Actel A1425AA-3PG208C Accelerator series fpgas - act 3family Datasheet

Accelerator Series FPGAs
– ACT™ 3 Family
Features
• Replaces up to twenty 32 macro-cell CPLDs
• Up to 10,000 Gate Array Equivalent Gates
(up to 25,000 equivalent PLD Gates)
• Replaces up to one hundred 20-pin PAL® Packages
• Up to 1153 Dedicated Flip-Flops
• Highly Predictable Performance with 100% Automatic
Placement and Routing
• VQFP, TQFP, BGA, and PQFP Packages
• Nonvolatile, User Programmable
• 7.5 ns Clock-to-Output Times
• Fully Tested Prior to Shipment
• Up to 250 MHz On-Chip Performance
• 5.0V and 3.3V Versions
• Up to 228 User-Programmable I/O Pins
• Optimized for Logic Synthesis Methodologies
• Four Fast, Low-Skew Clock Networks
• Low-power CMOS Technology
• More than 500 Macro Functions
Device
A1415
A1425
A1440
A1460
A14100
1,500
3,750
40
15
2,500
6,250
60
25
4,000
10,000
100
40
6,000
15,000
150
60
10,000
25,000
250
100
Logic Modules
S-Module
C-Module
200
104
96
310
160
150
564
288
276
848
432
416
1,377
697
680
Dedicated Flip-Flops1
264
360
568
768
1,153
User I/Os (maximum)
80
100
140
168
228
100
84
100
—
100
—
—
—
133
84
100, 160
—
100
—
—
132
175
84
160
—
100
176
—
—
207
—
160, 208
—
—
176
225
196
257
—
—
208
—
—
313
256
108 MHz
63 MHz
110 MHz
250 MHz
250 MHz
7.5 ns
108 MHz
63 MHz
110 MHz
250 MHz
250 MHz
7.5 ns
100 MHz
63 MHz
110 MHz
250 MHz
250 MHz
8.5 ns
97 MHz
63 MHz
110 MHz
200 MHz
200 MHz
9.0 ns
93 MHz
63 MHz
105 MHz
200 MHz
200 MHz
9.5 ns
Capacity
Gate Array Equivalent Gates
PLD Equivalent Gates
TTL Equivalent Packages (40 gates)
20-Pin PAL Equivalent Packages (100 gates)
Packages2
(by pin count)
CPGA
PLCC
PQFP
RQFP
VQFP
TQFP
BGA
CQFP
Performance3 (maximum, worst-case commercial)
Chip-to-Chip4
Accumulators (16-bit)
Loadable Counter (16-bit)
Prescaled Loadable Counters (16-bit)
Datapath, Shift Registers
Clock-to-Output (pad-to-pad)
Notes:
1. One flip-flop per S-Module, two flip-flops per I/O-Module.
2. See product plan on page 1-178 for package availability.
3. Based on A1415A-3, A1425A-3, A1440B-3, A1460B-3, and A14100B-3.
4. Clock-to-Output + Setup
S e p t e m b e r 1997
© 1997 Actel Corporation
1-175
Description
Actel’s ACT 3 Accelerator Series of FPGAs offers the
industry’s fastest high-capacity programmable logic device.
ACT 3 FPGAs offer a high perfomance, PCI compliant
programmable solution capable of 250 MHz on-chip
performance and 7.5 nanosecond clock-to-output, with
capacities spanning from 1,500 to 10,000 gate array
equivalent gates. For further information regarding PCI
compliance of ACT 3 devices, see “Accelerator Series
FPGAs—ACT 3 PCI Compliant Family.”
The ACT 3 family builds on the proven two-module
architecture consisting of combinatorial and sequential logic
modules used in Actel’s 3200DX and 1200XL families. In
addition, the ACT 3 I/O modules contain registers which
deliver 7.5 nanosecond clock-to-out times. The devices
contain four clock distribution networks, including dedicated
array and I/O clocks, supporting very fast synchronous and
asynchronous designs. In addition, routed clocks can be used
to drive high fanout signals such as flip-flop resets and output
enables.
The ACT 3 family is supported by Actel’s Designer Series
Development System which offers automatic placement and
routing (with automatic or fixed pin assignments), static
timing anlaysis, user programming, and debug and diagnostic
probe capabilities. The Designer Series is supported on the
following platforms: 486/Pentium class PC’s, Sun®‚ and HP®‚
workstations. The software provides CAE interfaces to
Cadence, Mentor Graphics®, OrCAD™ and Viewlogic®‚
design environments. Additional platforms are supported
through Actel’s Industry Alliance Program, including DATA
I/O (ABEL FPGA) and MINC.
