer I/O S None, None — 59 PJ[7] PCR[112] Option 0 Option 1 Option 2 Option 3 GPIO[112] PDI[3] CANTX_1 eMIOSA[21] — SIUL PDI FlexCAN_1 PWM/Timer I/O M1 None, None — 60 PJ[8] PCR[113] Option 0 Option 1 Option 2 Option 3 GPIO[113] PDI[4] — — — SIUL PDI — — I/O S None, None — 125 Pinout and signal descriptions 48 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) Port pin PCR register Alternate function1 Function Special function2 Peripheral3 I/O direction Pad type4 RESET config.5 Pin number 144 LQFP 176 LQFP PXD10 Microcontroller Data Sheet, Rev. 1 PCR[114] Option 0 Option 1 Option 2 Option 3 GPIO[114] PDI[5] — — — SIUL PDI — — I/O S None, None — 126 PJ[10] PCR[115] Option 0 Option 1 Option 2 Option 3 GPIO[115] PDI[6] — — — SIUL PDI — — I/O S None, None — 127 PJ[11] PCR[116] Option 0 Option 1 Option 2 Option 3 GPIO[116] PDI[7] — — — SIUL PDI — — I/O S None, None — 128 PJ[12] PCR[117] Option 0 Option 1 Option 2 Option 3 GPIO[117] PDI[8] eMIOSB[17] — — SIUL PDI PWM/Timer — I/O M1 None, None — 135 PJ[13] PCR[118] Option 0 Option 1 Option 2 Option 3 GPIO[118] PDI[9] eMIOSB[20] — — SIUL PDI PWM/Timer — I/O M1 None, None — 136 PJ[14] PCR[119] Option 0 Option 1 Option 2 Option 3 GPIO[119] PDI[10] eMIOSA[20] — — SIUL PDI PWM/Timer — I/O M1 None, None — 137 PJ[15] PCR[120] Option 0 Option 1 Option 2 Option 3 GPIO[120] PDI[11] eMIOSA[19] — — SIUL PDI PWM/Timer — I/O M1 None, None — 138 PK[0] PCR[121] Option 0 Option 1 Option 2 Option 3 GPIO[121] PDI[12] eMIOSA[18] DCU_TAG — SIUL PDI PWM/Timer DCU I/O M1 None, None — 141 49 Pinout and signal descriptions PJ[9] Port pin PCR register Alternate function1 Function Special function2 Peripheral3 I/O direction Pad type4 RESET config.5 Pin number 144 LQFP 176 LQFP PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor PK[1] PCR[122] Option 0 Option 1 Option 2 Option 3 GPIO[122] PDI[13] eMIOSA[17] — — SIUL PDI PWM/Timer — I/O M1 None, None — 142 PK[2] PCR[123] Option 0 Option 1 Option 2 Option 3 GPIO[123] MCKO PDI[10] — — SIUL Nexus PDI — I/O F None, None — 33 PK[3] PCR[124] Option 0 Option 1 Option 2 Option 3 GPIO[124] MSEO PDI[11] — — SIUL Nexus PDI — I/O M1 None, None — 34 PK[4] PCR[125] Option 0 Option 1 Option 2 Option 3 GPIO[125] EVTO PDI[12] — — SIUL Nexus PDI — I/O M1 None, None — 35 PK[5] PCR[126] Option 0 Option 1 Option 2 Option 3 GPIO[126] EVTI PDI[13] — — SIUL Nexus PDI — I/O M1 None, None — 37 PK[6] PCR[127] Option 0 Option 1 Option 2 Option 3 GPIO[127] MDO0 PDI[14] — — SIUL Nexus PDI — I/O M1 None, None — 38 PK[7] PCR[128] Option 0 Option 1 Option 2 Option 3 GPIO[128] MDO1 PDI[15] — — SIUL Nexus PDI — I/O M1 None, None — 40 PK[8] PCR[129] Option 0 Option 1 Option 2 Option 3 GPIO[129] MDO2 PDI[16] — — SIUL Nexus PDI — I/O M1 None, None — 42 Pinout and signal descriptions 50 Table 6. Port pin summary (continued) Freescale Semiconductor Table 6. Port pin summary (continued) Port pin PCR register Alternate function1 Function Special function2 Peripheral3 I/O direction Pad type4 RESET config.5 Pin number 144 LQFP 176 LQFP PXD10 Microcontroller Data Sheet, Rev. 1 PK[9] PCR[130] Option 0 Option 1 Option 2 Option 3 GPIO[130] MDO3 PDI[17] — — SIUL Nexus PDI — I/O M1 None, None — 44 PK[10] PCR[131] Option 0 Option 1 Option 2 Option 3 GPIO[131] SDA_1 eMIOSA[15] — — SIUL I2C_1 PWM/Timer — I/O S None, None — 52 PK[11] PCR[132] Option 0 Option 1 Option 2 Option 3 GPIO[132] SCL_1 eMIOSA[14] — — SIUL I2C_1 PWM/Timer — I/O S None, None — 53 PK[12] — — Reserved — — — — — — — PK[13] — — Reserved — — — — — — — PK[14] — — Reserved — — — — — — — PK[15] — — Reserved — — — — — — — 51 Pinout and signal descriptions NOTES: 1 Alternate functions are chosen by setting the values of the PCR[n].PA bitfields inside the SIUL module. PCR[n].PA = 00 Option 0; PCR[nn.PA = 01 Option 1; PCR[n].PA = 10 Option 2; PCR[n].PA = 11 Option 3. This is intended to select the output functions; to use one of the input functions, the PCR[n].IBE bit must be written to ‘1’, regardless of the values selected in the PCR[n].PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 2 Special functions are enabled independently from the standard digital pin functions. Enabling standard I/O functions in the PCR registers may interfere with their functionality. ADC functions are enabled using the PCR[APC] bit; other functions are enabled by enabling the respective module. 3 Using the PSMI registers in the System Integration Unit Lite (SIUL), different pads can be multiplexed to the same peripheral input. Please see the SIUL chapter of the PXD10 Microcontroller Reference Manual for details. 4 See Table 7. 5 Reset configuration is given as I/O direction and pull, e.g., “Input, Pullup”. 6 This option on this pin has alternate functions that depend on whether the QuadSPI is in SPI mode or in serial flash mode (SFM). 7 Out of reset pins PH[0:3] are available as JTAG pins (TCK, TDI, TDO and TMS respectively). It is up to the user to configure pins PH[0:3] when needed. 8 This pin can be used for LCD supply pin VLCD. Refer to the voltage supply pin descriptions in the PXD10 data sheet for details. Pinout and signal descriptions Table 7. Pad type descriptions Abbreviation1 Description F Fast (with GPIO and digital alternate function) J Slow pads with analog muxing (built for ADC channels) M1 Medium (with GPIO and digital alternate function) M2 Programmable medium/slow pad (programmed via the slew rate control in the PCR): Slew rate disabled: Slow driver configuration (AC/DC parameters same as for a slow pad) Slew rate enabled: Medium driver configuration (AC/DC parameters same as for a medium pad) S SMD X Slow (with GPIO and digital alternate function) Stepper motor driver (with slew rate control) Oscillator NOTES: 1 The pad descriptions refer to the different Pad Configuration Register (PCR) types. Refer to the SIUL chapter in the device reference manual for the features available for each pad type. 2.8.1 Signal details Table 8. Signal details Signal Peripheral Description ABS[0] BAM Alternate Boot Select. Gives an option to boot by downloading code via CAN or LIN. ANS[0:15] ADC Inputs used to bring into the device sensor-based signals for A/D conversion. ANS[0:15] connect to ATD channels [32:47]. MA[0:2] ADC These three control bits are output to enable the selection for an external Analog Mux for expansion channels. The available 8 multiplexed channels connect to ATD channels [64:71]. FABM Force Alternate Boot mode. Forces the device to boot from the external bus (Can or LIN). If not asserted, the device boots up from the lowest flash sector containing a valid boot signature. DCU_DE DCU Indicates that valid pixels are present. DCU_HSYNC DCU Horizontal sync pulse for TFT-LCD display DCU_PCLK DCU Output pixel clock for TFT-LCD display DCU_R[0:7], DCU_G[0:7], DCU_B[0:7] DCU Red, green and blue color 8-bit Pixel values for TFT-LCD displays DCU_TAG DCU Indicates when a tagged pixel is present in safety mode DCU_VSYNC DCU Vertical sync pulse for TFT-LCD display PCS[0..2]_0, PCS[0..2]_1 DSPI Peripheral chip selects when device is in Master mode; not used in slave modes. SCK_0, SCK_1 DSPI SPI clock signal—bidirectional PXD10 Microcontroller Data Sheet, Rev. 1 52 Freescale Semiconductor Pinout and signal descriptions Table 8. Signal details (continued) Signal Peripheral Description SIN_0, SIN_1 DSPI SPI data input signal SOUT_0, SOUT_1 DSPI SPI data output signal PCS0_2 QuadSPI Peripheral chip select for serial flash mode or chip select 0 for SPI master mode IO2/PCS1_2 QuadSPI Chip select 1 for SPI master mode and bidirectional IO2 for serial flash mode IO3/PCS2_2 QuadSPI Chip select 2 for SPI master mode and bidirectional IO3 for serial flash mode IO0/SIN_2 QuadSPI Data input signal for SPI master and slave modes and bidirectional IO0 for serial flash mode IO1/SOUT_2 QuadSPI Data output signal for SPI master and slave modes and bidirectional IO1 for serial flash mode SCK_2 QuadSPI Clock output signal for SPI master and serial flash modes and clock input signal for SPI slave mode eMIOSA[8:23], eMIOSB[16:23] eMIOS Enhanced Modular Input Output System. 16+8 channel eMIOS for timed input or output functions. CANRX_0, CANRX_1 FlexCAN Receive (RX) pins for the CAN bus transceiver CANTX_0, CANTX_1 FlexCAN Transmit (TX) pins for the CAN bus transceiver SCL_0, SCL_1, SCL_2, SCL_3 2C I Bidirectional serial clock compatible with I2C specifications SDA_0, SDA_1, SDA_2, SDA_3 I2C Bidirectional serial data compatible with I2C specifications TCK JTAG Debug port serial clock as per JTAG specifications TDI JTAG Debug port serial data input port as per JTAG standards specifications TDO JTAG Debug port serial data output port as per JTAG standards specifications TMS JTAG Debug port Test Mode Select signal for the JTAG TAP controller state machine and indicates various state transitions for the TAP controller in the device BP[0:3] LCD Backplane signals from the LCD controlling the backplane reference voltage for the LCD display FP[0:39] LCD Frontplane signals for LCD segments EVTI Nexus Nexus2+ event input trigger EVTO Nexus Nexus2+ event output trigger PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 53 Pinout and signal descriptions Table 8. Signal details (continued) Signal Peripheral Description MCKO Nexus Output clock for the development tool MDO[0:3] Nexus Message output port pins that send information bits to the development tools for messages such as Branch Trace Message (BTM), Ownership Trace Message (OTM), Data Trace Message (DTM). Only available in reduced port mode. MSEO Nexus Output pin—Indicates the start or end of the variable length message on the MDO pins PDI[0:17] DCU (PDI) Video/graphic data in various RGB modes input to the DCU PDI_DE DCU (PDI) Input signal indicates the validity of pixel data on the Input PDI data bus. PDI_HSYNC DCU (PDI) Input indicates the timing reference for the start of each frame line for the PDI Input data. PDI_PCLK DCU (PDI) Input pixel clock from PDI PDI_VSYNC DCU (PDI) Input indicates the timing reference for the start of a frame for the PDI input data. RXD_0 LINFlex SCI/LIN Receive data signal—This port is used to download the code for the BAM boot sequence. RXD_1 LINFlex SCI/LIN Receive data signal. Input pad for the LIN SCI module. Connects to the internal LIN second port. TXD_0 LINFlex SCI/LIN Transmit data signal. This port is used to download the code for the BAM boot sequence. TXD_1 LINFlex SCI/LIN Transmit data signal—Transmit (output) port for the second LIN module in the chip SOUND SGL Sound signal to the speaker/buzzer SSD[0:5]_0 SSD[0:5]_1 SSD[0:5]_2 SSD[0:5]_3 SSD Bidirectional control of stepper motors using stall detection module M[0:5]C0M M[0:5]C0P M[0:5]C1M M[0:5]C1P SMC Controls stepper motors in various configuration CLKOUT MC_CGM Output clock—It can be selected from several internal clocks of the device from the clock generation module. PXD10 Microcontroller Data Sheet, Rev. 1 54 Freescale Semiconductor Electrical characteristics 3 Electrical characteristics 3.1 Introduction This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This could be done by internal pull up and pull down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 9 are used and the parameters are tagged accordingly in the tables where appropriate. Table 9. Parameter Classifications Classification tag Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 55 Electrical characteristics 3.3 NVUSRO register Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are controlled via bit values in the Nonvolatile User Options (NVUSRO) register. For a detailed description of the NVUSRO register, please see the chip reference manual. 