M 93C66A/B 4K 5.0V Automotive Temperature Microwire® Serial EEPROM FEATURES PACKAGE TYPE PDIP CS 1 CLK 2 DI 3 DO 4 93C66A/B • Single supply 5.0V operation • Low power CMOS technology - 1 mA active current (typical) - 1 µA standby current (maximum) • 512x 8 bit organization (93C66A) • 256x 16 bit organization (93C66B) • Self-timed ERASE and WRITE cycles (including auto-erase) • Automatic ERAL before WRAL • Power on/off data protection circuitry • Industry standard 3-wire serial interface • Device status signal during ERASE/WRITE cycles • Sequential READ function • 100,000 E/W cycles guaranteed • Data retention > 200 years • 8-pin PDIP and SOIC packages • Available for the following temperature ranges: - Automotive (E): -40°C to +125°C 8 VCC 7 NC 6 NC 5 VSS SOIC CLK 1 2 DI 3 DO 4 93C66A/B CS 8 VCC 7 NC 6 NC 5 VSS BLOCK DIAGRAM DESCRIPTION MEMORY ARRAY The Microchip Technology Inc. 93C66A/B is a 4K-bit, low-voltage serial Electrically Erasable PROM. The device memory is configured as 512 x 8 bits (93C66A) or 256 x 16 bits (93C66B). Advanced CMOS technology makes this device ideal for low-power, nonvolatile memory applications. The 93C66A/B is available in standard 8-pin DIP and surface mount SOIC packages. This device is only recommended for 5V automotive temperature applications. For all commercial and industrial temperature applications, the 93LC66A/B is recommended. ADDRESS DECODER ADDRESS COUNTER DATA REGISTER OUTPUT BUFFER DO DI CS CLK MEMORY DECODE LOGIC CLOCK GENERATOR VCC VSS Microwire is a registered trademark of National Semiconductor. 1998 Microchip Technology Inc. Preliminary DS21207B-page 1 93C66A/B 1.0 1.1 ELECTRICAL CHARACTERISTICS TABLE 1-1: PIN FUNCTION TABLE Name Maximum Ratings* VCC ...................................................................................7.0V All inputs and outputs w.r.t. VSS ................ -0.6V to VCC +1.0V Storage temperature .....................................-65°C to +150°C Ambient temp. with power applied.................-65°C to +125°C Soldering temperature of leads (10 seconds) ............. +300°C ESD protection on all pins................................................4 kV Function CS Chip Select CLK Serial Data Clock DI Serial Data Input DO Serial Data Output VSS Ground NC No Connect VCC Power Supply *Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 1-2: DC AND AC ELECTRICAL CHARACTERISTICS All parameters apply over the specified operating ranges unless otherwise noted Parameter Automotive (E):VCC = +4.5V to +5.5VTamb = -40°C to +125°C Symbol Min. Max. Units High level input voltage VIH 2.0 VCC +1 V Low level input voltage VIL -0.3 0.8 V Conditions (Note 2) Low level output voltage VOL — 0.4 V High level output voltage VOH 2.4 — V IOH = -400 µA; VCC = 4.5V Input leakage current ILI -10 10 µA VIN = VSS to VCC Output leakage current ILO -10 10 µA VOUT = VSS to VCC pF VIN/VOUT = 0 V (Notes 1 & 2) Tamb = +25°C, FCLK = 1 MHz Pin capacitance (all inputs/outputs) — 7 ICC write — 1.5 mA ICC read — 1 mA Standby current ICCS — 1 µA Clock frequency FCLK — 2 MHz Clock high time TCKH 250 — ns Clock low time TCKL 250 — ns Chip select setup time TCSS 50 — ns Relative to CLK Chip select hold time TCSH 0 — ns Relative to CLK Operating current CIN, COUT IOL = 2.1 mA; VCC = 4.5V CS = VSS Chip select low time TCSL 250 — ns Data input setup time TDIS 100 — ns Data input hold time TDIH 100 — ns Relative to CLK Data output delay time TPD — 400 ns CL = 100 pF Data output disable time TCZ — 100 ns CL = 100 pF (Note 2) Status valid time TSV — 500 ns CL = 100 pF TWC — 2 ms ERASE/WRITE mode TEC — 6 ms ERAL mode TWL — 15 ms WRAL mode — 100K — cycles Program cycle time Endurance Relative to CLK 25°C, VCC = 5.0V, Block Mode (Note 3) Note 1: This parameter is tested at Tamb = 25°C and FCLK = 1 MHz. 2: This parameter is periodically sampled and not 100% tested. 3: This application is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which may be obtained on Microchip’s BBS or website. DS21207B-page 2 Preliminary 1998 Microchip Technology Inc. 93C66A/B 2.0 PIN DESCRIPTION CLK cycles are not required during the self-timed WRITE (i.e., auto ERASE/WRITE) cycle. 