Predictable Performance* (Worst-Case Commercial)
Accumulators (16-bit)
63 MHz
Loadable Counters (16-bit)
110 MHz
Prescaled Loadable Counters (16-bit)
250 MHz
Shift Registers
250 MHz
System Performance Model
Chip #1
Chip #2
I/O Module
I/O Module
35 pF
I/O CLK
I/O CLK
tCKHS
tTRACE
tINSU
Chip-to-Chip Performance
(Worst-Case Commercial)
tCKHS
tTRACE
tINSU
Total
MHz
A1425A-3
7.5
1.0
1.8
10.3 ns
97
A1460A-3
9.0
1.0
1.3
11.3 ns
88
1-176
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Ordering Information
A14100
A
–
RQ
208
C
Application (Temperature Range)
C = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
M = Military (–55 to +125°C)
B = MIL-STD-883
Package Lead Count
Package Type
PG = Ceramic Pin Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flatpack
RQ = Plastic Power Quad Flatpack
VQ = Very Thin (1.0 mm) Quad Flatpack
TQ = Thin (1.4 mm) Quad Flatpack
CQ = Ceramic Quad Flatpack
BG = Plastic Ball Grid Array
Speed Grade
Std = Standard Speed
–1 = Approximately 15% faster than Standard
–2 = Approximately 25% faster than Standard
–3 = Approximately 35% faster than Standard
Die Revision
Part Number
A1415A =
A14V15A =
A1425A =
A14V25A =
A1440A =
A14V40A =
A1460A =
A14V60A =
A14100A =
A14V100A =
1500 Gates
1500 Gates (3.3V)
2500 Gates
2500 Gates (3.3V)
4000 Gates
4000 Gates (3.3V)
6000 Gates
6000 Gates (3.3V)
10000 Gates
10000 Gates (3.3V)
1-177
Product Plan
Speed Grade*
Application
Std
–1
–2
–3
C
I
M
B
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
—
—
—
✔
✔
—
—
—
—
—
—
✔
✔
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
✔†
✔
✔
✔
✔
—
✔†
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
✔
—
—
—
✔
✔
—
—
—
✔
✔
—
—
✔
✔
✔
—
—
—
—
—
—
—
—
—
✔
✔
✔
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
✔
—
—
—
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
—
—
—
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
—
—
—
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
✔†
✔
✔
✔
✔
P
P
—
P†
P
P
✔
✔
✔
✔
✔
✔
✔
✔
—
—
✔
—
—
—
✔
✔
—
—
—
—
✔
✔
—
—
A1415A Device
84-pin Plastic Leaded Chip Carrier (PLCC)
100-pin Plastic Quad Flatpack (PQFP)
100-pin Very Thin Quad Flatpack (VQFP)
100-pin Ceramic Pin Grid Array (CPGA)
A14V15A Device
84-pin Plastic Leaded Chip Carrier (PLCC)
100-pin Very Thin Quad Flatpack (VQFP)
A1425A Device
84-pin Plastic Leaded Chip Carrier (PLCC)
100-pin Plastic Quad Flatpack (PQFP)
100-pin Very Thin Quad Flatpack (VQFP)
132-pin Ceramic Quad Flatpack (CQFP)
133-pin Ceramic Pin Grid Array (CPGA)
160-pin Plastic Quad Flatpack (PQFP)
A14V25A Device
84-pin Plastic Leaded Chip Carrier (PLCC)
100-pin Very Thin Quad Flatpack (VQFP)
160-pin Plastic Quad Flatpack (PQFP)
A1440A Device
84-pin Plastic Leaded Chip Carrier (PLCC)
100-pin Very Thin Quad Flatpack (VQFP)
160-pin Plastic Quad Flatpack (PQFP)
175-pin Ceramic Pin Grid Array (CPGA)
176-pin Thin Quad Flatpack (TQFP)
A14V40A Device
84-pin Plastic Leaded Chip Carrier (PLCC)
100-pin Very Thin Quad Flatpack (VQFP)
160-pin Plastic Quad Flatpack (PQFP)
176-pin Thin Quad Flatpack (TQFP)
A1460A Device
160-pin Plastic Quad Flatpack (PQFP)
176-pin Thin Quad Flatpack (TQFP)
196-pin Ceramic Quad Flatpack (CQFP)
207-pin Ceramic Pin Grid Array (CPGA)
208-pin Plastic Quad Flatpack (PQFP)
225-pin Platic Ball Grid Array (BGA)
Applications:
1-178
C
I
M
B
†
= Commercial
= Industrial
= Military
= MIL-STD-883
Commercial Only
Availability:
✔ = Available
P = Planned
— = Not Planned
* Speed Grade: –1 = Approx. 15% faster than Standard
–2 = Approx. 25% faster than Standard
–3 = Approx. 35 % faster than Standard.
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Product Plan (continued)
Speed Grade*
Application
Std
–1
–2
–3
C
I
M
B
✔
✔
✔
—
—
—
—
—
—
—
—
—
✔
✔
✔
—
—
—
—
—
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔†
✔
—
✔
✔†
✔
—
✔
✔
✔
✔
✔
—
—
—
—
✔
—
✔
—
✔
—
✔
✔
✔
—
—
—
—
—
—
✔
✔
—
—
—
—
—
—
A14V60A Device
160-pin Plastic Quad Flatpack (PQFP)
176-pin Thin Quad Flatpack (TQFP)
208-pin Plastic Quad Flatpack (PQFP)
A14100A Device
208-pin Power Quad Flatpack (RQFP)
257-pin Ceramic Pin Grid Array (CPGA)
313-pin Plastic Ball Grid Array (BGA)
256-pin Ceramic Quad Flatpack (CQFP)
A14V100A Device
208-pin Power Quad Flatpack (RQFP)
313-pin Plastic Ball Grid Array (BGA)
Applications:
C
I
M
B
†
= Commercial
= Industrial
= Military
= MIL-STD-883
Commercial Only
Availability:
✔ = Available
P = Planned
— = Not Planned
* Speed Grade: –1 = Approx. 15% faster than Standard
–2 = Approx. 25% faster than Standard
–3 = Approx. 35 % faster than Standard.
Plastic Device Resources
User I/Os
PLCC
PQFP, RQFP
VQFP
TQFP
208-pin
100-pin
176-pin
225-pin
313-pin
—
—
80
—
—
—
80
100
—
83
—
—
—
70
—
131
—
83
140
—
—
6000
—
—
131
167
—
151
168
—
10000
—
—
—
175
—
—
—
228
Device
Series
Logic
Modules
Gates
84-pin
100-pin
160-pin
A1415
200
1500
70
80
A1425
310
2500
70
A1440
564
4000
A1460
848
A14100
1377
BGA
1-179
Hermetic Device Resources
User I/Os
CPGA
CQFP
Device
Series
Logic
Modules
Gates
100-pin
133-pin
175-pin
207-pin
257-pin
132-pin
196-pin
256-pin
A1415
200
1500
80
—
—
—
—
—
—
—
A1425
310
2500
—
100
—
—
—
100
—
—
A1440
564
4000
—
—
140
—
—
—
—
—
A1460
848
6000
—
—
—
168
—
—
168
—
A14100
1377
10000
—
—
—
—
228
—
—
228
Pin Description
CLKA
Clock A (Input)
function as I/Os. To provide Actionprobe capability, the
MODE pin should be terminated to GND through a 10K
resistor so that the MODE pin can be pulled high when
required.
Clock input for clock distribution networks. The Clock input
is buffered prior to clocking the logic modules. This pin can
also be used as an I/O.
NC
CLKB
This pin is not connected to circuitry within the device.
Clock B (Input)
Clock input for clock distribution networks. The Clock input
is buffered prior to clocking the logic modules. This pin can
also be used as an I/O.
GND
Ground
LOW supply voltage.
HCLK
Dedicated (Hard-wired)
Array Clock (Input)
Clock input for sequential modules. This input is directly
wired to each S-Module and offers clock speeds independent
of the number of S-Modules being driven. This pin can also be
used as an I/O.
