Revision 8 ACT 2 Family FPGAs Features • Up to 8,000 Gate Array Gates (20,000 PLD equivalent gates) • Replaces up to 200 TTL Packages • Replaces up to eighty 20-Pin PAL® Packages • Design Library with over 500 Macro Functions • Single-Module Sequence Functions • Wide-Input Combinatorial Functions • Up to 1,232 Programmable Logic Modules • Up to 998 Flip-Flops • Datapath Performance at 105 MHz • 16-Bit Accumulator Performance to 39 MHz • Two In-Circuit Diagnostic Probe Pins Support Speed Analysis to 50 MHz • Two High-Speed, Low-Skew Clock Networks • I/O Drive to 10 mA • Nonvolatile, User Programmable • Logic Fully Tested Prior to Shipment • 1.0 micron CMOS Technology Table 1 • ACT 2 Product Family Profile Device A1225A A1240A A1280A Gate Array Equivalent Gates 2,500 4,000 8,000 PLD Equivalent Gates 6,250 10,000 20,000 63 100 200 Capacity TTL Equivalent Package 20-Pin PAL Equivalent Packages Logic Modules 25 40 80 451 684 1,232 S-Module 231 348 624 C-Module 220 336 608 382 568 998 Horizontal Tracks/Channel 36 36 36 Vertical Tracks/Channel 15 15 15 250,000 400,000 750,000 83 104 140 16-Bit Prescaled Counters 105 MHz 100 MHz 85 MHz 16-Bit Loadable Counters 70 MHz 69 MHz 67 MHz 16-Bit Accumulators 39 MHz 38 MHz 36 MHz PG100 PL84 PQ100 VQ100 PG132 PL84 PQ144 – TQ176 – PG176 PL84 PQ160 – TQ176 CQ172 Flip-Flops (maximum) Routing Resources PLICE Antifuse Elements User I/Os (maximum) 1 Performance Packages2 CPGA PLCC PQFP VQFP TQFP CQFP – – Notes: 1. Performance is based on –2 speed devices at commercial worst-case operating conditions using PREP Benchmarks, Suite #1, Version 1.2, dated 3-28-93. Any analysis is not endorsed by PREP. 2. See the "Product Plan" on page III for package availability. January 2012 © 2012 Microsemi Corporation I ACT 2 Family FPGAs Ordering Information A1280 A _ PG 1 G 176 C Application (T emperature Range) C = Commercial (0 to +70°C) I = Industrial (–40 to +85°C) M = Military (–55 to +125°C) B = MIL-STD-883 Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS Compliant Packaging Package Type PL = Plastic J-Leaded Chip Carrier PQ = Plastic Quad Flat Pack CQ = Ceramic Quad Flat Pack PG = Ceramic Pin Grid Array TQ = Thin (1.4 mm) Quad Flat Pack VQ = Very Thin (1.0 mm) Quad Flat Pack Speed Grade Blank = Standard Speed –1 = Approximately 15% faster than Standard –2 = Approximately 25% faster than Standard Die Revision A = 1.0 μm CMOS Process Part Number A1225 = 2,500 Gates A1240 = 4,000 Gates A1280 = 8,000 Gates II R ev i si o n 8 ACT 2 Family FPGAs Product Plan Speed Grade1 Device/Package Application1 Std. –1 –2 C I M B 84-Pin Plastic Leaded Chip Carrier (PL) ✓ ✓ ✓ ✓ ✓ – – 100-Pin Plastic Quad Flatpack (PQ) ✓ ✓ ✓ ✓ ✓ – – 100-Pin Very Thin Quad Flatpack (VQ) ✓ ✓ ✓ ✓ – – – 100-Pin Ceramic Pin Grid Array (PG) ✓ ✓ ✓ ✓ – – – 84-Pin Plastic Leaded Chip Carrier (PL) ✓ ✓ ✓ ✓ ✓ – – 132-Pin Ceramic Pin Grid Array (PG) ✓ ✓ ✓ ✓ – ✓ ✓ 144-Pin Plastic Quad Flat Pack (PQ) ✓ ✓ ✓ ✓ ✓ – – 176-Pin Thin (1.4 mm) Quad Flat Pack (TQ) ✓ ✓ ✓ ✓ – – – 160-Pin Plastic Quad Flatpack (PQ) ✓ ✓ ✓ ✓ ✓ – – 172-Pin Ceramic Quad Flatpack (CQ) ✓ ✓ ✓ ✓ – ✓ ✓ 176-Pin Ceramic Pin Grid Array (PG) ✓ ✓ ✓ ✓ – ✓ ✓ 176-Pin Thin (1.4 mm) Quad Flat Pack (TQ) ✓ ✓ ✓ ✓ – – – A1225A Device A1240A Device A1280A Device Notes: 1. Applications: C = Commercial I = Industrial M = Military B = MIL-STD-883 Speed Grade: –1 = Approx. 15% faster than Std. –2 = Approx. 25% faster than Std. Availability: ✓ = Available P = Planned – = Not planned 2. Contact your Microsemi SoC Products Group sales representative for product availability. Device Resources User I/Os Device Series Logic Modules Gates PG176 PG132 PG100 PQ160 PQ144 PQ100 PL84 CQ172 TQ176 VQ100 A1225A 451 2,500 – – 83 – – 83 72 – – 83 A1240A 684 4,000 – 104 – – 104 – 72 – 104 – A1280A 1,232 8,000 140 – – 125 – – 72 140 140 – Contact your local Microsemi SoC Products Group representative for device availability: http://www.microsemi.com/soc/contact/default.aspx. R e visi on 8 III ACT 2 Family FPGAs Table of Contents ACT 2 Family Overview General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Detailed Specifications Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 ACT 2 Timing Model1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 Package Pin Assignments PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 PQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 PQ144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 CQ172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 PG100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 PG132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 PG176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Revision 8 IV 1 – ACT 2 Family Overview General Description