3.3.1 NVUSRO[PAD3V5V] field description Table 10 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 10. PAD3V5V field description1 Value2 Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V NOTES: 1 See the device reference manual for more information on the NVUSRO register. 2 Default manufacturing value before Flash initialization is ‘1’ (3.3 V) The DC electrical characteristics are dependent on the PAD3V5V bit value. 3.3.2 NVUSRO[OSCILLATOR_MARGIN] field description Table 10 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration. Table 11. OSCILLATOR_MARGIN field description1 Value2 Description 0 Low consumption configuration (4 MHz/8 MHz) 1 High margin configuration (4 MHz/16 MHz) NOTES: 1 See the device reference manual for more information on the NVUSRO register. 2 Default manufacturing value before Flash initialization is ‘1’ The 4–16 MHz fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. PXD10 Microcontroller Data Sheet, Rev. 1 56 Freescale Semiconductor Electrical characteristics 3.4 Absolute maximum ratings Table 12. Absolute maximum ratings Value Symbol C Parameter Conditions Unit Min Max VDDA SR C Voltage on VDDA pin (ADC reference) with respect to ground (VSSA) — 0.3 6.0 V VSSA SR C Voltage on VSSA (ADC reference) pin with respect to VSS — VSS 0.1 VSS + 0.1 V VDDPLL CC C Voltage on VDDPLL (1.2 V PLL supply) pin with respect to ground (VSSPLL) — -0.1 1.4 V VSSPLL SR C Voltage on VSSPLL pin with respect to VSS12 — VDDR SR C Voltage on VDDR pin (regulator supply) with respect to ground (VSSR) — 0.3 6.0 V VSSR SR C Voltage on VSSR (regulator ground) pin with respect to VSS — VSS 0.1 VSS + 0.1 V VDD12 CC C Voltage on VDD12 pin with respect to ground (VSS12) — -0.1 1.4 V VSS12 0.1 VSS12 + 0.1 V CC C Voltage on VSS12 pin with respect to VSS — VSS 0.1 VSS + 0.1 V 1 SR C Voltage on VDDE_A (I/O supply) pin with respect to ground (VSSE_A) — 0.3 6.0 V VDDE_B1 SR C Voltage on VDDE_B (I/O supply) pin with respect to ground (VSSE_B) — 0.3 6.0 V VDDE_C1 SR C Voltage on VDDE_C (I/O supply) pin with respect to ground (VSSE_C) — 0.3 6.0 V VDDE_E1 SR C Voltage on VDDE_E (I/O supply) pin with respect to ground (VSSE_E) — 0.3 6.0 V VDDMA1 SR C Voltage on VDDMA (stepper motor supply) pin with respect to ground (VSSMA) — 0.3 6.0 V VDDMB1 VDDMC1 SR C Voltage on VDDMB/C (stepper motor supply) pin with respect to ground (VSSMB) — 0.3 6.0 V SR C I/O supply ground — 0 0 V VSSOSC SR C Voltage on VSSOSC (oscillator ground) pin with respect to VSS — VSS 0.1 VSS + 0.1 V VLCD SR C Voltage on VLCD (LCD supply) pin with respect to VSS — 0 VDDE_A + 0.3 V 0.3 6.0 V VSS12 VDDE_A VSS2 VIN SR C Voltage on any GPIO pin with respect to ground — (VSS) C Relative to VDD 0.3 3 VDD + 0.3 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 57 Electrical characteristics Table 12. Absolute maximum ratings (continued) Value Symbol C Parameter Conditions Unit Min Max IINJPAD SR C Injected input current on any pin during overload condition — 10 10 IINJSUM SR C Absolute sum of all injected input currents during overload condition — 50 50 CC D Absolute maximum current drive rating — — 45 — 55 150 IMAX TSTORAGE SR C Storage temperature mA °C NOTES: 1 Throughout the remainder of this document V DD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB and VDDMC, unless otherwise noted. 2 Throughout the remainder of this document V SS refers collectively to I/O voltage supply grounds, i.e., VSSE_A, VSSE_B, VSSE_C, VSSE_E, VSSMA, VSSMB and VSSMC, unless otherwise noted. 3 As long as the current injection specification is adhered to, then a higher potential is allowed. NOTE Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the recommended values. PXD10 Microcontroller Data Sheet, Rev. 1 58 Freescale Semiconductor Electrical characteristics 3.4.1 Recommended operating conditions NOTE Maximum slew time for the supplies to ramp up should be 1 second, which is slowest ramp-up time. CAUTION VDDE_C and VDDA must be the same voltage. VDDMB and VDDMC must be the same voltage. Table 13. Recommended operating conditions (3.3 V) Value Symbol C Parameter Conditions Unit Min Max 3.0 3.6 VDD 0.1 VDD + 0.1 — VSS 0.1 VSS + 0.1 V VSSPLL SR C Voltage on VSSPLL pin with respect to VSS12 — 0 0 V VDDR2 SR C Voltage on VDDR pin (regulator supply) with respect to ground (VSSR) — 3.0 3.6 V VSSR SR C Voltage on VSSR (regulator ground) pin with respect to VSS12 — 0 0 V VSS124 CC C Voltage on VSS12 pin with respect to VSS — VSS 0.1 VSS + 0.1 V VDD3,4,5 SR C Voltage on VDD pins (VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB, VDDMC) with respect to ground (VSS) — 3.0 3.6 V SR C I/O supply ground — 0 0 V VDDE_A SR C Voltage on VDDE_A (I/O supply) pin with respect to ground (VSSE_A) — 3.0 3.6 V VDDE_B SR C Voltage on VDDE_B (I/O supply) pin with respect to ground (VSSE_B) — 3.0 3.6 V VDDE_C SR C Voltage on VDDE_C (I/O supply) pin with respect to ground (VSSE_C) — 3.0 3.6 V VDDE_E SR C Voltage on VDDE_E (I/O supply) pin with respect to ground (VSSE_E) — 3.0 3.6 V VDDMA SR C Voltage on VDDMA (stepper motor supply) pin with respect to ground (VSSMA) — 3.0 3.6 V VDDMB SR C Voltage on VDDMB (stepper motor supply) pin with respect to ground (VSSMB) — 3.0 3.6 V VDDMC SR C Voltage on VDDMC (stepper motor supply) pin with respect to ground (VSSMC) — 3.0 3.6 V VDDA1 VSSA VSS6 SR C Voltage on VDDA pin (ADC reference) with respect to ground (VSS) C SR C Voltage on VSSA (ADC reference) pin with respect to VSS — Relative to VDDE_C V PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 59 Electrical characteristics Table 13. Recommended operating conditions (3.3 V) (continued) Value Symbol C Parameter VSSOSC SR C Voltage on VSSOSC (oscillator ground) pin with respect to VSS Conditions Unit Min Max — 0 0 V VLCD SR C Voltage on VLCD (LCD supply) pin with respect to VSS — 0 VDDE_A + 0.3 V TVDD SR C VDD slope to ensure correct power up — 510–6 0.25 V/µs TA SR C Ambient temperature under bias — 40 105 °C TJ SR C Junction temperature under bias 40 150 NOTES: 1 100 nF capacitance needs to be provided between VDDA/VSSA pair. 2 At least 10 µF capacitance must be connected between V DDR and VSS. This is required because of sharp surge due to external ballast. 3 V DD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB and VDDMC. 4 100 nF capacitance needs to be provided between each V /V DD SS pair 5 Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/O’s DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL device is reset. 6 V SS refers collectively to I/O voltage supply grounds, i.e., VSSE_A, VSSE_B, VSSE_C, VSSE_E, VSSMA, VSSMB and VSSMC) unless otherwise noted. Table 14. Recommended operating conditions (5.0 V) Value Symbol VDDA1 C Parameter VSSPLL SR C Voltage on VSSPLL pin with respect to VSS12 VDDR3 Max 4.5 5.5 3.0 5.5 VDD 0.1 VDD + 0.1 — VSS 0.1 VSS + 0.1 V — 0 0 V 4.5 5.5 V 3.0 5.5 VDD 0.1 VDD + 0.1 Relative to VDDE_C SR C Voltage on VSSA (ADC reference) pin with respect VSS — SR C Voltage on VDDR pin (regulator supply) with respect to ground (VSSR) C Voltage drop2 C Unit Min SR C Voltage on VDDA pin (ADC reference) with — respect to ground (VSS) C Voltage drop2 C VSSA Conditions Relative to VDD V VSSR SR C Voltage on VSSR (regulator ground) pin with respect to VSS12 — 0 0 V VSS12 CC C Voltage on VSS12 pin with respect to VSS — VSS 0.1 VSS + 0.1 V VDD4,5 SR C Voltage on VDD pins (VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB, VDDMC) with respect to ground (VSS) 4.5 5.5 V Voltage drop2 PXD10 Microcontroller Data Sheet, Rev. 1 60 Freescale Semiconductor Electrical characteristics Table 14. Recommended operating conditions (5.0 V) (continued) Value Symbol C Parameter Conditions Unit Min Max — 0 0 V VDDE_A SR C Voltage on VDDE_A (I/O supply) pin with respect to ground (VSSE_A) — 4.5 5.5 V VDDE_B SR C Voltage on VDDE_B (I/O supply) pin with respect to ground (VSSE_B) — 4.5 5.5 V VDDE_C7 SR C Voltage on VDDE_C (I/O supply) pin with respect to ground (VSSE_C) — 4.5 5.5 V VDDE_E SR C Voltage on VDDE_E (I/O supply) pin with respect to ground (VSSE_E) — 4.5 5.5 V VSS6 SR C I/O supply ground VDDMA SR C Voltage on VDDMA (stepper motor supply) pin with respect to ground (VSSMA) — 4.5 5.5 V VDDMB SR C Voltage on VDDMB (stepper motor supply) pin with respect to ground (VSSMB) — 4.5 5.5 V VDDMC SR C Voltage on VDDMC (stepper motor supply) pin with respect to ground (VSSMC) — 4.5 5.5 V VSSOSC SR C Voltage on VSSOSC (oscillator ground) pin with respect to VSS — 0 0 V VLCD SR C Voltage on VLCD (LCD supply) pin with respect to VSS — 0 VDDE_A + 0.3 V TVDD SR C VDD slope to ensure correct power up — 310–6 0.25 V/µs TA SR C Ambient temperature under bias — 40 105 °C TJ SR C Junction temperature under bias — 40 150 °C NOTES: 1 100 nF capacitance needs to be provided between V DDA/VSSA pair. 2 Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, I/O DC and ADC electrical characteristics may not be guaranteed below 4.5 V during the voltage drop sequence. 3 10 µF capacitance must be connected between V DDR and VSS12. This is required because of sharp surge due to external ballast. 4 VDD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB and VDDMC. 5 100 nF capacitance needs to be provided between each V /V DD SS pair 6 VSS refers collectively to I/O voltage supply grounds, i.e., VSSE_A, VSSE_B, VSSE_C, VSSE_E, VSSMA, VSSMB and VSSMC) unless otherwise noted. 7 VDDE_C should be the same as VDDA with a 100 mV variation, i.e., VDDE_C = VDDA 100 mV. NOTE RAM data retention is guaranteed with VDD12 not below 1.08 V. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 61 Electrical characteristics 3.4.2 • • 3.5 Connecting power supply pins: What to do and what not to do Do: — Have all power/ground supplies connected on the board from a strong supply source rather than weak voltage divider sources unless there is “NO IO activity” in the section — Meet the supply specifications for max / typical operating conditions to guarantee correct operation — Place the decoupling near the supply/ground pin pair for EMI emissions reduction — Route high-noise supply/ground away from sensitive signals (for example, ADC channels must be away from SMD supply/motor pads) — Use star routing for the ballast supply from the VDDR supply to avoid ballast startup noise injected to VDDR supply of the device — Use LC inductive filtering for ADC, OSC, and PLL supplies if these are generated from common board regulators Do not: — Violate injection current limit per IO/All IO pins as per specifications — Connect sensitive supplies/ground on noisy supplies/ground (that is, ADC, PLL, and OSC) — Use SMD supply for generation of noise free supply as these are most noisy lines in the system — Connect different VDD pins (connected together inside the device) to different potentials. Thermal characteristics Table 15. LQFP thermal characteristics Value Symbol C Parameter Conditions Unit 144-pin 176-pin RJA RJMA RJB CC D Thermal resistance, junction-to-ambient natural convection1 CC Single layer board—1s 50 43 °C/W Four layer board—2s2p 41 35 °C/W CC D Thermal resistance, junction-to-moving-air @ 200 ft./min., single layer ambient2 board—1s 41 35 °C/W CC @ 200 ft./min., four layer board—2s2p 35 30 °C/W CC D Thermal resistance, junction-to-board2 — 29 24 °C/W — 10 9 °C/W — 2 2 °C/W RJCtop CC D Thermal resistance, junction-to-case (top)3 JT CC D Junction-to-package top thermal characterization parameter, natural convection4 NOTES: 1 Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 2 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. PXD10 Microcontroller Data Sheet, Rev. 1 62 Freescale Semiconductor Electrical characteristics 3 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 3.5.1 General notes for specifications at maximum junction temperature An estimate of the chip junction temperature, TJ, can be obtained from Equation 1: TJ = TA + (RJA PD) Eqn. 1 where: TA = ambient temperature for the package (°C) RJA = junction to ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: • Construction of the application board (number of planes) • Effective size of the board which cools the component • Quality of the thermal and electrical connections to the planes • Power dissipated by adjacent components Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: • One oz. (35 micron nominal thickness) internal planes • Components are well separated • Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 63 Electrical characteristics At a known board temperature, the junction temperature is estimated using Equation 2: TJ = TB + (RJB PD) Eqn. 2 where: TB = board temperature for the package perimeter (°C) RJB = junction-to-board thermal resistance (°C/W) per JESD51-8S PD = power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: RJA = RJC + RCA Eqn. 3 where: RJA = junction to ambient thermal resistance (°C/W) RJC = junction to case thermal resistance (°C/W) RCA = case to ambient thermal resistance (°C/W) RJC s device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RCA. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (JT) to determine the junction temperature by measuring the temperature at the top center of the package case using Equation 4: TJ = TT + (JT x PD) Eqn. 4 where: TT = thermocouple temperature on top of the package (°C) JT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) PXD10 Microcontroller Data Sheet, Rev. 1 64 Freescale Semiconductor Electrical characteristics The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 805 East Middlefield Rd. Mountain View, CA 94043 USA (415) 964-5111 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 3.6 Electromagnetic compatibility (EMC) characteristics Susceptibility tests are performed on a sample basis during product characterization. 3.6.1 EMC requirements on board The following practices help minimize noise in applications. • Place a 100 nF capacitor between each of the VDD12/VSS12 supply pairs and also between the VDDPLL/VSSPLL pair. The voltage regulator also requires stability capacitors for these supply pairs. • Place a 10 F capacitor on VDDR. • Isolate VDDR with ballast emitter to avoid voltage droop during STANDBY mode exit. • Enable pad slew rate only as necessary to eliminate I/O noise: — Enabling slew rate for SMD pads will reduce noise on motors. — Disabling slew rate for non-SMD pads will reduce noise on non-SMD IOs. • Enable PLL modulation (± 2%) for system clock. • Place decoupling capacitors for all HV supplies close to the pins. 3.6.2 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application. • Software recommendations The software flowchart must include the management of runaway conditions such as: PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 65 Electrical characteristics — Corrupted program counter — Unexpected reset — Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. • 3.6.3 Electromagnetic interference (EMI) Table 16. EMI testing specifications1 Value Symbol C Parameter Conditions Unit Min — SR T Scan range — SR T Operating frequency Crystal frequency 8 MHz — 64 — MHz — SR T VDD12, VDDPLL operating voltages — — 1.28 — V — SR T VDD, VDDA operating voltages — — 5 — V — SR T Maximum amplitude No PLL frequency modulation — 33 — dBµV ±2% PLL frequency modulation — 30 — — — 25 — — SR T Operating temperature 150 kHz – 30 MHz: RBW 9 kHz, step size 5 kHz 30 MHz – 1 GHz: RBW 120 kHz, step size 80 kHz 0.15 Typ Max — 1000 MHz °C NOTES: 1 EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. 3.6.4 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. 3.6.4.1 Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. PXD10 Microcontroller Data Sheet, Rev. 1 66 Freescale Semiconductor Electrical characteristics Table 17. ESD absolute maximum ratings1 2 Symbol C Ratings Conditions Class Max value Unit V VESD(HBM) CC T Electrostatic discharge voltage (Human Body Model) TA = 25 °C conforming to AEC-Q100-002 H1C 2000 VESD(MM) CC T Electrostatic discharge voltage (Machine Model) TA = 25 °C conforming to AEC-Q100-003 M2 200 VESD(CDM) CC T Electrostatic discharge voltage (Charged Device Model) TA = 25 °C conforming to AEC-Q100-011 C3A 500 750 (corners) NOTES: 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3.6.4.2 Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 18. Latch-up results Symbol LU 3.7 3.7.1 CC C Parameter T Static latch-up class Conditions TA = 105 °C conforming to JESD 78 Class II level A Power management electrical characteristics Voltage regulator electrical characteristics The internal high power or main regulator (HPREG) requires an external NPN ballast transistor (see Table 19 and Table 20) to be connected as shown in Figure 5 as well as an external capacitance (CREG) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 15 nH. For the PXD10 microcontroller, 100 nF should be placed between each of the VDD12/VSS12 supply pairs and also between the VDDPLL/VSSPLL pair. These decoupling capacitors are in addition to the required stability capacitance. Additionally, 10 F should be placed between the VDDR pin and the adjacent VSS pin. VDDR = 3.0 V to 3.6 V / 4.5 V to 5.5 V, TA = 40 to 105 °C, unless otherwise specified. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 67 Electrical characteristics VDDR VRC_CTRL 20 k VDD12 Figure 5. External NPN ballast connections Table 19. Allowed ballast components Part Manufacturer Recommended derivative BCP68 ON, IFX, NXP, Fairchild, ST, etc. BCP68 BCX68 IFX BCX68-10 BCX68-16 BC817 ON, IFX, NXP, Fairchild, etc. BC817Su BC817-25 BCP56 ON, IFX, NXP, Fairchild, ST, etc. BCP68-10 BCP68-16 Table 20. Ballast component parameters Parameter Specification Capacitance on VDDR 10 F (minimum) Place close to NPN collector Stability capacitance on VDD12 40 F (minimum) Place close to NPN emitter Decoupling capacitance on VDD12 100 nF number of pins (minimum) Place on each VDD12/VSS12 pair and on the PLL supply/ground pair Base resistor 20 k The capacitor values listed in Table 20 include a de-rating factor of 40%, covering tolerance, temperature, and aging effects. These factors are taken into account to assure proper operation under worst-case conditions. X7R type materials are recommended for all capacitors, based on ESR characteristics. Large capacitors are for regulator stability and should be located near the external ballast transistor. The number of capacitors is not important — only the overall capacitance value and the overall ESR value are important. Small capacitors are for power supply decoupling, although they do contribute to the overall capacitance values. They should be located close to the device pin. PXD10 Microcontroller Data Sheet, Rev. 1 68 Freescale Semiconductor Electrical characteristics Table 21. Voltage regulator electrical characteristics Value Symbol C Parameter TJ SR C Junction temperature IREG CC C Current consumption IL Min Typ Max 40 — 150 Reference included, @ 55 °C No load @ Full load — — DC load current — — 200 mA Pre-trimming sigma < 7 mV — 1.330 — V 1.145 1.28 1.32 V — — 10 4 µF — 0.2 1 — CC C Output current capacity VDD12 CC C Output voltage P Post-trimming SR C External decoupling/stability capacitor 4 capacitances of 10 µF each °C mA 2 11 C ESR of external cap 0.05 C 1 bond wire R + 1 pad R 0.2 — 0 — 15 nH — — 30 dB LBOND CC D Bonding Inductance for Bipolar Base Control pad CC D Power supply rejection tSU Unit Conditions @ DC @ no load CL = 10 µF 4 D @ 200 kHz @ no load 100 D @ DC @ 200 mA 30 D @ 200 kHz @ 200 mA 30 CC D Load current transient CL = 10 µF 4 — — CC C Start-up time after input supply stabilizes1 CL = 10 µF 4 — — 10% to 90% of IL (max) in 100 ns 100 µs NOTES: 1 Time after the input supply to the voltage regulator has ramped up (V DDR). Table 22. Low-power voltage regulator electrical characteristics Value Symbol C Parameter Min TJ SR C Junction temperature IREG CC C Current consumption IL CC C Output current capacity1 VDD12 CC C Output voltage P Unit Conditions — Typ 40 150 Reference included, @ 55 °C No load @ Full load — DC load current — — Pre-trimming sigma < 7 mV — 1.33 1.14 1.24 Post-trimming Max °C A — 5 600 15 mA V 1.32 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 69 Electrical characteristics Table 22. Low-power voltage regulator electrical characteristics (continued) Value Symbol C Parameter SR C External decoupling/stability capacitor 4 capacitances of 10 µF each Min Typ Max 10 4 — 10 4 µF C ESR of external cap 0.1 — 0.6 ohm C 1 bond wire R + 1 pad R 0.2 — 1 ohm — 0 — 15 nH — — 55 dB LBOND CC D Bonding Inductance for Bipolar Base Control pad CC D Power supply rejection tSU Unit Conditions @ DC @ no load CL = 10 µF 4 D any frequency @ no load 32 D @ DC @ max load 24 D any frequency @ max load 12 CC D Load current transient CL = 10 µF 4 — — CC C Start-up time after input supply stabilizes2 CL = 10 µF 4 — — 10% to 90% of IL in 10 s 700 µs NOTES: 1 On this device, the ultra-low-power regulator is always enabled when the low-power regulator is enabled. Therefore, the total low-power current capacity is the sum of IL values for the two regulators. 2 Time after the input supply to the voltage regulator has ramped up (V DDR) and the voltage regulator has asserted the Power OK signal. Table 23. Ultra-low-power voltage regulator electrical characteristics Value Symbol C Parameter TJ SR C Junction temperature IREG CC C Current consumption IL Conditions Typ Max 40 — 150 Reference included, @ 55 °C No load @ Full load — — DC load current — — 5 mA Pre-trimming sigma < 7 mV — 1.33 — V 1.14 1.24 1.32 — CC C Output current capacity VDD12 CC C Output voltage (value @ IL = 0 @ 27 °C) Unit Min Post-trimming °C A 2 100 PXD10 Microcontroller Data Sheet, Rev. 1 70 Freescale Semiconductor Electrical characteristics Table 23. Ultra-low-power voltage regulator electrical characteristics (continued) Value Symbol C Parameter Conditions Unit Min CC D Power supply rejection @ DC @ no load — Max 25 D any frequency @ no load 7 D @ DC @ max load 25 D any frequency @ max load 8 CC D Load current transient 3.7.2 — Typ — dB 10 to 90 A in 70 s — Voltage monitor electrical characteristics The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the VDD and the VDD12 voltage while device is supplied: • POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state • LVDHV3 monitors VDD to ensure device reset below minimum functional supply • LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range • LVDLVCOR monitors power domain No. 1 • LVDLVBKP monitors power domain No. 0 Table 24. Low voltage monitor electrical characteristics Symbol VPORH C Parameter Value Conditions1 Unit Min Typ Max CC P Power-on reset threshold — 1.5 — 2.6 VLVDHV3H CC P LVDHV3 low voltage detector high threshold — — — 2.9 VLVDHV5H CC P LVDHV5 low voltage detector high threshold — — — 4.4 VLVDHV3L CC P LVDHV3 low voltage detector low threshold — 2.6 — — VLVDHV5L CC P LVDHV5 low voltage detector low threshold — 3.8 — — — — 1.14 1.08 — — VLVDLVCORH CC P LVDLVCOR low voltage detector high threshold VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold TA = 25 °C, after trimming V NOTES: 1 V DD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C, unless otherwise specified 3.7.3 Low voltage domain power consumption Table 25 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 71 Electrical characteristics Table 25. DC electrical characteristics