I/O
Input/Output (Input, Output)
The I/O pin functions as an input, output, three-state, or
bidirectional buffer. Input and output levels are compatible
with standard TTL and CMOS specifications. Unused I/O pins
are tristated by the Designer Series software.
IOCLK
Dedicated (Hard-wired)
I/O Clock (Input)
Clock input for I/O modules. This input is directly wired to
each I/O module and offers clock speeds independent of the
number of I/O modules being driven. This pin can also be
used as an I/O.
IOPCL
Dedicated (Hard-wired)
I/O Preset/Clear (Input)
Input for I/O preset or clear. This global input is directly
wired to the preset and clear inputs of all I/O registers. This
pin functions as an I/O when no I/O preset or clear macros
are used.
MODE
Mode (Input)
The MODE pin controls the use of diagnostic pins (DCLK,
PRA, PRB, SDI). When the MODE pin is HIGH, the special
functions are active. When the MODE pin is LOW, the pins
1-180
PRA
No Connection
Probe A (Output)
The Probe A pin is used to output data from any user-defined
design node within the device. This independent diagnostic
pin can be used in conjunction with the Probe B pin to allow
real-time diagnostic output of any signal path within the
device. The Probe A pin can be used as a user-defined I/O
when debugging has been completed. The pin’s probe
capabilities can be permanently disabled to protect
programmed design confidentiality. PRA is accessible when
the MODE pin is HIGH. This pin functions as an I/O when the
MODE pin is LOW.
PRB
Probe B (Output)
The Probe B pin is used to output data from any user-defined
design node within the device. This independent diagnostic
pin can be used in conjunction with the Probe A pin to allow
real-time diagnostic output of any signal path within the
device. The Probe B pin can be used as a user-defined I/O
when debugging has been completed. The pin’s probe
capabilities can be permanently disabled to protect
programmed design confidentiality. PRB is accessible when
the MODE pin is HIGH. This pin functions as an I/O when the
MODE pin is LOW.
SDI
Serial Data Input (Input)
Serial data input for diagnostic probe and device
programming. SDI is active when the MODE pin is HIGH. This
pin functions as an I/O when the MODE pin is LOW.
DCLK
Diagnostic Clock (Input)
Clock input for diagnostic probe and device programming.
DCLK is active when the MODE pin is HIGH. This pin
functions as an I/O when the MODE pin is LOW.
V CC
5 V Supply Voltage
HIGH supply voltage.
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Architecture
Logic Modules
This section of the data sheet is meant to familiarize the user
with the architecture of the ACT 3 family of FPGA devices. A
generic description of the family will be presented first,
followed by a detailed description of the logic blocks, the
routing structure, the antifuses, and the special function
circuits. The on-chip circuitry required to program the
devices is not covered.
ACT 3 logic modules are enhanced versions of the 1200XL
family logic modules. As in the 1200XL family, there are two
types of modules: C-modules and S-modules. The C-module is
functionally equivalent to the 1200XL C-module and
implements high fanin combinatorial macros, such as 5-input
AND, 5-input OR, and so on. It is available for use as the CM8
hard macro. The S-module is designed to implement
high-speed sequential functions within a single module.
S-modules consist of a full C-module driving a flip-flop, which
allows an additional level of logic to be implemented without
additional propagation delay. It is available for use as the
DFM8A/B and DLM8A/B hard macros. C-modules and
S-modules are arranged in pairs called module-pairs.
Module-pairs are arranged in alternating patterns and make
up the bulk of the array. This arrangement allows the
placement software to support two-module macros of four
types (CC, CS, SC, and SS). The C-module implements the
following function:
Topology
The ACT 3 family architecture is composed of six key
elements: Logic modules, I/O modules, I/O Pad Drivers,
Routing Tracks, Clock Networks, and Programming and Test
Circuits. The basic structure is similar for all devices in the
family, differing only in the number of rows, columns, and
I/Os. The array itself consists of alternating rows of modules
and channels. The logic modules and channels are in the
center of the array; the I/O modules are located along the
array periphery. A simplified floor plan is depicted in
Figure 1.
Y = !S1 * !S0 * D00 + !S1 * S0 * D01 + S1 * !S0 * D10 + S1 * S0
* D11
where: S0 = A0 * B0 and S1 = A1 + B1
An Array with n rows and m columns
0
Rows
1
2
3
4
5
c–1
c
c+1
m m+1 m+2 m+3
Columns
Channels
n+2
IO
n+1
IO IO
CLKM
IO
IO IO
IO
IO
IO
Top I/Os
n+1
n
IO
IO BIN S
S
C
C
S
S
C
C
S
C
S
IO
IO
IO
IO BIN S
S
C
C
S
S
C
C
S
C
S
IO
IO
IO
IO BIN S
S
C
C
S
S
C
C
S
C
S
IO
IO
IO
IO BIN S
S
C
C
S
S
C
C
S
C
S
IO
IO
IO
IO IO
IO
IO IO
IO
IO IO
IO
Right I/Os
Bottom I/Os
n
n–1
•
•
•
2
n–1
•
•
•
2
1
1
Left I/Os
0
BIO IO
0
Figure 1 • Generalized Floor Plan of ACT 3 Device
1-181
The S-module contains a full implementation of the C-module
plus a clearable sequential element that can either
implement a latch or flip-flop function. The S-module can
therefore implement any function implemented by the
C-module. This allows complex combinatorial-sequential
functions to be implemented with no delay penalty. The
Designer Series Development System will automatically
combine any C-module macro driving an S-module macro into
the S-module, thereby freeing up a logic module and
eliminating a module delay.
D00
D01
Y
D10
OUT
D11
The clear input CLR is accessible from the routing channel.
In addition, the clock input may be connected to one of three
clock networks: CLKA, CLKB, or HCLK. The C-module and
S-module functional descriptions are shown in Figures 2
and 3. The clock selection is determined by a multiplexor
select at the clock input to the S-module.
S1
S0
A1 B1
A0 B0
I/Os
I/O Modules
Figure 2 • C-Module Diagram
I/O modules provide an interface between the array and the
I/O Pad Drivers. I/O modules are located in the array and
access the routing channels in a similar fashion to logic
modules. The I/O module schematic is shown in Figure 4. The
signals DataIn and DataOut connect to the I/O pad driver.