The ACT 2 family represents Actel’s second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and Smodules. These modules are optimized for both combinatorial and sequential designs. Based on Actel’s patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, 1.0-μm, two-level metal CMOS, and employ Actel’s PLICE® antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: 386/486™ PC, Sun™, and HP™ workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic®, Mentor Graphics®, and OrCAD™. Revision 8 1 -1 2 – Detailed Specifications Operating Conditions Table 2-1 • Absolute Maximum Ratings1 Symbol Parameter VCC DC supply voltage VI Input voltage VO Output voltage IIO I/O source sink current TSTG Storage temperature Limits Units –0.5 to +7.0 V –0.5 to VCC + 0.5 V –0.5 to VCC + 0.5 V ±20 mA –65 to +150 °C 2 Notes: 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions. 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will be forward biased and can draw excessive current. Table 2-2 • Recommended Operating Conditions Parameter Temperature range* Power supply tolerance Commercial Industrial Military Units 0 to +70 –40 to +85 –55 to +125 °C ±5 ±10 ±10 %VCC Note: *Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military. Revision 8 2 -1 Detailed Specifications Table 2-3 • Electrical Specifications Commercial Symbol Military Min. Max. Min. Max. Min. Max. Units 2.4 – – – – – V (IOH = –6 mA) 3.84 – – – – – V (IOH = –4 mA) – – 3.7 – 3.7 – V (IOL = 10 mA)2 – 0.5 – – – – V (IOL = 6 mA) – 0.33 – 0.40 – 0.40 V VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 V VIH 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V – 500 – 500 – 500 ns CIO I/O capacitance – 10 – 10 – 10 pF Standby Current, ICC4 (typical = 1 mA) – 2 – 10 – 20 mA –10 +10 –10 +10 –10 +10 µA 1 VOH VOL1 Parameter Industrial (IOH = –10 mA) 2 Input Transition Time tR, tF2 2,3 Leakage ICC(D) Current5 Dynamic VCC supply current. See the Power Dissipation section. Notes: 1. 2. 3. 4. Only one output tested at a time. VCC = minimum. Not tested, for information only. Includes worst-case PG176 package capacitance. VOUT = 0 V, f = 1 MHz All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operations. 5. VOUT, VIN = VCC or GND. 2-2 R e vi s i o n 8 ACT 2 Family FPGAs Package Thermal Characteristics The device junction to case thermal characteristic is θjc, and the junction to ambient air characteristic is θja. The thermal characteristics for θja are shown with two different air flow rates. Maximum junction temperature is 150°C. A sample calculation of the absolute maximum power dissipation allowed for a PQ160 package at commercial temperature and still air is as follows: 150°C – 70°C Max. junction temp. (°C) – Max. ambient temp. (°C)-------------------------------------------------------------------------------------------------------------------------------------= ------------------------------------ = 2.4 W 33°C/W θ ja °C/W EQ 1 Table 2-4 • Package Thermal Characteristics Pin Count θjc θja Still Air θja 300 ft./min. Units 100 5 35 17 °C/W 132 5 30 15 °C/W 176 8 23 12 °C/W Ceramic Quad Flatpack 172 8 25 15 °C/W Plastic Quad Flatpack1 100 13 48 40 °C/W 144 15 40 32 °C/W 160 15 38 30 °C/W Plastic Leaded Chip Carrier 84 12 37 28 °C/W Very Thin Quad Flatpack 100 12 43 35 °C/W Thin Quad Flatpack 176 15 32 25 °C/W Package Type* Ceramic Pin Grid Array Notes: (Maximum Power in Still Air) 1. Maximum power dissipation values for PQFP packages are 1.9 W (PQ100), 2.3 W (PQ144), and 2.4 W (PQ160). 2. Maximum power dissipation for PLCC packages is 2.7 W. 3. Maximum power dissipation for VQFP packages is 2.3 W. 4. Maximum power dissipation for TQFP packages is 3.1 W. Power Dissipation P = [ICC standby + ICCactive] * VCC + IOL * VOL * N + IOH* (VCC – VOH) * M EQ 2 where: ICC standby is the current flowing when no inputs or outputs are changing ICCactive is the current flowing due to CMOS switching. IOL and IOH are TTL sink/source currents. VOL and VOH are TTL level output voltages. N is the number of outputs driving TTL loads to VOL. M is the number of outputs driving TTL loads to VOH. An accurate determination of N and M is problematical because their values depend on the family type, design details, and on the system I/O. The power can be divided into two components: static and active. Revision 8 2 -3 Detailed Specifications Static Power Component Microsemi FPGAs have small static power components that result in lower power dissipation than PALs or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved. The power due to standby current is typically a small component of the overall power. Standby power is calculated in Table 2-5 for commercial, worst case conditions. Table 2-5 • Standby Power Calculation ICC 2 mA VCC Power 5.25 V 10.5 mW The static power dissipated by TTL loads depends on the number of outputs driving high or low and the DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual dissipation will average somewhere between as I/Os switch states with time. Active Power Component Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem-pole current in CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation. Equivalent Capacitance The power dissipated by a CMOS circuit can be expressed by EQ 3. Power (µW) = CEQ * VCC2 * F EQ 3 Where: CEQ is the equivalent capacitance expressed in pF. VCC is the power supply in volts. F is the switching frequency in MHz. Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Table 2-6. Table 2-6 • CEQ Values for Microsemi FPGAs Item 2-4 CEQ Value Modules (CEQM) 5.8 Input Buffers (CEQI) 12.9 Output Buffers (CEQO) 23.8 Routed Array Clock Buffer Loads (CEQCR) 3.9 R e vi s i o n 8 ACT 2 Family FPGAs To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 4 shows a piece-wise linear summation over all components. Power =VCC2 * [(m * CEQM * fm)modules + (n * CEQI * fn) inputs + (p * (CEQO+ CL) * fp)outputs + 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 + 0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 EQ 4 Where: m = Number of logic modules switching at fm n = Number of input buffers switching at fn p = Number of output buffers switching at fp q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r1 = Fixed capacitance due to first routed array clock r2 = Fixed capacitance due to second routed array clock CEQM = Equivalent capacitance of logic modules in pF CEQI = Equivalent capacitance of input buffers in pF CEQO = Equivalent capacitance of output buffers in pF CEQCR = Equivalent capacitance of routed array clock in pF CL = Output lead capacitance in pF fm = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz fp = Average output buffer switching rate in MHz fq1 = Average first routed array clock rate in MHz fq2 = Average second routed array clock rate in MHz Table 2-7 • Fixed Capacitance Values for Microsemi FPGAs Device Type r1, routed_Clk1 r2, routed_Clk2 A1225A 106 106.0 A1240A 134 134.2 A1280A 168 167.8 Revision 8 2 -5 Detailed Specifications Determining Average Switching Frequency To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are given in Table 2-8. Table 2-8 • Guidelines for Predicting Power Dissipation Data 2-6 Value Logic Modules (m) 80% of modules Inputs switching (n) # inputs/4 Outputs switching (p) # output/4 First routed array clock loads (q1) 40% of sequential modules Second routed array clock loads (q2) 40% of sequential modules Load capacitance (CL) 35 pF Average logic module switching rate (fm) F/10 Average input switching rate (fn) F/5 Average output switching rate (fp) F/10 Average first routed array clock rate (fq1) F Average second routed array clock rate (fq2) F/2 R e vi s i o n 8 ACT 2 Family FPGAs ACT 2 Timing Model1 Input Delays I/O Module Predicted Routing Delays Internal Delays t INYL= 2.6 ns t IRD2= 4.8 ns(2) Combinatorial Logic Module Output Delays I/O Module t DLH = 8.0 ns D Q t RD1 = 1.4 ns t RD2 = 1.7 ns t RD4 = 3.1 ns t RD8 = 4.7 ns t PD = 3.8 ns G Combinatorial Logic Included in tSUD t CKH = 11.8 ns tDLH = 8.0 ns Sequential Logic Module t INH = 2.0 ns t INSU = 4.0 ns t INGL = 4.7 ns ARRAY CLOCKS I/O Module FO = 256 tSUD = 0.4 ns t HD = 0.0 ns D D Q Q t RD1 = 1.4 ns tENHZ = 7.1 ns G t CO = 3.8 ns t OUTH = 0.0 ns tOUTSU = 0.4 ns t GLH = 9.0 ns F MAX = 100 MHz Notes: 1. Values shown for A1240A-2 at worst-case commercial conditions. 2. Input module predicted routing delay Figure 2-1 • Timing Model Revision 8 2 -7 Detailed Specifications Parameter Measurement E D VCC In 50% PAD VOL 50% VOH PAD To AC test loads (shown below) TRIBUFF VCC GND E 1.5 V 1.5 V 50% VCC VCC GND 50% 1.5 V PAD 10% VOL tDHS, Figure 2-2 • tENZL tDHS E 50% PAD GND 50% VOH 90% 1.5 V tENZH tENLZ GND tENHZ Output Buffer Delays Load 2 (Used to measure rising/falling edges) Load 1 (Used to measure propagation delay) VCC GND To the output under test 50 pF To the output under test R to VCC for tPLZ / tPZL R to GND for tPHZ / tPZH R = 1 kΩ 50 pF Figure 2-3 • AC Test Loads PAD Y INBUF 3V PAD 1.5 V 1.5 V VCC Y GND 2-8 50% 50% tINYH Figure 2-4 • 0V tINYL Input Buffer Delays R e vi s i o n 8 ACT 2 Family FPGAs S A B Y VCC S, A or B 50% 50% VCC Y GND 50% GND 50% tPLH tPHL VCC Y GND 50% tPHL Figure 2-5 • 50% tPLH Module Delays Sequential Module Timing Characteristics D E CLK Y CLR (Positive edge triggered) tHD D* tSUD tA tWCLKA G, CLK tSUENA tWCLKI tHENA E tCO Q tRS PRE, CLR tWASYN Note: D represents all data functions involving A, B, and S for multiplexed flip-flops. Figure 