Symbol C Conditions1 Parameter Value TA Unit Min Typ Max IDDRUN2 CC P RUN mode current — — 130 180 mA IDDHALT CC P HALT mode current — — 4 25 mA IDDSTOP CC P STOP mode current 16 MHz fast internal RC oscillator off, HPVREG off 16 MHz fast internal RC oscillator off, HPVREG on IDDSTDBY CC C STANDBY mode current — 105°C — 5 20 mA 25°C — 2.5 6.5 mA 105°C — 7 25 mA 25°C — 20 100 A 105°C — 180 — A — — 350 1500 A 25°C — 30 100 A 105°C — 350 — A — — 600 2500 See Table 26 IDDSTDBY13 CC P STANDBY1 mode current TJ = 150°C IDDSTDBY24 250 1800 A 25°C CC P STANDBY2 mode current TJ = 150°C A NOTES: 1 V DD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C 2 Value is for maximum peripherals turned on. May vary significantly based on different configurations, active peripherals, operating frequency, etc. 3 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off. 4 ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off. Table 26. IDDSTDBY specification1 Temperature (TA,°C) FIRC off, 8 KB RAM on FIRC on, 8 KB RAM on 32 kHz SXOSC on, 8 KB RAM on 32 kHz SXOSC on, all RAM on 3.3 V 5.5 V 3.3 V 5.5 V 3.3 V 5.5 V 3.3 V 5.5 V –40 16 A 25 A 326 A 340 A 16 A 26 A 22 A 32 A 0 18 A 29 A 334 A 347 A 19 A 29 A 26 A 37 A 25 23 A 33 A 342 A 355 A 24 A 34 A 34 A 45 A 55 41 A 51 A 363 A 377 A 42 A 53 A 69 A 80 A 85 93 A 104 A 421 A 435 A 100 A 110 A 182 A 195 A 105 173 A 185 A 502 A 517 A 181 A 194 A 344 A 358 A 1252 320 A 334 A 648 A 667 A 321 A 335 A 620 A 638 A 1502 681 A 698 A 1005 A 1028 A 654 A 677 A 1270 A 1300 A NOTES: 1 All current values are typical values. PXD10 Microcontroller Data Sheet, Rev. 1 72 Freescale Semiconductor Electrical characteristics 2 3.7.4 Values provided for reference only. The permitted temperature range of the chip is specified separately. Recommended power-up and power-down order Figure 6 shows the recommended order for powering up the power supplies on this device. The 1.2 V regulator output starts after the device’s internal POR (VDDREG HV) is deasserted at approximately 2.7 V on VDDREG. 2.7 V VDDREG HV supply VDDREG HV POR (internal) VA 1.2 V regulator output Soft startup (approx. 200 s) VB VDD IO HV supply (3–5.5 V) >= 200 s Figure 6. Recommended order for powering up the power supplies CAUTION The voltages VA and VB in Figure 6 must always obey the relation VB VA – 0.7 V. Otherwise, currents from the 1.2 V supply to the 3.3 V supply may result. Figure 7 shows the recommended order for powering down the power supplies on this device. It is acceptable for the VDD IO HV supply to ramp down faster than the 1.2 V regulator output, even if the latter takes time to discharge the high 40 F capacitance. (The capacitor will ultimately discharge.) PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 73 Electrical characteristics 2.7 V > 1.5 V VDDREG HV supply VDDREG HV POR (internal) 1.2 V regulator output Soft startup (approx. 200 s) Time to discharge 40 F Capacitance depends on load VDD IO HV supply (3–5.5 V) Figure 7. Recommended order for powering down the power supplies CAUTION The VDD IO HV supply must be disabled after the VDDREG HV supply voltage drops below 1.5 V. This is to ensure that the 1.2 V regulator shuts down before the 3.3 V regulator shuts down. 3.7.5 Power-up inrush current profile Figure 8 shows the power up inrush current profile of the ballast transistor under the worst possible startup condition (fastest PVT and fastest power ramp time). 1.2 V supply Base control Current profile 3–5.5 V Figure 8. Power-up inrush current profile PXD10 Microcontroller Data Sheet, Rev. 1 74 Freescale Semiconductor Electrical characteristics The HPREG has a “soft startup” profile which increases the supply in steps of approximately 50 mV in a series of approximately 25 steps. Therefore, the peak current is within 750 mA of the maximum current during startup. This eliminates any noise on the VDDR supply during startup and charging of NPN emitter stability capacitance of 40 F (minimum). Soft startup also occurs when waking up from standby mode to limit noise on the VDDR supply. In case VDDR is shared between the device and the ballast, it must be star routed on the board or isolated as much as possible to avoid any noise injected by the ballast. Soft startup will help to limit this noise but a VDDR capacitor close to the ballast pin is critical here. A minimum capacitance of 10 F is needed. Table 27 shows the typical and maximum startup currents. Table 27. Startup current Value Symbol ISTART 3.7.6 C CC Parameter T Startup current Unit Typ Max 300 800 mA HPREG load regulation characteristics The HPREG exhibits a very strong load-regulation behavior (the transition from low- to high-current state is regulated quickly). This is illustrated in Figure 10, which shows a 10–150 mA jump over 10 ns. Under any case of load transition, the HPREG responds within 100 ns and stabilizes within 5 s. This helps improve the stability of the 1.2 V supply and settling time. 1.2 V supply Base control 3 V input supply Load Figure 9. HPREG load regulation 3.8 3.8.1 I/O pad electrical characteristics I/O pad types The device provides five main I/O pad types: PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 75 Electrical characteristics • Slow pads — These are the most common pads, providing a good compromise between transition time and low electromagnetic emission. Medium pads — These are provided in two types (M1 and M2) and provide transitions fast enough for the serial communication channels. M2 pads include slew rate control. Fast pads — These provide maximum speed. There are used for improved NEXUS debugging capability. SMD pads — These provide additional current capability to drive stepper motor loads. Digital I/O with analog (J) pad — These provide input and output digital features and analog input for ADC. • • • • M2 and Fast pads can disable slew rate to reduce electromagnetic emission, at the cost of reducing AC performance. 3.8.2 I/O input DC characteristics Table 28 provides input DC electrical characteristics as described in Figure 10. VIN VDD VIH VHYS VIL PDI = ‘1’ (GPDI register of SIU) PDI = ‘0’ Figure 10. I/O input DC electrical characteristics definition Table 28. I/O input DC electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max VIH SR P Input high level CMOS Schmitt trigger — 0.65VDD — VDD + 0.3 VIL SR P Input low level CMOS Schmitt trigger — 0.3 — 0.35VDD — 0.1VDD — — VHYS CC D Input hysteresis CMOS Schmitt trigger V PXD10 Microcontroller Data Sheet, Rev. 1 76 Freescale Semiconductor Electrical characteristics Table 28. I/O input DC electrical characteristics (continued) Symbol ILKG RON C Value Conditions1 Parameter Unit Min Typ Max — –1 — 1 A TA = -40°C — 2 — nA TA = 25°C — 2 — nA C TA = 105°C — 12 500 nA P TJ = 150°C — 70 1000 nA — — 1 k CC P Input leakage current CC D Resistance of the analog switch inside the J Supply range pad type2 3.3–5 V NOTES: 1 VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 105 °C. 2 Applies to the J pad type only. 3.8.3 I/O output DC characteristics The following tables provide DC characteristics for bidirectional pads: • Table 29 provides weak pull figures. Both pull-up and pull-down resistances are supported. • Table 30 provides output driver characteristics for I/O pads when in SLOW configuration. • Table 31 provides output driver characteristics for I/O pads when in MEDIUM configuration (applies to both M1 and M2 type pads). • Table 32 provides output driver characteristics for I/O pads when in FAST configuration. • Table 33 provides SMD pad characteristics. Table 29. I/O pull-up/pull-down DC electrical characteristics 1 Symbol C Parameter Value Conditions2 Unit Min Typ Max |IWPU| CC P Weak pull-up current absolute VIN = VIL, VDD = 5.0V 10% PAD3V5V = 0 value C PAD3V5V = 13 10 — 150 10 — 250 VIN = VIL, VDD = 3.3V 10% PAD3V5V = 1 10 — 150 |IWPD| CC P Weak pull-down current abso- VIN = VIL, VDD = 5.0V 10% PAD3V5V = 0 lute value C PAD3V5V = 1 10 — 150 10 — 250 VIN = VIL, VDD = 3.3V 10% PAD3V5V = 1 10 — 150 P P µA µA NOTES: 1 The pull currents are dependent on the HVE settings. 2 VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified. 3 The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 77 Electrical characteristics Table 30. SLOW configuration output buffer electrical characteristics Symbol C Unit Min Typ Max Push Pull, IOH = 2 mA, VDD = 5.0 V ±10%, PAD3V5V = 0 (recommended) 0.8VDD — — D Push Pull, IOH = 2 mA, VDD = 5.0 V ±10%, PAD3V5V = 12 0.8VDD — — C VDD 0.8 Push Pull, IOH = 1 mA, VDD = 3.3 V ±10%, PAD3V5V = 1 (recommended) — — VOH CC P Output high level SLOW configuration VOL CC P Output low level SLOW configuration Ttr Value Conditions1 Parameter Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD D Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CC T Output transition time output CL = 25 pF, pin3 VDD = 5.0 V ±10%, PAD3V5V = 0 SLOW configuration T CL = 50 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 50 — — 100 T CL = 100 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 125 T CL = 25 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 40 T CL = 50 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 50 T CL = 100 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 75 recommended configuration at VDD = 5.0 V ±10%, PAD3V5V = 0 VDD = 3.3 V ±10%, PAD3V5V = 1 — — 2 VDD = 5.0 V ±10%, PAD3V5V = 1 — — 7 Itr50 CC D Current slew at CL = 50 pF SLOW configuration D V V ns mA/ns NOTES: 1 V DD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 105 °C, unless otherwise specified 2 This is a transient configuration during power-up. All pads but RESET and NEXUS output (MDOx, EVTO, MCK) are configured in input or in high impedance state. 3 C calculation should include device and package capacitances (C L PKG < 5 pF). PXD10 Microcontroller Data Sheet, Rev. 1 78 Freescale Semiconductor Electrical characteristics Table 31. MEDIUM configuration output buffer electrical characteristics Symbol C Value Conditions1 Parameter Unit Min Typ Max Push Pull, IOH = 2 mA, VDD = 5.0 V ±10%, PAD3V5V = 0 (recommended) 0.8VDD — — D Push Pull, IOH = 1 mA, VDD = 5.0 V ±10%, PAD3V5V = 12 0.8VDD — — C Push Pull, IOH = 1 mA, VDD = 3.3 V ±10%, PAD3V5V = 1 (recommended) VDD 0.8 — — Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD D Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CC T Output transition time out- CL = 25 pF, put pin3 VDD = 5.0 V ±10%, PAD3V5V = 0 MEDIUM configuration T CL = 50 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 10 — — 20 T CL = 100 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 40 T CL = 25 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 12 T CL = 50 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 25 T CL = 100 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 40 Itr50 CC D Current slew at CL = 50 pF recommended configuration at MEDIUM configuration VDD = 5.0 V ±10%, PAD3V5V = 0 VDD = 3.3 V ±10%, PAD3V5V = 1 — — 7 — — 16 VOH CC P Output high level MEDIUM configuration VOL CC P Output low level MEDIUM configuration Ttr D VDD = 5.0 V ±10%, PAD3V5V = 1 V V ns mA/ns NOTES: 1 V DD = 3.3 V ± 10% / 5.0 V 10%, TA = 40 to 105 °C, unless otherwise specified 2 This is a transient configuration during power-up. All pads but RESET and NEXUS output (MDOx, EVTO, MCK) are configured in input or in high impedance state. 