Each I/O module contains two D-type flip-flops. Each flip-flop
is connected to the dedicated I/O clock (IOCLK). Each
flip-flop can be bypassed by nonsequential I/Os. In addition,
each flip-flop contains a data enable input that can be
accessed from the routing channels (ODE and IDE). The
asynchronous preset/clear input is driven by the dedicated
preset/clear network (IOPCL). Either preset or clear can be
selected individually on an I/O module by I/O module basis.
The I/O module output Y is used to bring Pad signals into the
array or to feed the output register back into the array. This
allows the output register to be used in high-speed state
machine applications. Side I/O modules have a dedicated
output segment for Y extending into the routing channels
above and below (similar to logic modules). Top/Bottom I/O
modules have no dedicated output segment. Signals coming
into the chip from the top or bottom are routed using F-fuses
and LVTs (F-fuses and LVTs are explained in detail in the
routing section).
D00
D01
D10
Y
D
Q
D11
S1
S0
CLK
A1 B1
Figure 3 • S-Module Diagram
1-182
A0 B0
CLR
OUT
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
D
0
MUX
1
Q
DATAOUT
CLR/PRE
ODE
S0
Y
D
0
MUX
1
0
S1
1
MUX 2
3
Q
D
1
MUX
0
DATAIN
CLR/PRE
IOPCL
IOCLK
Figure 4 • Functional Diagram for I/O Module
I/O Pad Drivers
All pad drivers are capable of being tristate. Each buffer
connects to an associated I/O module with four signals: OE
(Output Enable), IE (Input Enable), DataOut, and DataIn.
Certain special signals used only during programming and
test also connect to the pad drivers: OUTEN (global output
enable), INEN (global input enable), and SLEW (individual
slew selection). See Figure 5.
Special I/Os
The special I/Os are of two types: temporary and permanent.
Temporary special I/Os are used during programming and
testing. They function as normal I/Os when the MODE pin is
inactive. Permanent special I/Os are user programmed as
either normal I/Os or special I/Os. Their function does not
change once the device has been programmed. The
permanent special I/Os consist of the array clock input
buffers (CLKA and CLKB), the hard-wired array clock input
buffer (HCLK), the hard-wired I/O clock input buffer
(IOCLK), and the hard-wired I/O register preset/clear input
buffer (IOPCL). Their function is determined by the I/O
macros selected.
Clock Networks
The ACT 3 architecture contains four clock networks: two
high-performance dedicated clock networks and two general
purpose routed networks. The high-performance networks
function up to 200 MHz, while the general purpose routed
networks function up to 150 MHz.
Dedicated Clocks
Dedicated clock networks support high performance by
providing sub-nanosecond skew and guaranteed
performance. Dedicated clock networks contain no
programming elements in the path from the I/O Pad Driver to
the input of S-modules or I/O modules. There are two
dedicated clock networks: one for the array registers (HCLK),
and one for the I/O registers (IOCLK). The clock networks
are accessed by special I/Os.
1-183
CLKB
CLKINB
CLKA
CLKINA
OE
FROM
PADS
SLEW
CLKMOD
DATAOUT
S0
S1
INTERNAL
SIGNAL
CLKO(17)
CLOCK
DRIVERS
CLKO(16)
PAD
CLKO(15)
DATAIN
CLKO(2)
CLKO(1)
IEN
CLOCK TRACKS
INEN
OUTEN
Figure 6 • Clock Networks
Routing Structure
Figure 5 • Function Diagram for I/O Pad Driver
Routed Clocks
The routed clock networks are referred to as CLK0 and CLK1.
Each network is connected to a clock module (CLKMOD)
that selects the source of the clock signal and may be driven
as follows (see Figure 6):
• externally from the CLKA pad
• externally from the CLKB pad
• internally from the CLKINA input
• internally from the CLKINB input
The clock modules are located in the top row of I/O modules.
Clock drivers and a dedicated horizontal clock track are
located in each horizontal routing channel. The function of
the clock module is determined by the selection of clock
macros from the macro library. The macro CLKBUF is used to
connect one of the two external clock pins to a clock network,
and the macro CLKINT is used to connect an internally
generated clock signal to a clock network. Since both clock
networks are identical, the user does not care whether CLK0
or CLK1 is being used. Routed clocks can also be used to drive
high fanout nets like resets, output enables, or data enables.
This saves logic modules and results in performance
increases in some cases.
1-184
The ACT 3 architecture uses vertical and horizontal routing
tracks to connect the various logic and I/O modules. These
routing tracks are metal interconnects that may either be of
continuous length or broken into segments. Segments can be
joined together at the ends using antifuses to increase their
lengths up to the full length of the track.
Horizontal Routing
Horizontal channels are located between the rows of modules
and are composed of several routing tracks. The horizontal
routing tracks within the channel are divided into one or
more segments. The minimum horizontal segment length is
the width of a module-pair, and the maximum horizontal
segment length is the full length of the channel. Any segment
that spans more than one-third the row length is considered a
long horizontal segment. A typical channel is shown in
Figure 7. Undedicated horizontal routing tracks are used to
route signal nets. Dedicated routing tracks are used for the
global clock networks and for power and ground tie-off tracks.
Vertical Routing
Other tracks run vertically through the modules. Vertical
tracks are of three types: input, output, and long. Vertical
tracks are also divided into one or more segments. Each
segment in an input track is dedicated to the input of a
particular module. Each segment in an output track is
dedicated to the output of a particular module. Long
segments are uncommitted and can be assigned during
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
routing. Each output segment spans four channels (two above
and two below), except near the top and bottom of the array
where edge effects occur. LVTs contain either one or two
segments. An example of vertical routing tracks and
segments is shown in Figure 8.
MODULE ROW
HCLK
CLK0
NVCC
SIGNAL
TRACK
SIGNAL
(LHT)
|
|
|
|
|
|
|
SEGMENT
HF
SIGNAL
NVSS
CLK1
MODULE ROW
Figure 7 • Horizontal Routing Tracks and Segments
LVTS
S-MODULE
MODULE ROW
C-MODULE
VF
CHANNEL
XF
VERTICLE INPUT
SEGMENT
FF
S-MODULE
C-MODULE
Figure 8 • Vertical Routing Tracks and Segments
1-185
Antifuse Connections
An antifuse is a “normally open” structure as opposed to the
normally closed fuse structure used in PROMs or PALs. The
use of antifuses to implement a programmable logic device
results in highly testable structures as well as an efficient
programming architecture. The structure is highly testable
because there are no preexisting connections; temporary
connections can be made using pass transistors. These
temporary connections can isolate individual antifuses to be
programmed as well as isolate individual circuit structures to
be tested. This can be done both before and after
programming. For example, all metal tracks can be tested for
continuity and shorts between adjacent tracks, and the
functionality of all logic modules can be verified.
or the channel below. The logic modules are arranged such
that half of the inputs are connected to the channel above
and half of the inputs to segments in the channel below as
shown in Figure 9.