2-6 • Flip-Flops and Latches Revision 8 2 -9 Detailed Specifications PAD DATA IBDL G PAD CLK CLKBUF DATA t INH G t INSU t HEXT CLK t SUEXT Figure 2-7 • Input Buffer Latches D PAD OBDLHS G D tOUTSU G tOUTH Figure 2-8 • 2- 10 Output Buffer Latches R e visio n 8 ACT 2 Family FPGAs Timing Derating Factor (Temperature and Voltage) Table 2-9 • Timing Derating Factor (Temperature and Voltage) (Commercial Minimum/Maximum Specification) x Industrial Military Min. Max. Min. 0.69 1.11 0.67 Max. 1.23 Table 2-10 • Timing Derating Factor for Designs at Typical Temperature (TJ = 25°C) and Voltage (5.0 V) (Commercial Maximum Specification) x 0.85 Table 2-11 • Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C) –55 –40 0 25 70 85 125 4.50 0.75 0.79 0.86 0.92 1.06 1.11 1.23 4.75 0.71 0.75 0.82 0.87 1.00 1.05 1.13 5.00 0.69 0.72 0.80 0.85 0.97 1.02 1.13 5.25 0.68 0.69 0.77 0.82 0.95 0.98 1.09 5.50 0.67 0.69 0.76 0.81 0.93 0.97 1.08 1.3 D er at i n g Fac t o r 1.2 1.1 125˚C 1.0 85˚C 70˚C 0.9 25˚C 0.8 0˚C –40˚C –55˚C 0.7 0.6 4.504.755.005.255.50 Voltage (V) Note: This derating factor applies to all routing and propagation delays. Figure 2-9 • Junction Temperature and Voltage Derating Curves (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C) Revision 8 2- 11 Detailed Specifications A1225A Timing Characteristics Table 2-12 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C Logic Module Propagation Delays1 –2 Speed3 Parameter/Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tPD1 Single Module 3.8 4.3 5.0 ns tCO Sequential Clock to Q 3.8 4.3 5.0 ns tGO Latch G to Q 3.8 4.3 5.0 ns tRS Flip-Flop (Latch) Reset to Q 3.8 4.3 5.0 ns Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 1.1 1.2 1.4 ns tRD2 FO = 2 Routing Delay 1.7 1.9 2.2 ns tRD3 FO = 3 Routing Delay 2.3 2.6 3.0 ns tRD4 FO = 4 Routing Delay 2.8 3.1 3.7 ns tRD8 FO = 8 Routing Delay 4.4 4.9 5.8 ns Sequential Timing Characteristics 3,4 tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.5 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.5 5.0 6.0 ns tWASYN Flip-Flop (Latch) Clock Asynchronous Pulse Width 4.5 5.0 6.0 ns tA Flip-Flop Clock Input Period 9.4 11.0 13.0 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 ns tINSU Input Buffer Latch Setup 0.4 0.4 0.5 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Setup 0.4 0.4 0.5 ns fMAX Flip-Flop (Latch) Clock Frequency 105.0 90.0 75.0 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD —whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility. 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 2- 12 R e visio n 8 ACT 2 Family FPGAs A1225A Timing Characteristics (continued) Table 2-13 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C I/O Module Input Propagation Delays –2 Speed Parameter/Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tINYH Pad to Y High 2.9 3.3 3.8 ns tINYL Pad to Y Low 2.6 3.0 3.5 ns tINGH G to Y High 5.0 5.7 6.6 ns tINGL G to Y Low 4.7 5.4 6.3 ns * Input Module Predicted Input Routing Delays tIRD1 FO = 1 Routing Delay 4.1 4.6 5.4 ns tIRD2 FO = 2 Routing Delay 4.6 5.2 6.1 ns tIRD3 FO = 3 Routing Delay 5.3 6.0 7.1 ns tIRD4 FO = 4 Routing Delay 5.7 6.4 7.6 ns tIRD8 FO = 8 Routing Delay 7.4 8.3 9.8 ns FO = 32 10.2 11.0 12.8 ns FO = 256 11.8 13.0 15.7 FO = 32 10.2 11.0 12.8 FO = 256 12.0 13.2 15.9 Global Clock Network tCKH tCKL tPWH tPWL tCKSW tSUEXT tHEXT tP fMAX Input Low to High Input High to Low Minimum Pulse Width High Minimum Pulse Width Low Maximum Skew Input Latch External Setup Input Latch External Hold Minimum Period Maximum Frequency FO = 32 3.4 4.1 4.5 FO = 256 3.8 4.5 5.0 FO = 32 3.4 4.1 4.5 FO = 256 3.8 4.5 5.0 ns ns FO = 32 0.7 0.7 0.7 FO = 256 3.5 3.5 3.5 FO = 32 0.0 0.0 0.0 FO = 256 0.0 0.0 0.0 FO = 32 7.0 7.0 7.0 FO = 256 11.2 11.2 11.2 FO = 32 7.7 8.3 9.1 FO = 256 8.1 8.8 10.0 ns ns ns ns ns FO = 32 130.0 120.0 110.0 FO = 256 125.0 115.0 100.0 ns Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Postroute timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. Revision 8 2- 13 Detailed Specifications A1225A Timing Characteristics (continued) Table 2-14 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C TTL Output Module Timing1 Parameter/Description –2 Speed Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tDLH Data to Pad High 8.0 9.0 10.6 ns tDHL Data to Pad Low 10.1 11.4 13.4 ns tENZH Enable Pad Z to High 8.9 10.0 11.8 ns tENZL Enable Pad Z to Low 11.6 13.2 15.5 ns tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns tENLZ Enable Pad Low to Z 8.3 9.5 11.1 ns tGLH G to Pad High 8.9 10.2 11.9 ns tGHL G to Pad Low 11.2 12.7 14.9 ns dTLH Delta Low to High 0.07 0.08 0.09 ns/pF dTHL Delta High to Low 0.12 0.13 0.16 ns/pF CMOS Output Module Timing1 tDLH Data to Pad High 10.1 11.5 13.5 ns tDHL Data to Pad Low 8.4 9.6 11.2 ns tENZH Enable Pad Z to High 8.9 10.0 11.8 ns tENZL Enable Pad Z to Low 11.6 13.2 15.5 ns tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns tENLZ Enable Pad Low to Z 8.3 9.5 11.1 ns tGLH G to Pad High 8.9 10.2 11.9 ns tGHL G to Pad Low 11.2 12.7 14.9 ns dTLH Delta Low to High 0.12 0.13 0.16 ns/pF dTHL Delta High to Low 0.09 0.10 0.12 ns/pF Notes: 1. Delays based on 50 pF loading. 