2.1 Chip Select (CS) After detecting a START condition, the specified number of clock cycles (respectively low to high transitions of CLK) must be provided. These clock cycles are required to clock in all required opcodes, addresses, and data bits before an instruction is executed (Table 2-1 and Table 2-2). CLK and DI then become don't care inputs waiting for a new START condition to be detected. A high level selects the device; a low level deselects the device and forces it into standby mode. However, a programming cycle which is already in progress will be completed, regardless of the Chip Select (CS) input signal. If CS is brought low during a program cycle, the device will go into standby mode as soon as the programming cycle is completed. Note: CS must be low for 250 ns minimum (TCSL) between consecutive instructions. If CS is low, the internal control logic is held in a RESET status. 2.2 2.3 Serial Clock (CLK) Data In (DI) Data In (DI) is used to clock in a START bit, opcode, address, and data synchronously with the CLK input. The Serial Clock (CLK) is used to synchronize the communication between a master device and the 93C66A/B. Opcodes, addresses, and data bits are clocked in on the positive edge of CLK. Data bits are also clocked out on the positive edge of CLK. 2.4 Data Out (DO) Data Out (DO) is used in the READ mode to output data synchronously with the CLK input (TPD after the positive edge of CLK). CLK can be stopped anywhere in the transmission sequence (at high or low level) and can be continued anytime with respect to clock high time (TCKH) and clock low time (TCKL). This gives the controlling master freedom in preparing opcode, address, and data. This pin also provides READY/BUSY status information during ERASE and WRITE cycles. READY/BUSY status information is available on the DO pin if CS is brought high after being low for minimum chip select low time (TCSL) and an ERASE or WRITE operation has been initiated. The status signal is not available on DO, if CS is held low during the entire ERASE or WRITE cycle. In this case, DO is in the HIGH-Z mode. If status is checked after the ERASE/WRITE cycle, the data line will be high to indicate the device is ready. CLK is a “Don't Care” if CS is low (device deselected). If CS is high, but the START condition has not been detected, any number of clock cycles can be received by the device without changing its status (i.e., waiting for a START condition). TABLE 2-1: CS must go low between consecutive instructions. INSTRUCTION SET FOR 93C66A Instruction SB Opcode ERASE 1 11 Address A8 A7 A6 A5 A4 A3 A2 A1 A0 Data In Data Out Req. CLK Cycles — (RDY/BSY) 12 ERAL 1 00 1 0 X X X X X X X — (RDY/BSY) 12 EWDS 1 00 0 0 X X X X X X X — HIGH-Z 12 EWEN 1 00 1 1 X X X X X X X — HIGH-Z 12 10 A8 A7 A6 A5 A4 A3 A2 A1 A0 — D7 - D0 20 READ 1 WRITE 1 01 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 - D0 (RDY/BSY) 20 WRAL 1 00 0 1 X X X X X X X D7 - D0 (RDY/BSY) 20 Data In Data Out Req. CLK Cycles A1 A0 — (RDY/BSY) 11 TABLE 2-2: INSTRUCTION SET FOR 93C66B Instruction SB Opcode ERASE 1 11 Address A7 A6 A5 A4 A3 A2 ERAL 1 00 1 0 X X X X X X — (RDY/BSY) 11 EWEN 1 00 1 1 X X X X X X — HIGH-Z 11 EWDS 1 00 0 0 X X X X X X — HIGH-Z 11 READ 1 10 A7 A6 A5 A4 A3 A2 A1 A0 — D15 - D0 27 WRITE 1 01 A7 A6 A5 A4 A3 A2 A1 A0 D15 - D0 (RDY/BSY) 27 WRAL 1 00 0 1 X X X X X X D15 - D0 (RDY/BSY) 27 1998 Microchip Technology Inc. Preliminary DS21207B-page 3 93C66A/B 3.0 FUNCTIONAL DESCRIPTION 3.2 Instructions, addresses, and write data are clocked into the DI pin on the rising edge of the clock (CLK). The DO pin is normally held in a HIGH-Z state except when reading data from the device, or when checking the READY/BUSY status during a programming operation. The READY/BUSY status can be verified during an ERASE/WRITE operation by polling the DO pin; DO low indicates that programming is still in progress, while DO high indicates the device is ready. The DO will enter the HIGH-Z state on the falling edge of the CS. 3.1 It is possible to connect the Data In (DI) and Data Out (DI) pins together. However, with this configuration it is possible for a “bus conflict” to occur during the “dummy zero” that precedes the READ operation, if A0 is a logic-high level. Under such a condition the voltage level seen at DO is undefined and will depend upon the relative impedances of DO and the signal source driving A0. The higher the current sourcing capability of A0, the higher the voltage at the DO pin. 3.3 START Condition The START bit is detected by the device if CS and DI are both high with respect