Module Output Connections
Module outputs have dedicated output segments. Output
segments extend vertically two channels above and two
channels below, except at the top or bottom of the array.
Output segments twist, as shown in Figure 10, so that only
four vertical tracks are required.
LVT Connections
XF
Horizontal-to-Vertical Connection
Outputs may also connect to nondedicated segments called
Long Vertical Tracks (LVTs). Each module pair in the array
shares four LVTs that span the length of the column. Any
module in the column pair can connect to one of the LVTs in
the column using an FF connection. The FF connection uses
antifuses connected directly to the driver stage of the module
output, bypassing the isolation transistor. FF antifuses are
programmed at a higher current level than HF, VF, or XF
antifuses to produce a lower resistance value.
HF
Horizontal-to-Horizontal Connection
Antifuse Connections
VF
Vertical-to-Vertical Connection
FF
“Fast” Vertical Connection
In general every intersection of a vertical segment and a
horizontal segment contains an unprogrammed antifuse
(XF-type). One exception is in the case of the clock networks.
Four types of antifuse connections are used in the routing
structure of the ACT 3 array. (The physical structure of the
antifuse is identical in each case; only the usage differs.)
Table 1 shows four types of antifuses.
Table 1 • Antifuse Types
Examples of all four types of connections are shown in
Figures 7 and 8.
Clock Connections
Connections to Logic and I/O modules are made through
vertical segments that connect to the module inputs and
outputs. These vertical segments lie on vertical tracks that
span the entire height of the array.
To minimize loading on the clock networks, a subset of inputs
has antifuses on the clock tracks. Only a few of the C-module
and S-module inputs can be connected to the clock networks.
To further reduce loading on the clock network, only a subset
of the horizontal routing tracks can connect to the clock
inputs of the S-module.
Module Input Connections
Programming and Test Circuits
The tracks dedicated to module inputs are segmented by pass
transistors in each module row. During normal user
operation, the pass transistors are inactive, which isolates the
inputs of a module from the inputs of the module directly
above or below it. During certain test modes, the pass
transistors are active to verify the continuity of the metal
tracks. Vertical input segments span only the channel above
The array of logic and I/O modules is surrounded by test and
programming circuits controlled by the temporary special I/O
pins MODE, SDI, and DCLK. The function of these pins is
similar to all ACT family devices. The ACT 3 family also
includes support for two Actionprobe® circuits allowing
complete observability of any logic or I/O module in the array
using the temporary special I/O pins, PRA and PRB.
Module Interface
1-186
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Y+2
Y+2
Y+1
B1 B0
D01 D00
A1 D10 D11
A0
Y+1
B0
Y
Y
Y-1
D10
B1 D01
A0 D11 A1
Y-1
Y-2
Y-2
LVTs
S-MODULES
C-MODULES
Figure 9 • Logic Module Routing Interface
1-187
5V Operating Conditions
Recommended Operating Conditions
Parameter
Absolute Maximum Ratings 1
Temperature
Range1
Free air temperature range
Symbol
Parameter
Limits
Units
–0.5 to +7.0
V
VCC
DC Supply Voltage
VI
Input Voltage
–0.5 to VCC +0.5
V
VO
Output Voltage
–0.5 to VCC +0.5
V
IIO
I/O Source Sink
±20
mA
–65 to +150
°C
Commercial Industrial Military
Units
0 to +70
–40 to +85
–55 to
+125
°C
±5
±10
±10
%VCC
5V Power
Supply
Tolerance
Note:
1. Ambient temperature (TA) is used for commercial and
industrial; case temperature (TC) is used for military.
Current2
TSTG
Storage Temperature
Notes:
1. Stresses beyond those listed under “Absolute Maximum Ratings”
may cause permanent damage to the device. Exposure to
absolute maximum rated conditions for extended periods may
affect device reliability. Device should not be operated outside
the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5 V or less than GND – 0.5 V, the internal protection
diodes will forward bias and can draw excessive current.
Electrical Specifications
Commercial
Symbol Parameter
Test Condition
VOH1,2
IOH = –4 mA (CMOS)
HIGH Level Output
Min.
Max.
Industrial
Min.
Max.
3.7
Military
Min.
Max.
3.7
V
IOH = –6 mA (CMOS) 3.84
IOH = –10 mA
VOL1,2
LOW Level Output
(TTL)3
V
2.40
V
IOL = +6 mA (CMOS)
0.33
(TTL)3
0.50
IOL = +12 mA
Units
0.4
0.4
V
V
VIH
HIGH Level Input
TTL Inputs
2.0
VCC + 0.3
2.0
VCC + 0.3
2.0
VCC + 0.3
V
VIL
LOW Level Input
TTL Inputs
–0.3
0.8
–0.3
0.8
–0.3
0.8
V
IIN
Input Leakage
VI = VCC or GND
–10
+10
–10
+10
–10
+10
µA
IOZ
3-state Output Leakage
VO = VCC or GND
–10
+10
–10
+10
–10
+10
µA
CIO
I/O
Capacitance3,4
ICC(S)
Standby VCC Supply Current (typical = 0.7 mA)
ICC(D)
Dynamic VCC Supply Current See “Power Dissipation” Section
10
10
10
pF
2
10
20
mA
Notes:
1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.
2. Tested one output at a time, VCC = min.
3. Not tested, for information only.
4. VOUT = 0V, f = 1 MHz.
5. Typical standby current = 0.7 mA. All outputs unloaded. All inputs = VCC or GND.
1-188
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
3.3V Operating Conditions
Recommended Operating Conditions
Absolute Maximum Ratings 1
Parameter
Free air temperature range
Symbol
Parameter
Limits
Units
–0.5 to +7.0
V
VCC
DC Supply Voltage
VI
Input Voltage
–0.5 to VCC +0.5
V
VO
Output Voltage
–0.5 to VCC +0.5
V
I/O Source Sink
±20
mA
–65 to +150
°C
IIO
TSTG
Current2
Storage Temperature
Commercial
Units
Temperature Range1
0 to +70
°C
Power Supply Tolerance
3.0 to 3.6
V
Note:
1. Ambient temperature (TA) is used for commercial.
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. Exposure
to absolute maximum rated conditions for extended periods
may affect device reliability. Device should not be operated
outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5 V or less than GND – 0.5 V, the internal
protection diodes will forward bias and can draw excessive
current.