2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx. 2- 14 R e visio n 8 ACT 2 Family FPGAs A1240A Timing Characteristics Table 2-15 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C Logic Module Propagation Delays1 –2 Speed3 Parameter/Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tPD1 Single Module 3.8 4.3 5.0 ns tCO Sequential Clock to Q 3.8 4.3 5.0 ns tGO Latch G to Q 3.8 4.3 5.0 ns tRS Flip-Flop (Latch) Reset to Q 3.8 4.3 5.0 ns Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 1.4 1.5 1.8 ns tRD2 FO = 2 Routing Delay 1.7 2.0 2.3 ns tRD3 FO = 3 Routing Delay 2.3 2.6 3.0 ns tRD4 FO = 4 Routing Delay 3.1 3.5 4.1 ns tRD8 FO = 8 Routing Delay 4.7 5.4 6.3 ns Sequential Timing Characteristics 3,4 tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.5 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.5 6.0 6.5 ns tWASYN Flip-Flop (Latch) Clock Asynchronous Pulse Width 4.5 6.0 6.5 ns tA Flip-Flop Clock Input Period 9.8 12.0 15.0 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 ns tINSU Input Buffer Latch Setup 0.4 0.4 0.5 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Setup 0.4 0.4 0.5 ns fMAX Flip-Flop (Latch) Clock Frequency 100.0 80.0 66.0 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD —whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility. 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Revision 8 2- 15 Detailed Specifications A1240A Timing Characteristics (continued) Table 2-16 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C I/O Module Input Propagation Delays –2 Speed Parameter/Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tINYH Pad to Y High 2.9 3.3 3.8 ns tINYL Pad to Y Low 2.6 3.0 3.5 ns tINGH G to Y High 5.0 5.7 6.6 ns tINGL G to Y Low 4.7 5.4 6.3 ns * Input Module Predicted Input Routing Delays tIRD1 FO = 1 Routing Delay 4.2 4.8 5.6 ns tIRD2 FO = 2 Routing Delay 4.8 5.4 6.4 ns tIRD3 FO = 3 Routing Delay 5.4 6.1 7.2 ns tIRD4 FO = 4 Routing Delay 5.9 6.7 7.9 ns tIRD8 FO = 8 Routing Delay 7.9 8.9 10.5 ns FO = 32 10.2 11.0 12.8 ns FO = 256 11.8 13.0 15.7 FO = 32 10.2 11.0 12.8 FO = 256 12.0 13.2 15.9 Global Clock Network tCKH tCKL tPWH tPWL tCKSW tSUEXT tHEXT tP fMAX Input Low to High Input High to Low Minimum Pulse Width High Minimum Pulse Width Low Maximum Skew Input Latch External Setup Input Latch External Hold Minimum Period Maximum Frequency FO = 32 3.8 4.5 5.5 FO = 256 4.1 5.0 5.8 FO = 32 3.8 4.5 5.5 FO = 256 4.1 5.0 5.8 ns ns FO = 32 0.5 0.5 0.5 FO = 256 2.5 2.5 2.5 FO = 32 0.0 0.0 0.0 FO = 256 0.0 0.0 0.0 FO = 32 7.0 7.0 7.0 FO = 256 11.2 11.2 11.2 FO = 32 8.1 9.1 11.1 FO = 256 8.8 10.0 11.7 ns ns ns ns ns FO = 32 125.0 110.0 90.0 FO = 256 115.0 100.0 85.0 ns Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Postroute timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 2- 16 R e visio n 8 ACT 2 Family FPGAs A1240A Timing Characteristics (continued) Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C TTL Output Module Timing1 Parameter/Description –2 Speed Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tDLH Data to Pad High 8.0 9.0 10.6 ns tDHL Data to Pad Low 10.1 11.4 13.4 ns tENZH Enable Pad Z to High 8.9 10.0 11.8 ns tENZL Enable Pad Z to Low 11.7 13.2 15.5 ns tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns tGLH G to Pad High 9.0 10.2 11.9 ns tGHL G to Pad Low 11.2 12.7 14.9 ns dTLH Delta Low to High 0.07 0.08 0.09 ns/pF dTHL Delta High to Low 0.12 0.13 0.16 ns/pF CMOS Output Module Timing1 tDLH Data to Pad High 10.2 11.5 13.5 ns tDHL Data to Pad Low 8.4 9.6 11.2 ns tENZH Enable Pad Z to High 8.9 10.0 11.8 ns tENZL Enable Pad Z to Low 11.7 13.2 15.5 ns tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns tGLH G to Pad High 9.0 10.2 11.9 ns tGHL G to Pad Low 11.2 12.7 14.9 ns dTLH Delta Low to High 0.12 0.13 0.16 ns/pF dTHL Delta High to Low 0.09 0.10 0.12 ns/pF Notes: 1. Delays based on 50 pF loading. 