3 C includes device and package capacitance (C L PKG < 5 pF). PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 79 Electrical characteristics Table 32. FAST configuration output buffer electrical characteristics Symbol VOH VOL Ttr C Parameter Value Conditions1 Unit Min Typ Max Push Pull, IOH = 14 mA, VDD = 5.0 V ±10%, PAD3V5V = 0 (recommended) 0.8VDD — — D Push Pull, IOH = 7 mA, VDD = 5.0 V ±10%, PAD3V5V = 12 0.8VDD — — C VDD 0.8 — Push Pull, IOH = 11 mA, VDD = 3.3 V ±10%, PAD3V5V = 1 (recommended) — CC P Output high level FAST configuration Push Pull, IOL = 14 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD D Push Pull, IOL = 7 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C Push Pull, IOL = 11 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CC T Output transition time output CL = 25 pF, pin3 VDD = 5.0 V ±10%, PAD3V5V = 0 FAST configuration T CL = 50 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 4 — — 6 T CL = 100 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 12 T CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 4 T CL = 50 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 7 T CL = 100 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 12 VDD = 5.0 V ±10%, PAD3V5V = 0 (recommended configuration) — — 55 D VDD = 3.3 V ±10%, PAD3V5V = 1 (recommended configuration) — — 40 D VDD = 5.0 V ±10%, PAD3V5V = 1 — — 100 CC P Output low level FAST configuration Itr50 CC D Current slew at CL = 50 pF FAST configuration V V ns mA/ns NOTES: 1 VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 105 °C, unless otherwise specified 2 This is a transient configuration during power-up. All pads but RESET and NEXUS output (MDOx, EVTO, MCK) are configured in input or in high impedance state. 3 C includes device and package capacitance (C L PKG < 5 pF). PXD10 Microcontroller Data Sheet, Rev. 1 80 Freescale Semiconductor Electrical characteristics Table 33. SMD pad electrical characteristics Value Symbol C Parameter Conditions Unit Min Typ Max VIL CC P Low level input voltage — –0.4 — 0.35VDDM VIH CC P High level input voltage — 0.65VDDM — VDDM+0.4 VHYST CC C Schmitt trigger hysteresis — 0.1VDDM — — VOL CC P Low level output voltage IOL = 20 mA1 — — 0.32 IOL = 30 mA2 V — — 0.48 1 VDDM–0.32 — — 2 VDDM–0.48 — — –130 — — Vin=VIH — — –10 Vin=VIL 10 — — Vin=VIH — — 130 CC P Input leakage current — -1 — 1 RDSONH CC C SMD pad driver active high impedance IOH –30 mA2 — — 16 RDSONL CC C SMD pad driver active low impedance IOL 30 mA2 — — 16 IOH / IOL 30 mA2 — — 90 mV VOH CC P High level output voltage IOH = –20 mA IOH = –30 mA IPU IPD IIN CC P Internal pull-up device current Vin=VIL CC P Internal pull-down device current VOMATCH CC P Output driver matching VOH / VOL A NOTES: 1 VDD = 5.0 V ±10%, Tj = -40 to 150 °C. 2 VDD = 5.0 V ±10%, Tj = -40 to 130 °C. 3.8.4 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 34. Table 35 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain below the IDYNSEG maximum value. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 81 Electrical characteristics Table 34. I/O supply segment Supply segment Package A1 B2 C3,4 D5 E6 144 LQFP pins 1–21 pins 113–144 pins 22– 52 pins 53–72 pins 73–102 pins 103–112 176 LQFP pins 1–21 pins 143–176 pins 22–68 pins 69–88 pins 89–118 pins 119–142 NOTES: 1 LCD pad segment containing pad supplies VDDE_A 2 Miscellaneous pad segment containing pad supplies V DDE_B 3 ADC pad segment containing pad supplies V DDE_C 4 V DDE_C should be the same as VDDA with a 100 mV variation, i.e., VDDE_C = VDDA 100 mV. 5 Stepper Motor pad segment containing I/O supplies VDDMA, VDDMB, VDDMC 6 Miscellaneous pad segment containing pad supplies V DDE_E Table 35. I/O consumption Symbol ISWTSLW C Parameter Typ Max CL = 25 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 20 CL = 25 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 16 CC D Dynamic I/O current for MEDIUM CL = 25 pF, configuration VDD = 5.0 V ±10%, PAD3V5V = 0 — — 29 CL = 25 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 17 CL = 25 pF, VDD = 5.0 V ±10%, PAD3V5V = 0 — — 110 CL = 25 pF, VDD = 3.3 V ±10%, PAD3V5V = 1 — — 50 CC D Root mean square I/O current for CL = 25 pF, 2 MHz SLOW configuration VDD = 5.0 V ±10%, PAD3V5V = 0 — — 2.3 CC D Dynamic I/O current for SLOW configuration D ISWTFST CC D Dynamic I/O current for FAST configuration D IRMSSLW Unit Min D ISWTMED Value Conditions1 D CL = 25 pF, 4 MHz VDD = 5.0 V ±10%, PAD3V5V = 0 — — 3.2 D CL = 100 pF, 2 MHz VDD = 5.0 V ±10%, PAD3V5V = 0 — — 6.6 D CL = 25 pF, 2 MHz VDD = 3.3 V ±10%, PAD3V5V = 1 — — 1.6 D CL = 25 pF, 4 MHz VDD = 3.3 V ±10%, PAD3V5V = 1 — — 2.3 D CL = 100 pF, 2 MHz VDD = 3.3 V ±10%, PAD3V5V = 1 — — 4.7 mA mA mA mA PXD10 Microcontroller Data Sheet, Rev. 1 82 Freescale Semiconductor Electrical characteristics Table 35. I/O consumption (continued) Symbol IRMSMED IRMSFST IDYNSEG IAVGSEG C Parameter Value Conditions1 CC D Root mean square I/O current for CL = 25 pF, 2 MHz MEDIUM configuration VDD = 5.0 V ±10%, PAD3V5V = 0 Unit Min Typ Max — — 6.6 D CL = 25 pF, 4 MHz VDD = 5.0 V ±10%, PAD3V5V = 0 — — 13.4 D CL = 100 pF, 2 MHz VDD = 5.0 V ±10%, PAD3V5V = 0 — — 18.3 D CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 5.0 D CL = 25 pF, 4 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 8.5 D CL = 100 pF, 2 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 11.0 CC D Root mean square I/O current for CL = 25 pF, 2 MHz FAST configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 22.0 D CL = 25 pF, 4 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 33.0 D CL = 100 pF, 2 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 56.0 D CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 14.0 D CL = 25 pF, 4 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 20.0 D CL = 100 pF, 2 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25.0 SR D Sum of all the dynamic and static VDD = 5.0 V ± 10%, PAD3V5V = 0 I/O current within a supply segD VDD = 3.3 V ± 10%, PAD3V5V = 1 ment — — 110 — — 65 SR D Sum of all the static I/O current within a supply segment D VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 VDD = 5.0 V ± 10%, PAD3V5V = 0 TJ = 130 C — — 90 VDD = 5.0 V ± 10%, PAD3V5V = 0 TJ = –40 C — — 120 IDDMxAVG SR D Sum of currents of two motors assigned to segment VDDMx, VSSMx pair mA mA mA mA NOTES: 1 V DD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 105 °C, unless otherwise specified PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 83 Electrical characteristics 3.9 SSD specifications 3.9.1 Electrical characteristics Table 36. SSD electrical characteristics Value1 Symbol C Parameter Unit Min Typ Max VDDM/2 - 0.02 VDDM/2 VDDM/2 + 0.02 V VVREF CC P Reference voltage (IVREF = 0) IVREF CC P Reference voltage output current 1.85 — — mA RIN CC D Input resistance (against VDDM/2) 0.8 1.0 1.2 M VIN CC C Input common mode range VSSM — VDDM V SSDCONST CC C SSD constant 0.549 0.572 0.597 — SSDOFFSET CC C SSD offset (unipolar, Nsample = 256) –9 — 9 counts SSD offset (bipolar, Nsample = 256) –8 — 8 SSD offset (bipolar with offset cancellation, Nsample = 256) –5 — 5 0.5 — 2.0 fSSDSMP CC D SSD cmpout sample rate MHz NOTES: 1 Vdd = 5.0V +/- 10%, Tj = -40C to +150C. 3.9.2 Accumulator values Equation 5 describes the accumulator value in unipolar configuration. The voltage Vin is applied between the integrator input and VDDM. The internal generated reference voltage is not connected. The accumulator value is a function of VDDM, the number of samples (Nsample) taken and the SSD constant (SSDconst). The SSD constant and offset (SSDconst, SSDoffset) vary with temperature and process. V in – VDDM 2 ACCval = ------------------------------------------------ Nsample + SSDoffset VDDM SSDconst Eqn. 5 Equation 6 describes the accumulator value in bipolar configuration. The voltage Vin is applied between the integrator input and the reference output. The accumulator value depends on the same parameters as in the unipolar case but the inaccuracy of the voltage reference (Vvref) is compensated. V in ACCval = ------------------------------------------------ Nsample + SSDoffset VDDM SSDconst Eqn. 6 3.10 RESET electrical characteristics PXD10 Microcontroller Data Sheet, Rev. 1 84 Freescale Semiconductor Electrical characteristics The device implements a dedicated bidirectional RESET pin. Figure 11. Start-up reset requirements VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 12. Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 85 Electrical characteristics Table 37. Reset electrical characteristics Symbol C VIH SR P Input high level CMOS Schmitt Trigger VIL SR P Input low level CMOS Schmitt — Trigger VHYS VOL Ttr — Unit Min Typ Max 0.65VDD — VDD + 0.4 V 0.4 — 0.35VDD V 0.1VDD — — V V CC D Input hysteresis CMOS Schmitt Trigger — CC P Output low level Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD D Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CL = 25 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 T CL = 100 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 T CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 T CL = 50 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 T CL = 100 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 — — — 40 ns 1000 — — ns CC P Weak pull-up current absolute — value 10 — 150 µA D RUN Current during RESET Before Flash is ready — 10 — mA After Flash is ready — 20 — mA CC T Output transition time output pin3 MEDIUM configuration T WFRST SR P RESET input filtered pulse WNFRST SR P RESET input not filtered pulse — IWPU Value Conditions1 Parameter ns NOTES: 1 V DD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C, unless otherwise specified 2 This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to reset generation module (RGM) section of the device reference manual). 3 CL includes device and package capacitance (CPKG < 5 pF). PXD10 Microcontroller Data Sheet, Rev. 1 86 Freescale Semiconductor Electrical characteristics 3.11 Fast external crystal oscillator (4–16 MHz) electrical characteristics The device provides an oscillator/resonator driver. Figure 13 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. XTAL CL Crystal XTAL EXTAL CL DEVICE VDD I R XTAL EXTAL Resonator DEVICE EXTAL DEVICE Figure 13. Crystal oscillator and resonator connection scheme NOTE XTAL/EXTAL must not be directly used to drive external circuits. Table 38. Crystal description Crystal motional capacitance (Cm) fF Crystal motional inductance (Lm) mH Load on xtalin/xtalout C1 = C2 (pF)1 Shunt capacitance between xtalout and xtalin C02 (pF) Nominal frequency (MHz) NDK crystal reference Crystal equivalent series resistance ESR 4 NX8045GB 300 2.68 591.0 21 2.93 8 NX5032GA 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 120 3.11 56.5 15 2.93 16 120 3.90 25.3 10 3.00 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 87 Electrical characteristics NOTES: 1 The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them. 2 The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.). Table 39. Resonator description CSTCR4M00G53-R0 Vibration CSTCR4M00G55-R0 Fundamental Fr (kHz) 3929.50 3898.00 Fa (kHz) 4163.25 4123.00 Fa–Fr (dF) (kHz) 233.75 225.00 Ra (k) 372.41 465.03 R1 () 12.78 11.38 L1 (mH) 0.84443 0.88244 C1 (pF) 1.94268 1.88917 Co (pF) 15.85730 15.90537 Qm 1630.93 1899.77 CL1 (nominal) (pF) 15 39 CL2 (nominal) (pF) 15 39 S_MTRANS bit (ME_GS register) ‘1’ ‘0’ VXTAL 1/fFXOSC VFXOSC 90% VFXOSCOP 10% tFXOSCSU valid internal clock Figure 14. Fast external crystal oscillator (4–16 MHz) electrical characteristics PXD10 Microcontroller Data Sheet, Rev. 1 88 Freescale Semiconductor Electrical characteristics Table 40. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max fFXOSC SR — Fast external crystal oscillator frequency — 4.0 — 16.0 MHz gmFXOSC CC C Fast external crystal oscillator transconductance VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 0 2.2 — 8.2 mA/V CC P VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 0 2.0 — 7.4 CC C VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 1 2.7 — 9.7 CC C VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 1 2.5 — 9.2 CC T Oscillation amplitude at EXTAL fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 1.3 — — fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 1.3 — — — — 0.95 — V VFXOSC VFXOSCOP CC C Oscillation operating point V IFXOSC,2 CC T Fast external crystal oscillator consumption — — 2 3 mA TFXOSCSU CC T Fast external crystal oscillator start-up time fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 — — 6 ms fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 — — 1.8 VIH SR P Input high level CMOS (Schmitt Trigger) Oscillator bypass mode 0.65VDD — VDD+0.4 V VIL SR P Input low level CMOS (Schmitt Trigger) Oscillator bypass mode 0.4 — 0.35VDD V NOTES: 1 V DD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C, unless otherwise specified 2 Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals) 3.12 Slow external crystal oscillator (32 KHz) electrical characteristics The device provides a low power oscillator/resonator driver. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 89 Electrical characteristics PC[15] PC[15] Crystal Resonator CX PC[14] PC[14] CY DEVICE DEVICE Figure 15. Crystal oscillator and resonator connection scheme NOTE PC[14]/PC[15] must not be directly used to drive external circuits. OSCON bit (OSC_CTL register) ‘1’ ‘0’ VSXOSC_XTAL 1/fSXOSC VSXOSC 90% 10% TSXOSCSU valid internal clock Figure 16. Slow external crystal oscillator (32 KHz) timing PXD10 Microcontroller Data Sheet, Rev. 1 90 Freescale Semiconductor Electrical characteristics Table 41. Slow external crystal oscillator (32 KHz) electrical characteristics Symbol C Value Conditions1 Parameter Unit Min Typ Max 32 — 40 kHz VDD = 3.3 V ± 10% 1.12 1.33 1.74 V VDD = 5.0 V ± 10% 1.12 1.37 1.74 CC D Slow external crystal oscillator — consumption — — 5 µA TSXOSCSU CC T Slow external crystal oscillator — start-up time — — 22 s fSXOSC SR T Slow external crystal oscillator — frequency VSXOSC CC T Oscillation amplitude T ISXOSC VIH SR D Input high level CMOS Schmitt Oscillator bypass mode Trigger 0.65VDD — VDD + 0.4 V VIL SR D Input low level CMOS Schmitt Oscillator bypass mode Trigger 0.4 — 0.35VDD V NOTES: 1 V DD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C, unless otherwise specified 2 The quoted figure is based on a board that is properly laid out and has no stray capacitances. 3.13 FMPLL electrical characteristics The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver. Table 42. FMPLL electrical characteristics Symbol fPLLIN PLLIN C SR T FMPLL reference clock2 SR T FMPLL reference clock duty Value Conditions1 Parameter cycle2 fPLLOUT CC T FMPLL output clock frequency Unit Min Typ Max — 4 — 64 MHz — 40 — 60 % — 16 — 64 MHz fCPU CC T System clock frequency — — — 643 MHz tLOCK CC T FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) — — 200 µs tPKJIT CC T FMPLL jitter (peak to peak) fPLLIN = 16 MHz (resonator) — — 220 ps tLTJIT CC T FMPLL long term jitter fPLLIN = 16 MHz (resonator) — — 1.5 ns TA = 25 °C — — 4 mA IPLL CC D FMPLL consumption NOTES: 1 V DDPLL = 1.2 V ± 10%, TA = 40 to 105 °C, unless otherwise specified. 2 PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN. 3 f CPU 64 MHz can be achieved only at temperatures up to TA = 105 °C with a maximum FM depth of 2%. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 91 Electrical characteristics 3.14 Fast internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device. Table 43. Fast internal RC oscillator (16 MHz) electrical characteristics Symbol C Value Conditions1 Parameter Unit Min Typ Max fFIRC CC P Fast internal RC oscillator high TA = 25 °C, trimmed frequency SR — — 16 12 MHz 20 — 5 — +5 % IFIRCRUN CC D Fast internal RC oscillator high TA = 25 °C, trimmed — frequency current in running mode — — 200 µA IFIRCPWD CC D Fast internal RC oscillator high TA = 25 °C frequency current in power down mode — — — 1 µA IFIRCSTOP CC D Fast internal RC oscillator high TA = 25 °C frequency and system clock D current in stop mode D sysclk = off — 0.3 — mA sysclk = 2 MHz — 2 — sysclk = 4 MHz — 2.5 — D sysclk = 8 MHz — 3.3 — D sysclk = 16 MHz — 5.2 — VDD = 5.0 V ± 10% — 1 2 FIRCVAR CC C Fast internal RC oscillator variation across temperature (TA = -40°C to 105°C) and supply with respect to fFIRC at TA = 25 °C in high-frequency configuration tFIRCSU CC P Fast internal RC oscillator start-up time Trimmed µs NOTES: 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C, unless otherwise specified. 3.15 Slow internal RC oscillator (128 kHz) electrical characteristics The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module. PXD10 Microcontroller Data Sheet, Rev. 1 92 Freescale Semiconductor Electrical characteristics Table 44. Slow internal RC oscillator (128 kHz) electrical characteristics Symbol fSIRC C Value Conditions1 Parameter CC P Slow internal RC oscillator low frequency SR — Unit TA = 25 °C, trimmed — tSIRCSU CC D Slow internal RC oscillator low frequency current Typ Max — 128 — 100 SIRCVAR CC C Slow internal RC oscillator variation Trimmed across temperature (TA = -40°C to 105°C) and supply with respect to fSIRC at TA = 25 °C in high frequency configuration ISIRC Min 150 -10% TA = 25 °C, trimmed CC C Slow internal RC oscillator start-up time TA = 25 °C, VDD = 5.0 V ± 10% kHz +10% kHz — — 5 µA — 8 12 µs NOTES: 1 V DD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C, unless otherwise specified. 3.16 Flash memory electrical characteristics Table 45. Program and erase specifications Value Symbol C Parameter Typ1 Initial max2 Max3 Unit Tdwprogram CC C Double word (64 bits) program time4 22 50 500 µs T16kpperase CC C 16 KB block pre-program and erase time 300 500 5000 ms T32kpperase CC C 32 KB block pre-program and erase time 400 600 5000 ms T128kpperase CC C 128 KB block pre-program and erase time 800 1300 7500 ms — 30 30 µs Teslat CC D Erase suspend latency NOTES: 1 Typical program and erase times assume nominal supply values and operation at 25 °C. 2 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3 The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4 Actual hardware programming times. This does not include software overhead. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 93 Electrical characteristics Table 46. Flash module life Value Symbol C Parameter Conditions Unit Min Typ — P/E CC C Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (TJ) — 100000 P/E CC C Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (TJ) — 10000 100000 cycles P/E CC C Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (TJ) — 1000 100000 cycles Retention CC C Minimum data retention at 85 °C average ambient temperature1 cycles Blocks with 0–1,000 P/E cycles 20 — years Blocks with 10,000 P/E cycles 10 — years Blocks with 100,000 P/E cycles 5 — years NOTES: 1 Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. Table 47. Flash memory read access timing Symbol fREAD Condition1 Max value Unit 2 wait states 64 MHz C 1 wait state 40 C 0 wait states 20 C Parameter CC P Maximum frequency for flash memory reading NOTES: 1 V DD = 3.3 V ±10% / 5.0 V ±10%, TA = –40 to 105 C, unless otherwise specified 3.17 ADC electrical characteristics The device provides a 10-bit Successive Approximation Register (SAR) Analog to Digital Converter. PXD10 Microcontroller Data Sheet, Rev. 1 94 Freescale Semiconductor Electrical characteristics Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDDA / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (2) The ideal transfer curve (5) (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Figure 17. ADC Characteristics and Error Definitions 3.17.1 Input impedance and ADC accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 95 Electrical characteristics or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fc CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 7: Eqn. 7 R S + R F + R L + R SW + R AD 1 V A --------------------------------------------------------------------------- --- LSB R EQ 2 Equation 7 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter Channel Selection Sampling RSW1 RAD RL CF CP1 CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 18. Input equivalent circuit (precise channels) PXD10 Microcontroller Data Sheet, Rev. 1 96 Freescale Semiconductor Electrical characteristics EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS Current Limiter RF RS RF CF RL RSW RAD CP CS Extended Switch Sampling RSW1 RSW2 RAD RL CF VA Channel Selection CP1 CP3 CP2 CS Source Impedance Filter Resistance Filter Capacitance Current Limiter Resistance Channel Selection Switch Impedance (two contributions RSW1 and RSW2) Sampling Switch Impedance Pin Capacitance (three contributions, CP1, CP2 and CP3) Sampling Capacitance Figure 19. Input equivalent circuit (extended channels) A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Voltage transient on CS VCS VA VA2 V <0.5 LSB 1 2 1 < (RSW + RAD) CS << TS 2 = RL (CS + CP1 + CP2) VA1 TS t Figure 20. Transient behavior during sampling phase In particular two different transient periods can be distinguished: • A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 97 Electrical characteristics (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is CP CS 1 = R SW + R AD --------------------CP + CS Eqn. 8 Equation 8 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Eqn. 9 1 R SW + R AD C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 10: Eqn. 10 V A1 C S + C P1 + C P2 = V A C P1 + C P2 • A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Eqn. 11 2 R L C S + C P1 + C P2 In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Eqn. 12 10 2 = 10 R L C S + C P1 + C P2 TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 13 must be respected (charge balance assuming now CS already charged at VA1): Eqn. 13 VA2 C S + C P1 + C P2 + C F = V A C F + V A1 C P1 + C P2 + C S The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal PXD10 Microcontroller Data Sheet, Rev. 1 98 Freescale Semiconductor Electrical characteristics source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Analog source bandwidth (VA) TC 2 RFCF (conversion rate vs. filter pole) fF f0 (anti-aliasing filtering condition) Noise 2 f0 fC (Nyquist) f0 f Anti-aliasing filter (fF = RC filter pole) fF f Sampled signal spectrum (fC = conversion rate) f0 fC f Figure 21. Spectral representation of input signal Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 14 between the ideal and real sampled voltage on CS: Eqn. 14 VA C P1 + C P2 + C F ----------- = ------------------------------------------------------V A2 C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Eqn. 15 C F 2048 C S PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 99 Electrical characteristics 3.17.2 ADC conversion characteristics NOTE For input leakage current specification, see Table 28. Table 48. ADC conversion characteristics Symbol C Value Conditions1 Parameter Unit Min Typ Max 0.1 — 0.1 V VSSA SR D Voltage on VSSA (ADC — reference) pin with respect to ground (VSS)2 VDDA SR D Voltage on VDDA pin (ADC reference) with respect to ground (VSS) — VDD 0.1 — VDD + 0.1 V VAINx SR D Analog input voltage3 — VSSA 0.1 — VDDA + 0.1 V fADC SR D ADC analog frequency — 6 — 32 MHz — — — 1.5 µs fADC = 32 MHz, ADC_conf_sample_input = 17 0.5 — — µs fADC = 6 MHz, ADC_conf_sample_input = 127 — — 21 0.625 — — µs tADC_PU SR D ADC power up delay tADC_S CC T Sample time4,5 T tADC_C CC T Conversion time6 fADC = 32 MHz, ADC_conf_comp = 2 CS CC D ADC input sampling capacitance — — — 3 pF CP1 CC D ADC input pin capacitance 1 — — — 3 pF CP2 CC D ADC input pin capacitance 2 — — — 1 pF CP3 CC D ADC input pin capacitance 3 — — — 1 pF RSW1 CC D Internal resistance of analog source — — — 1 k RSW2 CC D Internal resistance of analog source — — — 1 k RAD CC D Internal resistance of analog source — — — 0.1 k IINJ SR T Input current Injection Current injection on one ADC input, different from the converted one 5 — 5 mA INL CC P Integral Non Linearity No overload .5 — 2.5 LSB DNL CC P Differential Non Linearity No overload 1.0 — 1.0 LSB PXD10 Microcontroller Data Sheet, Rev. 1 100 Freescale Semiconductor Electrical characteristics Table 48. ADC conversion characteristics (continued) Symbol C Value Conditions1 Parameter Unit After offset cancellation Min Typ Max — 0.5 — LSB OFS CC T Offset error GNE CC T Gain error — 0.6 — LSB TUEx CC P Total unadjusted error for Without current injection extended channel T With current injection –3 — 3 LSB –4 — 4 NOTES: 1 VDDA = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 105 °C, unless otherwise specified. 