to the positive edge of CLK for the first time. Before a START condition is detected, CS, CLK, and DI may change in any combination (except to that of a START condition), without resulting in any device operation (ERASE, ERAL, EWDS, EWEN, READ, WRITE, and WRAL). As soon as CS is high, the device is no longer in the standby mode. An instruction following a START condition will only be executed if the required amount of opcodes, addresses, and data bits for any particular instruction is clocked in. Data In (DI) and Data Out (DO) Data Protection During power-up, all programming modes of operation are inhibited until VCC has reached a level greater than 3.8V. During power-down, the source data protection circuitry acts to inhibit all programming modes when Vcc has fallen below 3.8V at nominal conditions. The ERASE/WRITE Disable (EWDS) and ERASE/ WRITE Enable (EWEN) commands give additional protection against accidentally programming during normal operation. After power-up, the device is automatically in the EWDS mode. Therefore, an EWEN instruction must be performed before any ERASE or WRITE instruction can be executed. After execution of an instruction (i.e., clock in or out of the last required address or data bit) CLK and DI become don't care bits until a new START condition is detected. FIGURE 3-1: CS SYNCHRONOUS DATA TIMING VIH TCSS VIL TCKH TCKL TCSH VIH CLK VIL TDIS TDIH VIH DI VIL TPD TPD DO (READ) TCZ VOH TCZ VOL TSV DO (PROGRAM) Note: VOH STATUS VALID VOL AC Test Conditions: VIL = 0.4V, VIH = 2.4V. DS21207B-page 4 Preliminary 1998 Microchip Technology Inc. 93C66A/B 3.4 ERASE 3.5 The ERASE instruction forces all data bits of the specified address to the logical “1” state. This cycle begins on the rising clock edge of the last address bit. The Erase All (ERAL) instruction will erase the entire memory array to the logical “1” state. The ERAL cycle is identical to the ERASE cycle, except for the different opcode. The ERAL cycle is completely self-timed and commences at the rising clock edge of the last address bit. Clocking of the CLK pin is not necessary after the device has entered the ERAL cycle. The DO pin indicates the READY/BUSY status of the device if CS is brought high after a minimum of 250 ns low (TCSL). DO at logical “0” indicates that programming is still in progress. DO at logical “1” indicates that the register at the specified address has been erased and the device is ready for another instruction. FIGURE 3-2: Erase All (ERAL) The DO pin indicates the READY/BUSY status of the device, if CS is brought high after a minimum of 250 ns low (TCSL) and before the entire ERAL cycle is complete. ERASE TIMING TCSL CS CHECK STATUS CLK 1 DI 1 1 AN AN-1 AN-2 ••• A0 TSV DO HIGH-Z BUSY TCZ READY HIGH-Z TWC FIGURE 3-3: ERAL TIMING TCSL CS CHECK STATUS CLK 1 DI 0 0 1 0 X ••• X TSV DO HIGH-Z BUSY TCZ READY HIGH-Z TEC 1998 Microchip Technology Inc. Preliminary DS21207B-page 5 93C66A/B 3.6 ERASE/WRITE Disable and Enable (EWDS/EWEN) 3.7 The READ instruction outputs the serial data of the addressed memory location on the DO pin. A dummy zero bit precedes the 8-bit (93C66A) or 16-bit (93C66B) output string. The output data bits will toggle on the rising edge of the CLK and are stable after the specified time delay (TPD). Sequential read is possible when CS is held high. The memory data will automatically cycle to the next register and output sequentially. The device powers up in the ERASE/WRITE Disable (EWDS) state. All programming modes must be preceded by an ERASE/WRITE Enable (EWEN) instruction. Once the EWEN instruction is executed, programming remains enabled until an EWDS instruction is executed or VCC is removed from the device. To protect against accidental data disturbance, the EWDS instruction can be used to disable all ERASE/WRITE functions and should follow all programming operations. Execution of a READ instruction is independent of both the EWEN and EWDS instructions. FIGURE 3-4: READ EWDS TIMING TCSL CS CLK 1 DI FIGURE 3-5: 0 0 0 0 ••• X X EWEN TIMING TCSL CS CLK FIGURE 3-6: 0 1 DI 0 1 1 ••• X X READ TIMING CS CLK DI DO DS21207B-page 6 1 HIGH-Z 1 0 An ••• A0 0 Dx ••• D0 Preliminary Dx ••• D0 Dx ••• D0 1998 Microchip Technology Inc. 93C66A/B 3.8 WRITE 3.9 The WRITE instruction is followed by 8 bits (93C66A) or 16 bits (93C66B) of data which are written into the specified address. After the