2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx. Revision 8 2- 17 Detailed Specifications A1280A Timing Characteristics Table 2-18 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C Logic Module Propagation Delays1 –2 Speed3 Parameter/Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tPD1 Single Module 3.8 4.3 5.0 ns tCO Sequential Clock to Q 3.8 4.3 5.0 ns tGO Latch G to Q 3.8 4.3 5.0 ns tRS Flip-Flop (Latch) Reset to Q 3.8 4.3 5.0 ns Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 1.7 2.0 2.3 ns tRD2 FO = 2 Routing Delay 2.5 2.8 3.3 ns tRD3 FO = 3 Routing Delay 3.0 3.4 4.0 ns tRD4 FO = 4 Routing Delay 3.7 4.2 4.9 ns tRD8 FO = 8 Routing Delay 6.7 7.5 8.8 ns Sequential Timing Characteristics 3,4 tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.5 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 5.5 6.0 7.0 ns tWASYN Flip-Flop (Latch) Clock Asynchronous Pulse Width 5.5 6.0 7.0 ns tA Flip-Flop Clock Input Period 11.7 13.3 18.0 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 ns tINSU Input Buffer Latch Setup 0.4 0.4 0.5 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Setup 0.4 0.4 0.5 ns fMAX Flip-Flop (Latch) Clock Frequency 85.0 75.0 50.0 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD —whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility. 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 2- 18 R e visio n 8 ACT 2 Family FPGAs A1280A Timing Characteristics (continued) Table 2-19 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C I/O Module Input Propagation Delays –2 Speed Parameter/Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tINYH Pad to Y High 2.9 3.3 3.8 ns tINYL Pad to Y Low 2.7 3.0 3.5 ns tINGH G to Y High 5.0 5.7 6.6 ns tINGL G to Y Low 4.8 5.4 6.3 ns * Input Module Predicted Input Routing Delays tIRD1 FO = 1 Routing Delay 4.6 5.1 6.0 ns tIRD2 FO = 2 Routing Delay 5.2 5.9 6.9 ns tIRD3 FO = 3 Routing Delay 5.6 6.3 7.4 ns tIRD4 FO = 4 Routing Delay 6.5 7.3 8.6 ns tIRD8 FO = 8 Routing Delay 9.4 10.5 12.4 ns FO = 32 10.2 11.0 12.8 ns FO = 256 13.1 14.6 17.2 FO = 32 10.2 11.0 12.8 FO = 256 13.3 14.9 17.5 Global Clock Network tCKH tCKL tPWH tPWL tCKSW tSUEXT tHEXT tP fMAX Input Low to High Input High to Low Minimum Pulse Width High Minimum Pulse Width Low Maximum Skew Input Latch External Setup Input Latch External Hold Minimum Period Maximum Frequency FO = 32 5.0 5.5 6.6 FO = 256 5.8 6.4 7.6 FO = 32 5.0 5.5 6.6 FO = 256 5.8 6.4 7.6 ns ns FO = 32 0.5 0.5 0.5 FO = 256 2.5 2.5 2.5 FO = 32 0.0 0.0 0.0 FO = 256 0.0 0.0 0.0 FO = 32 7.0 7.0 7.0 FO = 256 11.2 11.2 11.2 FO = 32 9.6 11.2 13.3 FO = 256 10.6 12.6 15.3 ns ns ns ns ns FO = 32 105.0 90.0 75.0 FO = 256 95.0 80.0 65.0 ns Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Postroute timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. A1280A Timing Characteristics (continued) Revision 8 2- 19 Detailed Specifications Table 2-20 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C TTL Output Module Timing1 Parameter/Description –2 Speed Min. Max. –1 Speed Min. Max. Std. Speed Min. Units Max. tDLH Data to Pad High 8.1 9.0 10.6 ns tDHL Data to Pad Low 10.2 11.4 13.4 ns tENZH Enable Pad Z to High 9.0 10.0 11.8 ns tENZL Enable Pad Z to Low 11.8 13.2 15.5 ns tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns tGLH G to Pad High 9.0 10.2 11.9 ns tGHL G to Pad Low 11.3 12.7 14.9 ns dTLH Delta Low to High 0.07 0.08 0.09 ns/pF dTHL Delta High to Low 0.12 0.13 0.16 ns/pF CMOS Output Module Timing1 tDLH Data to Pad High 10.3 11.5 13.5 ns tDHL Data to Pad Low 8.5 9.6 11.2 ns tENZH Enable Pad Z to High 9.0 10.0 11.8 ns tENZL Enable Pad Z to Low 11.8 13.2 15.5 ns tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns tGLH G to Pad High 9.0 10.2 11.9 ns tGHL G to Pad Low 11.3 12.7 14.9 ns dTLH Delta Low to High 0.12 0.13 0.16 ns/pF dTHL Delta High to Low 0.09 0.10 0.12 ns/pF Notes: 1. Delays based on 50 pF loading. 2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx. 2- 20 R e visio n 8 ACT 2 Family FPGAs Pin Descriptions CLKA Clock A (Input) TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O. CLKB Clock B (Input) TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O. DCLK Diagnostic Clock (Input) TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. GND Ground Low supply voltage. I/O Input/Output (Input, Output) The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low by the ALS software. MODE Mode (Input) The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled High when required. NC No Connection This pin is not connected to circuitry within the device. PRA Probe A (Output) The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. PRB Probe B (Output) The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. SDI Serial Data Input (Input) Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. SDO Serial Data Output (Output) Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. VCC 5.0 V Supply Voltage High supply voltage. Revision 8 2- 21 3 – Package Pin Assignments PL84 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 12 74 13 73 14 72 15 71 16 70 17 69 18 68 19 67 20 66 21 65 84-Pin PLCC 22 64 23 63 24 62 25 61 26 60 27 59 28 58 29 57 30 56 31 55 32 54 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx. Revision 8 3 -1 Package Pin Assignments PL84 Pin Number A1225A Function A1240A Function A1280A Function 2 CLKB, I/O CLKB, I/O CLKB, I/O 4 PRB, I/O PRB, I/O PRB, I/O 6 GND GND GND 10 DCLK, I/O DCLK, I/O DCLK, I/O 12 MODE MODE MODE 22 VCC VCC VCC 23 VCC VCC VCC 28 GND GND GND 43 VCC VCC VCC 49 GND GND GND 52 SDO SDO SDO 63 GND GND GND 64 VCC VCC VCC 65 VCC VCC VCC 70 GND GND GND 76 SDI, I/O SDI, I/O SDI, I/O 81 PRA, I/O PRA, I/O PRA, I/O 83 CLKA, I/O CLKA, I/O CLKA, I/O 84 VCC VCC VCC Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. 