2 Analog and digital V SS must be common (to be tied together externally). 3 VAINx may exceed VSSA and VDDA limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF 4 During the sample time the input capacitance C can be charged/discharged by the external source. The internal S resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC_S depend on programming. 5 The maximum sample rate is 1 million samples per second, provided the source impedance and current limiter(>1 k) are calculated adequately. - Filter capacitor at analog source output must meet the criteria Cf (filter capacitor) > 2048*Cs (sampling capacitor which is 3 pF) 6 This parameter does not include the sample time t ADC_S, but only the time for determining the digital result and the time to load the result’s register with the conversion result. 3.18 LCD driver electrical characteristics Table 49. LCD driver specifications Value1 Symbol C Parameter Unit Min Typ Max VLCD SR C Voltage on VLCD (LCD supply) pin with respect to VSS 0 — VDDE + 0.3 V ZBP/FP CC T LCD output impedance (BP[n-1:0],FP[m-1:0]) for output levels VLCD, VSS2 — — 5.0 k IBP/FP CC T LCD output current (BP[n-1:0],FP[m-1:0]) for outputs charge/discharge voltage levels VLCD2/3, VLCD1/2, VLCD1/3)2,3 — 25 — A NOTES: 1 VDD = 5.0 V ± 10%, TA = –40–105 °C, unless otherwise specified 2 Outputs measured one at a time, low impedance voltage source connected to the VLCD pin. 3 With PWR=10, BSTEN=0, and BSTAO=0 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 101 Electrical characteristics 3.19 Pad AC specifications Table 50. Pad AC specifications (5.0 V, PAD3V5V = 0)1 No. 1 Pad Slow 2 Medium 3 Fast 4 Tswitchon1 (ns) Pull Up/Down (5.5 V max) Rise/Fall2 (ns) Frequency (MHz) Current slew (mA/ns) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 1.5 — 30 6 — 50 — — 4 0.04 — 2 25 1.5 — 30 9 — 100 — — 2 0.04 — 2 50 1.5 — 30 12 — 125 — — 2 0.04 — 2 100 1.5 — 30 16 — 150 — — 2 0.04 — 2 200 1 — 15 3 — 10 — — 40 2.5 — 7 25 1 — 15 5 — 20 — — 20 2.5 — 7 50 1 — 15 9 — 40 — — 13 2.5 — 8 100 1 — 15 12 — 70 — — 7 2.5 — 8 200 1 — 6 1 — 4 — — 100 18 — 55 25 1 — 6 1.5 — 6 — — 80 18 — 55 50 1 — 6 3 — 12 — — 40 18 — 55 100 1 — 6 5 — 16 — — 25 18 — 55 200 — — — — — 5000 — — — — — — 50 Parameter Classification D C C C n/a NOTES: 1 Propagation delay from V /2 of internal signal to Pchannel/Nchannel on condition DD 2 Slope at rising/falling edge Table 51. Pad AC specifications (3.3 V, PAD3V5V = 1)1 No. 1 2 Tswitchon1 (ns) Pad Slow Medium Rise/Fall2 (ns) Frequency (MHz) Current slew (mA/ns) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 3 — 40 4 — 40 — — 4 0.01 — 2 25 3 — 40 6 — 50 — — 2 0.01 — 2 50 3 — 40 10 — 75 — — 2 0.01 — 2 100 3 — 40 14 — 100 — — 2 0.01 — 2 200 1 — 15 2 — 12 — — 40 2.5 — 7 25 1 — 15 4 — 25 — — 20 2.5 — 7 50 1 — 15 8 — 40 — — 13 2.5 — 7 100 1 — 15 14 — 70 — — 7 2.5 — 7 200 PXD10 Microcontroller Data Sheet, Rev. 1 102 Freescale Semiconductor Electrical characteristics Table 51. Pad AC specifications (3.3 V, PAD3V5V = 1)1 (continued) No. 3 4 Tswitchon1 (ns) Pad Fast Pull Up/Down (3.6 V max) Parameter Classification Rise/Fall2 (ns) Frequency (MHz) Current slew (mA/ns) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 1 — 6 1 — 4 — — 72 3 — 40 25 1 — 6 1.5 — 7 — — 55 3 — 40 50 1 — 6 3 — 12 — — 40 3 — 40 100 1 — 6 5 — 18 — — 25 3 — 40 200 — — — — — 7500 — — — — — — 50 D C C C n/a NOTES: 1 Propagation delay from V /2 of internal signal to Pchannel/Nchannel on condition DD 2 Slope at rising/falling edge VDD/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH VOL Pad Output Figure 22. Pad output delay PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 103 Electrical characteristics Table 52. SMD pad delays Value Symbol — — 3.20 C Parameter CC D SMD pad delay CC D SMD pad delay Conditions Unit Min Typ Max CL=50pf VDD=5V±10% SRE=1 — — 165 CL=50pf VDD=5V±10% SRE=0 — — 35 CL=50pf VDD=3.3V±10% SRE=1 — — 350 CL=50pf VDD=3.3V±10% SRE=0 — — 50 ns AC timing 3.20.1 IEEE 1149.1 interface timing Table 53. JTAG interface timing1 Value No. Symbol C Parameter Unit Min Max 1 tJCYC CC D TCK Cycle Time 100 — 2 tJDC CC D TCK Clock Pulse Width (measured at VDD/2) 40 60 3 tTCKRISE CC D TCK Rise and Fall Times (40%–70%) — 3 4 tTMSS, tTDIS CC D TMS, TDI Data Setup Time 5 — 5 tTMSH, tTDIH CC D TMS, TDI Data Hold Time 10 — 6 tTDOV CC D TCK Low to TDO Data Valid — 40 7 tTDOI CC D TCK Low to TDO Data Invalid 0 — 8 tTDOHZ CC D TCK Low to TDO High Impedance — 30 ns NOTES: 1 These specifications apply to JTAG boundary scan only. JTAG timing specified at V DD = 3.0 V to 5.5 V, TA = 40 to 105 °C, and CL = 50 pF with SRC = 0b11. PXD10 Microcontroller Data Sheet, Rev. 1 104 Freescale Semiconductor Electrical characteristics TCK 2 3 2 3 1 Figure 23. JTAG test clock input timing TCK 4 5 TMS, TDI 6 7 8 TDO Figure 24. JTAG test access port timing PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 105 Electrical characteristics TCK 9 11 Output Signals 10 Output Signals 12 13 Input Signals Figure 25. JTAG boundary scan timing 3.20.2 Nexus debug interface Table 54. Nexus debug port timing1 Value No. Symbol C Parameter 1 tMCYC CC D MCKO Cycle Time 2 MDC CC D MCKO Duty Cycle 3 4 tMDOV tMSEOV CC D MCKO Low to MDO Data Unit Valid2 2 Min Max 22 — ns 40 60 % –2 14 ns CC D MCKO Low to MSEO Data Valid –2 14 ns Valid2 –2 14 ns 4 — tTCYC 5 tEVTOV CC D MCKO Low to EVTO Data 6 tEVTIPW CC D EVTI Pulse Width PXD10 Microcontroller Data Sheet, Rev. 1 106 Freescale Semiconductor Electrical characteristics Table 54. Nexus debug port timing1 (continued) Value No. Symbol 7 tEVTOPW C CC Parameter Unit Min Max 1 — tMCYC 100 — ns D EVTO Pulse Width Time3 8 tTCYC CC D TCK Cycle 9 TDC CC D TCK Duty Cycle 40 60 % 10 tNTDIS, tNTMSS CC D TDI, TMS Data Setup Time 10 — ns 11 tNTDIH, tNTMSH CC D TDI, TMS Data Hold Time 5 — ns 12 tJOV CC D TCK Low to TDO Data Valid 0 40 ns NOTES: 1 JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDD = 3.0 V to 5.5V, TA = 40 to 105 °C, and CL = 50 pF (CL = 30 pF on MCKO), with SRC = 0b11. 2 MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 3 The system clock frequency needs to be three times faster than the TCK frequency. 1 2 MCKO 3 4 5 MDO MSEO EVTO Output Data Valid Figure 26. Nexus output timing TCK 9 8 9 Figure 27. Nexus TCK timing PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 107 Electrical characteristics TCK 10 11 TMS, TDI 12 TDO Figure 28. Nexus TDI, TMS, TDO timing 3.20.3 Interface to TFT LCD panels Figure 29 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with positive polarity. The sequence of events for active matrix interface timing is: 1. DCU_CLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode, DCU_CLK runs continuously. 2. DCU_HSYNC causes the panel to start a new line. It always encompasses at least one PCLK pulse. 3. DCU_VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. 4. DCU_DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. PXD10 Microcontroller Data Sheet, Rev. 1 108 Freescale Semiconductor Electrical characteristics DCU_VSYNC LINE 1 DCU_HSYNC LINE 2 LINE 3 LINE 4 LINE n-1 LINE n DCU_HSYNC DCU_DE 1 2 3 m-1 m DCU_CLK DCU_LD[23:0] Figure 29. TFT LCD interface timing overview1 3.20.3.1 Interface to TFT LCD panels—pixel level timings Figure 30 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and data. All parameters shown in the diagram are programmable. This timing diagram corresponds to positive polarity of the DCU_CLK signal (meaning the data and sync signals change on the rising edge) and active-high polarity of the DCU_HSYNC, DCU_VSYNC and DCU_DE signals. The user can select the polarity of the DCU_HSYNC and DCU_VSYNC signals via the SYN_POL register, whether active-high or active-low. The default is active-high. The DCU_DE signal is always active-high. Pixel clock inversion and a flexible programmable pixel clock delay are also supported. They are programmed via the DCU Clock Confide Register (DCCR) in the system clock module. The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the VSYN_PARA register. Table 55. LCD interface timing parameters—horizontal and vertical Symbol C Parameter Value Unit — ns tPCP CC D Display pixel clock period tPWH CC D HSYNC pulse width PW_H tPCP ns tBPH CC D HSYNC back porch width BP_H tPCP ns tFPH CC D HSYNC front porch width FP_H tPCP ns tSW CC D Screen width DELTA_X tPCP ns tHSP CC D HSYNC (line) period (PW_H + BP_H + FP_H + DELTA_X ) tPCP ns tPWV CC D VSYNC pulse width PWVtHSP ns 1. In Figure 29, the “DCU_LD[23:0]” signal is an aggregation of the DCU’s RGB signals—DCU_R[0:7], DCU_G[0:7] and DCU_B[0:7]. PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 109 Electrical characteristics Table 55. LCD interface timing parameters—horizontal and vertical (continued) Symbol C Parameter Value Unit tBPV CC D VSYNC back porch width BP_V tHSP ns tFPV CC D VSYNC front porch width FP_V tHSP ns tSH CC D Screen height DELTA_Y tHSP ns tVSP CC D VSYNC (frame) period (PW_V + BP_V + FP_V + DELTA_Y ) tHSP ns tHSP Start of line tPWH tFPH tSW tBPH tPCP DCU_CLK DCU_LD[23:0] Invalid Data 1 2 3 DELTA_X Invalid Data DCU_HSYNC DCU_DE Figure 30. Horizontal sync timing tVSP Start of Frame tSH tBPV tPWV tFPV tHCP DCU_HSYNC DCU_LD[23:0] (Line Data) Invalid Data 1 2 3 DELTA_Y Invalid Data DCU_HSYNC DCU_DE Figure 31. Vertical sync pulse 3.20.3.2 Interface to TFT LCD panels PXD10 Microcontroller Data Sheet, Rev. 1 110 Freescale Semiconductor Electrical characteristics Table 56. TFT LCD interface timing parameters1,2,3,4 Value Symbol C Parameter Unit Min Typ Max 15.25 — — ns tCKP CC D PDI clock period CK CC D PDI clock duty cycle 40 — 60 % tDSU CC D PDI data setup time 9.5 — — ns tDHD CC D PDI data access hold time 4.5 — — ns tCSU CC D PDI control signal setup time 9.5 — — ns tCHD CC D PDI control signal hold time 4.5 — — ns CC D TFT interface data valid after pixel clock — — 6 ns CC D TFT interface VSYNC valid after pixel clock — — 5.5 ns CC D TFT interface DE valid after pixel clock — — 5.6 ns CC D TFT interface hold time for data and control bits 2 — — ns CC D Relative skew between the data bits — — 3.7 ns NOTES: 1 The characteristics in this table are based on the assumption that data is output at positive edge and displays latch data on negative edge 2 Intra bit skew is less than 2 ns 3 Load C = 50 pF for panel frequency up to 20 MHz L 4 Load C = 25 pF for panel frequency from 20 to 32 MHz L tCHD tCSU tDSU tDHD DCU_HSYNC DCU_VSYNC DCU_DE DCU_CLK tCKH tCKL DCU_LD[23:0] Figure 32. TFT LCD interface timing parameters 3.20.4 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) timing PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 111 Electrical characteristics Table 57. IRQ and NMI timing Value No. Symbol C Parameter 1 tIPWL CC T IRQ/NMI Pulse Width Low 2 tIPWH CC T IRQ/NMI Pulse Width High 3 1 CC tICYC Unit T IRQ/NMI Edge to Edge Time Min Max 200 — ns 200 — ns 400 — ns NOTES: 1 Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both. 1,2 1,2 3 Figure 33. IRQ and NMI timing 3.20.5 eMIOS timing Table 58. eMIOS timing1 Value No. Symbol C Parameter Unit Min2 Max 1 tMIPW CC D eMIOS input pulse width 4 — tCYC 2 tMOPW CC D eMIOS output pulse width 1 — tCYC NOTES: 1 eMIOS timing specified at f SYS = 64 MHz, VDD12 = 1.14 V to 1.32 V, VDDE_x = 3.0 V to 5.5 V, TA = 40 to 105 °C, and CL = 50 pF with SRC = 0b00 2 There is no limitation on the peripheral for setting the minimum pulse width, the actual width is restricted by the pad delays. Refer to the pad specification section for the details. PXD10 Microcontroller Data Sheet, Rev. 1 112 Freescale Semiconductor Electrical characteristics 3.20.6 FlexCAN timing The CAN functions are available as TX pins at normal IO pads and as RX pins at the always on domain. There is no filter for the wakeup dominant pulse. Any high-to-low edge can cause wakeup if configured. Table 59. FlexCAN timing1 Value No. Symbol C Parameter Unit Min Max 1 tCANOV CC D CTNX Output Valid after CLKOUT Rising Edge (Output Delay) — 22.48 ns 2 tCANSU CC D CNRX Input Valid to CLKOUT Rising Edge (Setup Time) — 12.46 ns NOTES: 1 FlexCAN timing specified at fSYS = 64 MHz, VDD12 = 1.14 V to 1.32 V, VDDE_x = 3.0 V to 5.5 V, TA = 40 to 105 °C, and CL = 50 pF with SRC = 0b00. 