Electrical Specifications
Commercial
Parameter
Units
Min.
VOH1
VOL1
Max.
(IOH = –4 mA)
2.15
V
(IOH = –3.2 mA)
2.4
V
(IOL = 6 mA)
0.4
V
VIL
–0.3
0.8
V
VIH
2.0
VCC + 0.3
V
500
ns
10
pF
0.75
mA
10
µA
Input Transition Time tR, tF2
CIO I/O Capacitance2, 3
Standby Current, ICC4 (typical
5
Leakage Current
= 0.3 mA)
–10
Notes:
1. Only one output tested at a time. VCC = min.
2. Not tested, for information only.
3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz.
4. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.
5. VO, VIN = VCC or GND.
1-189
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc, and
the junction to ambient air characteristic is θja. The thermal
characteristics for θja are shown with two different air flow
rates.
Maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a CPGA 175-pin package at
commercial temperature and still air is as follows:
150°C – 70°C
Max. junction temp. (°C) – Max. ambient temp. (°C)
Absolute Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------ = --------------------------------- = 3.2 W
θ ja (°C/W)
25 °C/W
Pin Count
θjc
θja
Still Air
θja
300 ft/min
Units
Ceramic Pin Grid Array
100
133
175
207
257
20
20
20
20
20
35
30
25
22
15
17
15
14
13
8
°C/W
°C/W
°C/W
°C/W
°C/W
Ceramic Quad Flatpack
132
196
256
13
13
13
55
36
30
30
24
18
°C/W
°C/W
Plastic Quad Flatpack
100
160
208
13
10
10
51
33
33
40
26
26
°C/W
°C/W
°C/W
Very Thin Quad Flatpack
100
12
43
35
°C/W
Thin Quad Flatpack
176
11
32
25
°C/W
Power Quad Flatpack
208
0.4
17
13
°C/W
Plastic Leaded Chip Carrier
84
12
37
28
°C/W
Plastic Ball Grid Array
225
313
10
10
25
23
19
17
°C/W
Package Type1
°C/W
°C/W
Note:
1. Maximum Power Dissipation in Still Air for 160-pin PQFP package is 2.4 Watts, 208-pin PQFP package is 2.4 Watts, 100-pin PQFP package
is 1.6 Watts, 100-pin VQFP package is 1.9 Watts, 176-pin TQFP package is 2.5 Watts, 84-pin PLCC package is 2.2 Watts, 208-pin RQFP
package is 4.7 Watts, 225-pin BGA package is 3.2 Watts, 313-pin BGA package is 3.5 Watts.
Power Dissipation
P = [ICC standby+ Iactive] * VCC + IOL * VOL * N + IOH *
(VCC – VOH) * M
Static Power Component
(1)
Where:
ICC standby is the current flowing when no inputs or
outputs are changing.
Iactive is the current flowing due to CMOS switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to
VOL.
M equals the number of outputs driving TTL loads to
VOH.
An accurate determination of N and M is problematical
because their values depend on the design and on the system
I/O. The power can be divided into two components: static
and active.
1-190
Actel FPGAs have small static power components that result
in lower power dissipation than PALs or PLDs. By integrating
multiple PALs/PLDs into one FPGA, an even greater
reduction in board-level power dissipation can be achieved.
The power due to standby current is typically a small
component of the overall power. Standby power is calculated
below for commercial, worst case conditions.
ICC
2mA
VCC
5.25 V
Power
10.5 mW
The static power dissipated by TTL loads depends on the
number of outputs driving high or low and the DC load
current. Again, this value is typically small. For instance, a
32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with all
outputs driving low, and 140 mW with all outputs driving high.
The actual dissipation will average somewhere between as
I/Os switch states with time.
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Active Power Component
Where:
Power dissipation in CMOS devices is usually dominated by
the active (dynamic) power dissipation. This component is
frequency dependent, a function of the logic and the external
I/O. Active power dissipation results from charging internal
chip capacitances of the interconnect, unprogrammed
antifuses, module inputs, and module outputs, plus external
capacitance due to PC board traces and load device inputs.
An additional component of the active power dissipation is
the totem-pole current in CMOS transistor pairs. The net
effect can be associated with an equivalent capacitance that
can be combined with frequency and voltage to represent
active power dissipation.
m
n
p
q1
=
=
=
=
q2
=
r1
=
r2
=
Equivalent Capacitance
s1
=
The power dissipated by a CMOS circuit can be expressed by
the Equation 2.
s2
=
CEQM
CEQI
CEQO
=
=
=
CEQCR
=
CEQCD
=
CEQCI
=
CL
fm
fn
fp
fq1
fq2
=
=
=
=
=
=
fs1
fs2
=
=
Power (uW) = CEQ * VCC2 * F
(2)
Where:
CEQ is the equivalent capacitance expressed in pF.
VCC is the power supply in volts.
F is the switching frequency in MHz.
Equivalent capacitance is calculated by measuring ICCactive
at a specified frequency and voltage for each circuit
component of interest. Measurements have been made over a
range of frequencies at a fixed value of VCC. Equivalent
capacitance is frequency independent so that the results may
be used over a wide range of operating conditions. Equivalent
capacitance values are shown below.
C EQ Values for Actel FPGAs
Modules (CEQM)
Input Buffers (CEQI)
Output Buffers (CEQO)
Routed Array Clock Buffer Loads (CEQCR)
Dedicated Clock Buffer Loads (CEQCD)
I/O Clock Buffer Loads (CEQCI)
6.7
7.2
10.4
1.6
0.7
0.9
Number of logic modules switching at fm
Number of input buffers switching at fn
Number of output buffers switching at fp
Number of clock loads on the first routed
array clock
Number of clock loads on the second routed
array clock
Fixed capacitance due to first routed array
clock
Fixed capacitance due to second routed array
clock
Fixed number of clock loads on the dedicated
array clock
Fixed number of clock loads on the dedicated
I/O clock
Equivalent capacitance of logic modules in pF
Equivalent capacitance of input buffers in pF
Equivalent capacitance of output buffers in
pF
Equivalent capacitance of routed array clock
in pF
Equivalent capacitance of dedicated array
clock in pF
Equivalent capacitance of dedicated I/O clock
in pF
Output lead capacitance in pF
Average logic module switching rate in MHz
Average input buffer switching rate in MHz
Average output buffer switching rate in MHz
Average first routed array clock rate in MHz
Average second routed array clock rate in
MHz
Average dedicated array clock rate in MHz
Average dedicated I/O clock rate in MHz
To calculate the active power dissipated from the complete
design, the switching frequency of each part of the logic must
be known. Equation 3 shows a piece-wise linear summation
over all components.