3-2 R e vi s i o n 8 ACT 2 Family FPGAs PQ100 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 81 50 82 49 83 48 84 47 85 46 86 45 87 44 88 43 89 42 100-Pin 90 41 PQFP 91 40 92 39 93 38 94 37 95 36 96 35 97 34 98 33 99 32 100 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx Revision 8 3 -3 Package Pin Assignments PQ100 PQ100 Pin Number A1225A Function Pin Number A1225A Function 2 DCLK, I/O 65 VCC 4 MODE 66 VCC 9 GND 67 VCC 16 VCC 72 GND 17 VCC 79 SDI, I/O 22 GND 84 GND 34 GND 87 PRA, I/O 40 VCC 89 CLKA, I/O 46 GND 90 VCC 52 SDO 92 CLKB, I/O 57 GND 94 PRB, I/O 64 GND 96 GND Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. 3-4 R e vi s i o n 8 ACT 2 Family FPGAs PQ144 1 144 144-Pin PQFP Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx Revision 8 3 -5 Package Pin Assignments PQ144 PQ144 Pin Number A1240A Function Pin Number A1240A Function 2 MODE 89 VCC 9 GND 90 VCC 10 GND 91 VCC 11 GND 92 VCC 18 VCC 93 VCC 19 VCC 100 GND 20 VCC 101 GND 21 VCC 102 GND 28 GND 110 SDI, I/O 29 GND 116 GND 30 GND 117 GND 44 GND 118 GND 45 GND 123 PRA, I/O 46 GND 125 CLKA, I/O 54 VCC 126 VCC 55 VCC 127 VCC 56 VCC 128 VCC 64 GND 130 CLKB, I/O 65 GND 132 PRB, I/O 71 SDO 136 GND 79 GND 137 GND 80 GND 138 GND 81 GND 144 DCLK, I/O 88 GND Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. 3-6 R e vi s i o n 8 ACT 2 Family FPGAs 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 PQ160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 160-Pin PQFP 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 Note: This is the top view of the package Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx Revision 8 3 -7 Package Pin Assignments PQ160 PQ160 Pin Number A1280A Function Pin Number A1280A Function 2 DCLK, I/O 69 GND 6 VCC 80 GND 11 GND 82 SDO 16 PRB, I/O 86 VCC 18 CLKB, I/O 89 GN 20 VCC 98 GND 21 CLKA, I/O 99 GND 23 PRA, I/O 109 GND 30 GND 114 VCC 35 VCC 120 GND 38 SDI, I/O 125 GND 40 GND 130 GND 44 GND 135 VCC 49 GND 138 VCC 54 VCC 139 VCC 57 VCC 140 GND 58 VCC 145 GND 59 GND 150 VCC 60 VCC 155 GND 61 GND 159 MODE 64 GND 160 GND Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. 3-8 R e vi s i o n 8 ACT 2 Family FPGAs 76 77 78 80 79 81 82 84 83 86 85 87 88 89 91 90 93 92 94 95 96 97 98 99 100 VQ100 1 75 2 74 3 73 4 72 5 71 6 70 7 69 8 68 9 67 10 66 11 65 100-Pin VQFP 12 13 64 63 50 49 48 47 46 45 44 43 42 41 40 39 38 51 37 52 25 36 53 24 35 54 23 34 55 22 33 56 21 32 57 20 31 58 19 30 59 18 29 60 17 28 61 16 27 62 15 26 14 Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx Revision 8 3 -9 Package Pin Assignments VQ100 VQ100 Pin Number A1225A Function Pin Number A1225A Function 2 MODE 64 VCC 7 GND 65 VCC 14 VCC 70 GND 15 VCC 77 SDI, I/O 20 GND 82 GND 32 GND 85 PRA, I/O 38 VCC 87 CLKA, I/O 44 GND 88 VCC 50 SDO 90 CLKB, I/O 55 GND 92 PRB, I/O 62 GND 94 GND 63 VCC 100 DCLK, I/O Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. 3- 10 R e visio n 8 ACT 2 Family FPGAs 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 TQ176 176-Pin TQFP 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx Revision 8 3- 11 Package Pin Assignments TQ176 TQ176 Pin Number A1240A Function A1280A Function Pin Number A1240A Function A1280A Function 1 GND GND 82 NC VCC 2 MODE MODE 86 NC I/O 8 NC NC 87 SDO SDO 10 NC I/O 89 GND GND 11 NC I/O 96 NC I/O 13 NC VCC 97 NC I/O 18 GND GND 101 NC NC 19 NC I/O 103 NC I/O 20 NC I/O 106 GND GND 22 NC I/O 107 NC I/O 23 GND GND 108 NC I/O 24 NC VCC 109 GND GND 25 VCC VCC 110 VCC VCC 26 NC I/O 111 GND GND 27 NC I/O 112 VCC VCC 28 VCC VCC 113 VCC VCC 29 NC I/O 114 NC I/O 33 NC NC 115 NC I/O 37 NC I/O 116 NC VCC 38 NC NC 121 NC NC 45 GND GND 124 NC I/O 52 NC VCC 125 NC I/O 54 NC I/O 126 NC NC 55 NC I/O 133 GND GND 57 NC NC 135 SDI, I/O SDI, I/O 61 NC I/O 136 NC I/O 64 NC I/O 140 NC VCC 66 NC I/O 143 NC I/O 67 GND GND 144 NC I/O 68 VCC VCC 145 NC NC 74 NC I/O 147 NC I/O 77 NC NC 151 NC I/O 78 NC I/O 152 PRA, I/O PRA, I/O 80 NC I/O 154 CLKA, I/O CLKA, I/O 3- 12 R e visio n 8 ACT 2 Family FPGAs TQ176 Pin Number A1240A Function A1280A Function 155 VCC VCC 156 GND GND 158 CLKB, I/O CLKB, I/O 160 PRB, I/O PRB, I/O 161 NC I/O 165 NC NC 166 NC I/O 168 NC I/O 170 NC VCC 173 NC I/O 175 DCLK, I/O DCLK, I/O Notes: 1. NC denotes no connection. 