3.20.7 Deserial Serial Peripheral Interface (DSPI) Table 60. DSPI timing1 Value No. Symbol C Parameter Conditions Unit Min Max 1 tSCK CC D DSPI Cycle TIme2,3 Master (MTFE = 0) Slave (MTFE = 0) Slave Receive Only Mode 62 62 62 — — — ns ns ns 2 tCSC CC D PCS to SCK Delay4 — 20 — ns — 20 — ns Delay5 3 tASC CC D After SCK 4 tSDC CC D SCK Duty Cycle 5 6 tA — CC D Slave Access Time (PCSx active to SOUT driven) 0.4 x tSCK 0.6 x tSCK ns SS active to SOUT valid tDIS CC D Slave SOUT Disable Time SS inactive to SOUT High-Z or (PCSx inactive to SOUT High-Z or invalid invalid) — 40 ns — 10 ns 7 tPCSC PCSx to PCSS time — 20 — ns 8 tPASC PCSS to PCSx time — 20 — ns 9 tSUI CC D Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)6 Master (MTFE = 1, CPHA = 1) 35 2 20 35 — — — — ns ns ns ns 10 tHI Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)6 Master (MTFE = 1, CPHA = 1) –5 5 10 –5 — — — — ns ns ns ns CC D Data Hold Time for Inputs PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 113 Electrical characteristics Table 60. DSPI timing1 (continued) Value No. Symbol C Parameter Conditions Unit Min Max 11 tSUO CC D Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) — — — — 14 39 24 15 ns ns ns ns 12 tHO CC D Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) –3 6 12 –3 — — — — ns ns ns ns NOTES: 1 DSPI timing specified at VDDE_x = 3.0 V to 5.5 V, T = 40 to 105 °C, and C = 50 pF with SRC = 0b11. A L 2 The minimum SCK Cycle Time restricts the baud rate selection for given system clock rate. 3 The actual minimum SCK Cycle Time is limited by pad performance. 4 The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK], program PSSCK = 2 and CSSCK = 2 5 The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC] 6 This delay value is corresponding to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register. 2 3 PCSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 7 SIN 8 First Data Data 10 SOUT First Data Last Data 9 Data Last Data Note: Numbers in circles refer to values in Table 60. Figure 34. DSPI classic SPI timing — master, CPHA = 0 PXD10 Microcontroller Data Sheet, Rev. 1 114 Freescale Semiconductor Electrical characteristics PCSx SCK Output (CPOL = 0) 8 SCK Output (CPOL = 1) 7 Data First Data SIN Last Data 10 SOUT 9 Data First Data Last Data Note: Numbers in circles refer to values in Table 60. Figure 35. DSPI classic SPI timing — master, CPHA = 1 3 2 PCSx 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 SOUT First Data 7 SIN 10 9 Data Last Data Data Last Data 6 8 First Data Note: Numbers in circles refer to values in Table 60. Figure 36. DSPI classic SPI timing — slave, CPHA = 0 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 115 Electrical characteristics PCSx SCK Input (CPOL = 0) SCK Input (CPOL = 1) 9 5 6 10 SOUT First Data 7 SIN Data Last Data Data Last Data 8 First Data Note: Numbers in circles refer to values in Table 60. Figure 37. DSPI classic SPI timing — slave, CPHA = 1 3 PCSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 7 SIN First Data 8 10 SOUT First Data Last Data Data 9 Data Last Data Note: Numbers in circles refer to values in Table 60. Figure 38. DSPI modified transfer format timing — master, CPHA = 0 PXD10 Microcontroller Data Sheet, Rev. 1 116 Freescale Semiconductor Electrical characteristics PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 8 7 SIN First Data Last Data Data 10 First Data SOUT 9 Last Data Data Note: Numbers in circles refer to values in Table 60. Figure 39. DSPI modified transfer format timing — master, CPHA = 1 3 2 PCSx 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) SOUT First Data Data First Data 6 Last Data 8 7 SIN 10 9 5 Data Last Data Note: Numbers in circles refer to values in Table 60. Figure 40. DSPI modified transfer format timing — slave, CPHA = 0 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 117 Electrical characteristics PCSx SCK Input (CPOL = 0) SCK Input (CPOL = 1) 9 5 10 First Data SOUT 7 Last Data Data Last Data 8 First Data SIN Data 6 Note: Numbers in circles refer to values in Table 60. Figure 41. DSPI modified transfer format timing — slave, CPHA = 1 I2C timing 3.20.8 Table 61. I2C Input Timing Specifications — SCL and SDA Value No. Symbol C Parameter Unit Min Max 1 — CC D Start condition hold time 2 — IP-Bus Cycle1 2 — CC D Clock low time 8 — IP-Bus Cycle1 4 — CC D Data hold time 0.0 — ns 6 — CC D Clock high time 4 — IP-Bus Cycle1 7 — CC D Data setup time 0.0 — ns 8 — CC D Start condition setup time (for repeated start condition only) 2 — IP-Bus Cycle1 9 — CC D Stop condition setup time 2 — IP-Bus Cycle1 NOTES: 1 Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device PXD10 Microcontroller Data Sheet, Rev. 1 118 Freescale Semiconductor Electrical characteristics Table 62. I2C Output Timing Specifications — SCL and SDA Value No. Symbol C Parameter Unit Min Max 11 — CC D Start condition hold time 6 — IP-Bus Cycle2 21 — CC D Clock low time 10 — IP-Bus Cycle1 33 — CC D SCL/SDA rise time — 99.6 ns 41 — CC D Data hold time 7 — IP-Bus Cycle1 51 — CC D SCL/SDA fall time — 99.5 ns 1 6 — CC D Clock high time 10 — IP-Bus Cycle1 71 — CC D Data setup time 2 — IP-Bus Cycle1 81 — CC D Start condition setup time (for repeated start condition only) 20 — IP-Bus Cycle1 91 — CC D Stop condition setup time 10 — IP-Bus Cycle1 NOTES: 1 Programming IBFD (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR. 2 Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device 3 Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values. 2 6 5 SCL 3 1 4 7 8 9 SDA Figure 42. I2C input/output timing 3.20.9 QuadSPI timing The following notes apply to Table 63: • All data are based on a negative edge data launch from PXD10 and a positive edge data capture as shown in the timing diagrams. • Typical values are provided from center-split material at 25 C and 3.3 V. Minimum and maximum values are from a temperature variation of –45 C to 105 C and the following supply conditions: — IO voltage: 3.2 V, core supply: 1.2 V PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 119 Electrical characteristics • • • • — IO voltage: 3.6 V, core supply: 1.2 V All measurements are taken at 70% of VDDE levels for clock pin and 50% of VDDE level for data pins. Timings correspond to QSPI_SMPR = 0x0000_000x. See the PXD10 Microcontroller Reference Manual for details. A negative value of hold is an indication of pad delay on the clock pad (delay between the edge capturing data inside the device and the edge appearing at the pin). Values are with a load of 15pF on the output pins. Table 63. QuadSPI timing Value Symbol C Parameter Unit Min Typ Max tCQ CC T Clock to Q delay 1.60 2.4 5.33 ns tS CC T Setup time for incoming data 6.1 9.4 12.1 ns tH CC T Hold time requirement for incoming data –12.5 –8.5 –7.5 ns tR CC T Clock pad rise time 0.4 0.6 1.0 ns tF CC T Clock pad fall time 0.3 0.5 0.9 ns 1 tCQ SCK DO 1. Last address out Figure 43. QuadSPI output timing diagram PXD10 Microcontroller Data Sheet, Rev. 1 120 Freescale Semiconductor Electrical characteristics 1 tCQ 2 3 4 5 6 7 8 SCK tS DO tH DI 1. 2. 3. 4. 5. 6. 7. 8. Last address out Address captured at flash Data out from flash Ideal data capture edge Delayed data capture edge with QSPI_SMPR=0x0000_000x Delayed data capture edge with QSPI_SMPR=0x0000_002x Delayed data capture edge with QSPI_SMPR=0x0000_004x Delayed data capture edge with QSPI_SMPR=0x0000_006x Figure 44. QuadSPI input timing diagram The clock profile in Figure 45 is measured at 30% to 70% levels of VDDE. tR tF 70% VDDE 30% SCK Figure 45. QuadSPI clock profile PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 121 Package mechanical data 4 Package mechanical data 4.1 144 LQFP PXD10 Microcontroller Data Sheet, Rev. 1 122 Freescale Semiconductor Package mechanical data Figure 46. LQFP144 mechanical drawing (Part 1 of 3) PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 123 Package mechanical data Figure 47. LQFP144 mechanical drawing (Part 2 of 3) PXD10 Microcontroller Data Sheet, Rev. 1 124 Freescale Semiconductor Package mechanical data Figure 48. LQFP144 mechanical drawing (Part 3 of 3) PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 125 Package mechanical data 4.2 176 LQFP Figure 49. LQFP176 mechanical drawing (Part 1 of 3) PXD10 Microcontroller Data Sheet, Rev. 1 126 Freescale Semiconductor Package mechanical data Figure 50. LQFP176 mechanical drawing (Part 2 of 3) PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 127 Package mechanical data Figure 51. LQFP176 mechanical drawing (Part 3 of 3) PXD10 Microcontroller Data Sheet, Rev. 1 128 Freescale Semiconductor Ordering information 5 Ordering information M PX D 10 10 V LU 64 R Qualification status Brand Family Class Flash memory size Temperature range Package identifier Operating frequency Tape and reel indicator Qualification status P = Pre-qualification (engineering samples) M = Fully spec. qualified, general market flow S = Fully spec. qualified, automotive flow Temperature range V = –40 °C to 105 °C (ambient) Family D = Display Graphics N = Connectivity/Network R = Performance/Real Time Control S = Safety Package identifier LQ = 144 LQFP LU = 176 LQFP Operating frequency 64 = 64 MHz 120 = 120 MHz Flash Memory Size 05 = 512 KB 10 = 1 MB Tape and reel status R = Tape and reel (blank) = Trays Note: Not all options are available on all devices. See Table 64 for more information. Figure 52. PXD10 orderable part number description Table 64. PXD10 orderable part number summary Part number Flash/SRAM Package Speed (MHz) MPXD1005VLQ64 512 KB / 48 KB 144 LQFP (20 mm x 20 mm) 64 MPXD1010VLQ64 1 MB / 48 KB 144 LQFP (20 mm x 20 mm) 64 MPXD1010VLU64 1 MB / 48 KB 176 LQFP (24 mm x 24 mm) 64 PXD10 Microcontroller Data Sheet, Rev. 1 Freescale Semiconductor 129 6 Revision history Table 65. Document revision history Revision 1 Date 30 Sep 2011 Initial release. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Document Number: PXD10 Rev. 1 09/2011 Substantive changes Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011. All rights reserved.