Power =VCC2 * [(m * CEQM* fm)modules + (n * CEQI* fn)inputs
+ (p * (CEQO+ CL) * fp)outputs
+ 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1
+ 0.5 * (q2 * CEQCR * fq2)routed_Clk2
+ (r2 * fq2)routed_Clk2 + 0.5 * (s1 * CEQCD * fs1)dedicated_Clk
+ (s2 * CEQCI * fs2)IO_Clk]
(3)
1-191
Fixed Capacitance Values for Actel FPGAs
(pF)
Device Type
A1415A
A14V15A
A1425A
A14V25A
A1440A
A14V40A
A1440B
A1460A
A14V60A
A1460B
A14100A
A14V100A
A14100B
r1
routed_Clk1
60
57
75
72
105
100
105
165
157
165
195
185
195
r2
routed_Clk2
60
57
75
72
105
100
105
165
157
165
195
185
195
Fixed Clock Loads (s 1 /s 2 )
Device Type
A1415A
A14V15A
A1425A
A14V25A
A1440A
A14V40A
A1440B
A1460A
A14V60A
A1460B
A14100A
A14V100A
A14100B
1-192
s1
Clock Loads on
dedicated array
clock
104
104
160
160
288
288
288
432
432
432
697
697
697
s2
Clock Loads on
dedicated I/O
clock
80
80
100
100
140
140
140
168
168
168
228
228
228
Determining Average Switching Frequency
To determine the switching frequency for a design, you must
have a detailed understanding of the data input values to the
circuit. The following guidelines are meant to represent
worst-case scenarios so that they can be generally used to
predict the upper limits of power dissipation. These
guidelines are as follows:
Logic Modules (m)
Inputs switching (n)
Outputs switching (p)
First routed array clock loads (q1)
=
=
=
=
80% of modules
# inputs/4
# output/4
40% of
sequential
modules
Second routed array clock loads (q2) = 40% of
sequential
modules
Load capacitance (CL)
= 35 pF
Average logic module switching rate = F/10
(fm)
Average input switching rate (fn)
= F/5
Average output switching rate (fp)
= F/10
Average first routed array clock rate = F/2
(fq1)
Average second routed array clock rate = F/2
(fq2)
Average dedicated array clock rate = F
(fs1)
Average dedicated I/O clock rate (fs2) = F
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
ACT 3 Timing Model*
Input Delays
I/O Module
tINY = 2.8 ns
Internal Delays
Combinatorial
Logic Module
Predicted
Routing
Delays
Output Delays
I/O Module
tIRD2 = 1.2 ns
tDHS = 5.0 ns
D
Q
tINH = 0.0 ns
tINSU = 1.8 ns
tICKY = 4.7 ns
tHCKH = 3.0 ns
I/O Module
tDHS = 5.0 ns
Sequential
Logic Module
Combinatorial
Logic
included
in tSUD
ARRAY
CLOCK
tRD1 = 0.9 ns
tRD4 = 1.7 ns
tRD8 = 2.8 ns
tPD = 2.0 ns
tSUD = 0.5 ns
tHD = 0.0 ns
D
D
Q
tRD1 = 0.9 ns
tCO = 2.0 ns
Q
tENZHS = 4.0 ns
tOUTH = 0.7 ns
tOUTSU = 0.7 ns
FHMAX = 250 MHz
I/O CLOCK tCKHS = 7.5 ns
(pad-pad)
FIOMAX = 250 MHz
*Values shown for A1425A-3.
1-193
Output Buffer Delays
E
D
VCC
In
VCC
GND
50%
VOH
50%
Out
VOL
PAD To AC test loads (shown below)
TRIBUFF
En
1.5 V
1.5 V
Out
50%
VCC
VCC
50%
1.5 V
GND
En
Out
GND
10%
VOL
tENZHS,
tDHS,
tDHS,
90%
1.5 V
tENZHS,
tENHSZ,
GND
50%
VOH
50%
tENHSZ,
AC Test Loads
Load 1
(Used to measure propagation delay)
Load 2
(Used to measure rising/falling edges)
VCC
GND
To the output under test
35 pF
R to VCC for tPLZ/tPZL
R to GND for tPHZ/tPZH
R = 1 kΩ
To the output under test
35 pF
Input Buffer Delays
PAD
Module Delays
S
A
B
Y
INBUF
Y
VCC
3V
In
Out
GND
50% 50%
VCC
Out
GND
50%
50%
50%
tINY
1-194
0V
1.5 V 1.5 V
VCC
S, A or B
tPD
GND
50%
tPD
VCC
Out
tINY
50%
tPD
GND
tPD
50%
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Sequential Module Timing Characteristics
Flip-Flops
D
Q
CLK
CLR
(Positive edge triggered)
tHD
D
tA
tWCLKA
tSUD
CLK
tWCLKA
tCO
Q
tCLR
CLR
tWASYN
I/O Module: Sequential Input Timing Characteristics
D
E
IOCLK
Y
PRE
CLR
(Positive edge triggered)
tINH
D
tINSU
tIOP
tIOPWH
IOCLK
tIDESU
tIOPWL
tIDEH
E
tICKY
Y
tICLRY
PRE, CLR
tIOASPW
1-195
I/O Module: Sequential Output Timing Characteristics
D
E
Q
PRE
IOCLK
CLR
Y
(Positive edge triggered)
tOUTH
D
tOUTSU
tIOP
tIOPWH
IOCLK
tODESU
tIOPWL
tODEH
E
tOCKY
Y
tCKHS,
tCKLS
Q
tOCLRY
PRE, CLR
tIOASPW
1-196
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Predictable Performance:
Tightest Delay Distributions
Timing Characteristics
Propagation delay between logic modules depends on the
resistive and capacitive loading of the routing tracks, the
interconnect elements, and the module inputs being driven.