2. All unlisted pin numbers are user I/Os. 3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. Revision 8 3- 13 Package Pin Assignments CQ172 172 Pin #1 Index 1 172-Pin CQFP Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx 3- 14 R e visio n 8 ACT 2 Family FPGAs CQ172 CQ172 Pin Number A1280A Function Pin Number A1280A Function 1 MODE 107 VCC 7 GND 108 GND 12 VCC 109 VCC 17 GND 110 VCC 22 GND 113 VCC 23 VCC 118 GND 24 VCC 123 GND 27 VCC 131 SDI, I/O 32 GND 136 VCC 37 GND 141 GND 50 VCC 148 PRA, I/O 55 GND 150 CLKA, I/O 65 GND 151 VCC 66 VCC 152 GND 75 GND 154 CLKB, I/O 80 VCC 156 PRB, I/O 85 SDO 161 GND 98 GND 166 VCC 103 GND 171 DCLK, I/O 106 GND Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. Revision 8 3- 15 Package Pin Assignments PG100 1 2 3 4 5 6 7 8 9 10 11 A A B B C C D D E E 100-Pin CPGA F F G G H H J J K K L L 1 2 3 4 5 6 7 8 9 10 11 Orientation Pin Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx 3- 16 R e visio n 8 ACT 2 Family FPGAs PG100 PG100 Pin Number A1225A Function Pin Number A1225A Function A4 PRB, I/O E11 VCC A7 PRA, I/O F3 VCC B6 VCC F9 VCC C2 MODE F10 VCC C3 DCLK, I/O F11 GND C5 GND G1 VCC C6 CLKA, I/O G3 GND C7 GND G9 GND C8 SDI, I/O J5 GND D6 CLKB, I/O J7 GND D10 GND J9 SDO E3 GND K6 VCC Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. Revision 8 3- 17 Package Pin Assignments PG132 1 2 3 4 5 6 7 8 9 10 11 12 13 A A B B C C D D E E F F 132-Pin CPGA G G H H J J K K L L M M N N 1 2 3 4 5 6 7 8 9 10 11 12 13 Orientation Pin Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx 3- 18 R e visio n 8 ACT 2 Family FPGAs PG132 PG132 Pin Number A1240A Function Pin Number A1240A Function A1 MODE G3 VCC B5 GND G4 VCC B6 CLKB, I/O G10 VCC B7 CLKA, I/O G11 VCC B8 PRA, I/O G12 VCC B9 GND G13 VCC B12 SDI, I/O H13 GND C3 DCLK, I/O J2 GND C5 GND J3 GND C6 PRB, I/O J11 GND C7 VCC K7 VCC C9 GND K12 GND D7 VCC L5 GND E3 GND L7 VCC E11 GND L9 GND E12 GND M9 GND F4 GND N12 SDO G2 VCC Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. Revision 8 3- 19 Package Pin Assignments PG176 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A A B B C C D D E E F F G G 176-Pin CPGA H H J J K K L L M M N N P P R R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx 3- 20 R e visio n 8 ACT 2 Family FPGAs PG176 PG176 Pin Number A1280A Function Pin Number A1280A Function A9 CLKA, I/O H3 VCC B3 DCLK, I/O H4 GND B8 CLKB, I/O H12 GND B14 SDI, I/O H13 VCC C3 MODE H14 VCC C8 GND J4 VCC C9 PRA, I/O J12 GND D4 GND J13 GND D5 VCC J14 VCC D6 GND K4 GND D7 PRB, I/O K12 GND D8 VCC L4 GND D10 GND M4 GND D11 VCC M5 VCC D12 GND M6 GND E4 GND M8 GND E12 GND M10 GND F4 VCC M11 VCC F12 GND M12 GND G4 GND N8 VCC G12 VCC P13 SDO H2 VCC Notes: 1. All unlisted pin numbers are user I/Os. 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. Revision 8 3- 21 4 – Datasheet Information List of Changes The following table lists critical changes that were made in each version of the datasheet. Revision Revision 8 (January 2012) Changes Page The ACT 2 datasheet was formatted newly in the style used for current datasheets. The same information is present (other than noted in the list of changes for this revision) but divided into chapters. N/A Package names used in Table 1 • ACT 2 Product Family Profile and throughout the document were revised to match standards given in Package Mechanical Drawings (SAR 27395). I The description for SDO pins had earlier been removed from the datasheet and has now been included again, in the "Pin Descriptions" section (SAR 35819). 2-21 SDO pin numbers had earlier been removed from package pin assignment tables in the datasheet, and have now been restored to the pin tables (SAR 35819). 3-2 Revision 7 (June 2006) The "Ordering Information" section was revised to include RoHS information. Revision 6 (December 2000) In the "PG176" package, pin A3 was incorrectly assigned as CLKA, I/O. A3 is a user I/O. Pin A9 is CLKA, I/O. Revision 8 II 3-21 4 -1 Datasheet Information Datasheet Categories Categories In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Production This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Safety Critical, Life Support, and High-Reliability Applications Policy The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group’s products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information. 4-2 R e vi s i o n 8 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com. Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 © 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. 5172104-8/1.12