last data bit is clocked into the DI pin the self-timed auto-erase and programming cycle begins. The WRAL instruction will write the entire memory array with the data specified in the command. The WRAL cycle is completely self-timed and commences at the rising clock edge of the last data bit. Clocking of the CLK pin is not necessary after the device has entered the WRAL cycle. The WRAL command does include an automatic ERAL cycle for the device. Therefore, the WRAL instruction does not require an ERAL instruction but the chip must be in the EWEN status. The DO pin indicates the READY/BUSY status of the device, if CS is brought high after a minimum of 250 ns low (TCSL) and before the entire write cycle is complete. DO at logical “0” indicates that programming is still in progress. DO at logical “1” indicates that the register at the specified address has been written with the data specified and the device is ready for another instruction. FIGURE 3-7: Write All (WRAL) The DO pin indicates the READY/BUSY status of the device if CS is brought high after a minimum of 250 ns low (TCSL). WRITE TIMING TCSL CS CLK DI 1 0 1 An ••• A0 Dx ••• D0 TSV HIGH-Z DO TCZ BUSY READY HIGH-Z Twc FIGURE 3-8: WRAL TIMING TCSL CS CLK DI 1 0 0 0 1 X ••• X Dx ••• D0 TSV DO HIGH-Z BUSY TCZ READY HIGH-Z TWL 1998 Microchip Technology Inc. Preliminary DS21207B-page 7 93C66A/B NOTES: DS21207B-page 8 Preliminary 1998 Microchip Technology Inc. 93C66A/B NOTES: 1998 Microchip Technology Inc. Preliminary DS21207B-page 9 93C66A/B NOTES: DS21207B-page 10 Preliminary 1998 Microchip Technology Inc. 93C66A/B 93C66A/B PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. 93C66A/B /P Package: Temperature Range: Device: P = Plastic DIP (300 mil Body), 8-lead SN = Plastic SOIC (150 mil Body), 8-lead E = -40°C to +125°C 93C66A 93C66AT 93C66B 93C66BT 4K Microwire Serial EEPROM (x8) 4K Microwire Serial EEPROM (x8) Tape and Reel 4K Microwire Serial EEPROM (x16) 4K Microwire Serial EEPROM (x16) Tape and Reel Sales and Support Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. Your local Microchip sales office. 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277. 3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required). 1998 Microchip Technology Inc. Preliminary DS21207B-page 11 M WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC Corporate Office Hong Kong United Kingdom Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602-786-7200 Fax: 602-786-7277 Technical Support: 602 786-7627 Web: http://www.microchip.com Microchip Asia Pacific RM 3801B, Tower Two Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431 Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-1189-21-5858 Fax: 44-1189-21-5835 Atlanta India France Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307 Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062 Arizona Microchip Technology SARL Zone Industrielle de la Bonde 2 Rue du Buisson aux Fraises 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Boston Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575 Chicago Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 Dallas Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 972-991-7177 Fax: 972-991-8588 Dayton Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175 Los Angeles Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 714-263-1888 Fax: 714-263-1338 New York EUROPE Korea Germany Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934 Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Müchen, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Shanghai Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan’an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060 Singapore Microchip Technology Taiwan Singapore Branch 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan, R.O.C Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-39-6899939 Fax: 39-39-6899883 JAPAN Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 12/30/97 Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 516-273-5305 Fax: 516-273-5335 San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 Toronto Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253 All rights reserved. © 1998, Microchip Technology Incorporated, USA. 1/98 Printed on recycled paper. Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. DS21207B-page 12 Preliminary 1998 Microchip Technology Inc.