Propagation delay increases as the length of routing tracks,
the number of interconnect elements, or the number of
inputs increases.
From a design perspective, the propagation delay can be
statistically correlated or modeled by the fanout (number of
loads) driven by a module. Higher fanout usually requires
some paths to have longer lengths of routing track.
The ACT 3 family delivers the tightest fanout delay
distribution of any FPGA. This tight distribution is achieved
in two ways: by decreasing the delay of the interconnect
elements and by decreasing the number of interconnect
elements per path.
Actel’s patented PLICE antifuse offers a very low
resistive/capacitive interconnect. The ACT 3 family’s
antifuses, fabricated in 0.8 micron m lithography, offer
nominal levels of 200Ω resistance and 6 femtofarad (fF)
capacitance per antifuse.
The ACT 3 fanout distribution is also tighter than alternative
devices due to the low number of antifuses required per
interconnect path. The ACT 3 family’s proprietary
architecture limits the number of antifuses per path to only
four, with 90% of interconnects using only two antifuses.
The ACT 3 family’s tight fanout delay distribution offers an
FPGA design environment in which fanout can be traded for
the increased performance of reduced logic level designs.
This also simplifies performance estimates when designing
with ACT 3 devices.
Table 2 • Logic Module and Routing Delay by Fanout (ns)
(Worst-Case Commercial Conditions)
Speed
ACT 3 –3
FO=1
FO=2
FO=3
FO=4
FO=8
2.9
3.2
3.4
3.7
4.8
Timing characteristics for ACT 3 devices fall into three
categories: family dependent, device dependent, and design
dependent. The input and output buffer characteristics are
common to all ACT 3 family members. Internal routing delays
are device dependent. Design dependency means actual
delays are not determined until after placement and routing
of the user’s design is complete. Delay values may then be
determined by using the ALS Timer utility or performing
simulation with post-layout delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets, which
are used for initial design performance evaluation. Critical
net delays can then be applied to the most time-critical
paths. Critical nets are determined by net property
assignment prior to placement and routing. Up to 6% of the
nets in a design may be designated as critical, while 90% of
the nets in a design are typical.
Long Tracks
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows, columns,
or modules. Long tracks employ three and sometimes four
antifuse connections. This increases capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically up to 6% of nets in a fully
utilized device require long tracks. Long tracks contribute
approximatley 4 ns to 14 ns delay. This additional delay is
represented statistically in higher fanout (FO=8) routing
delays in the data sheet specifications section.
Timing Derating
ACT 3 devices are manufactured in a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process variations. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case processing.
Maximum timing parameters reflect minimum operating
voltage, maximum operating temperature, and worst-case
processing.
1-197
Timing Derating Factor (Temperature and Voltage)
Industrial
(Commercial Minimum/Maximum Specification) x
Military
Min.
Max.
Min.
Max.
0.66
1.07
0.63
1.17
Timing Derating Factor for Designs at Typical Temperature (T J = 25°C)
and Voltage (5.0 V)
(Commercial Maximum Specification) x
0.85
Temperature and Voltage Deratin g Factors
(normalized to Worst-Case Commercial, T J = 4.75 V, 70°C)
–55
–40
0
25
70
85
125
4.50
0.72
0.76
0.85
0.90
1.04
1.07
1.17
4.75
0.70
0.73
0.82
0.87
1.00
1.03
1.12
5.00
0.68
0.71
0.79
0.84
0.97
1.00
1.09
5.25
0.66
0.69
0.77
0.82
0.94
0.97
1.06
5.50
0.63
0.66
0.74
0.79
0.90
0.93
1.01
Junction Temperature and Voltage Derating Curves
(normalized to Worst-Case Commercial, T J = 4.75 V, 70°C)
1.20
Derating Factor
1.10
1.00
0.90
0.80
0.70
0.60
4.50
4.75
5.00
Voltage (V)
Note:
1-198
This derating factor applies to all routing and propagation dealys.
5.25
5.50
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1415A, A14V15A Timing Characteristics
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C) 1
Logic Module Propagation Delays2
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed 3.3V Speed1
Parameter
Description
Min.
Min.
Min.
Min.
tPD
Internal Array Module
2.0
2.3
2.6
3.0
3.9
ns
tCO
Sequential Clock to Q
2.0
2.3
2.6
3.0
3.9
ns
tCLR
Asynchronous Clear to Q
2.0
2.3
2.6
3.0
3.9
ns
Max.
Max.
Max.
Max.
Min.
Max. Units
3
Predicted Routing Delays
tRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
Logic Module Sequential Timing
tSUD
Flip-Flop Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tSUD
Latch Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Latch Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.9
2.4
3.2
3.8
4.8
ns
tWCLKA
Flip-Flop Clock Pulse Width
1.9
2.4
3.2
3.8
4.8
ns
tA
Flip-Flop Clock Input Period
4.0
5.0
6.8
8.0
10.0
ns
fMAX
Flip-Flop Clock Frequency
250
200
150
125
100
MHz
Notes:
1. VCC = 3.0 V for 3.3V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-199
A1415A, A14V15A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module Input Propagation Delays
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tINY
Input Data Pad to Y
2.8
3.2
3.6
4.2
5.5
ns
tICKY
Input Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCKY
Output Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tICLRY
Input Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
Output Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCLRY
Predicted Input Routing
Max.
Max.
Max.
Max.
Max. Units
Delays1
tIRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tIRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tIRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tIRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tIRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
I/O Module Sequential Timing
tINH
tINSU
tIDEH
tIDESU
tOUTH
tOUTSU
tODEH
tODESU
Input F-F Data Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input F-F Data Setup
(w.r.t. IOCLK Pad)
2.0
2.3
2.5
3.0
3.0
ns
Input Data Enable Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input Data Enable Setup
(w.r.t. IOCLK Pad)
5.8
6.5
7.5
8.6
8.6
ns
Output F-F Data Hold
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output F-F Data Setup
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output Data Enable Hold
(w.r.t. IOCLK Pad)
0.3
0.4
0.4
0.5
0.5
ns
Output Data Enable Setup
(w.r.t. IOCLK Pad)
1.3
1.5
1.7
2.0
2.0
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-200
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1415A, A14V15A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module – TTL Output Timing1
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tDHS
Data to Pad, High Slew
5.0
5.6
6.4
7.5
9.8
ns
tDLS
Data to Pad, Low Slew
8.0
9.0
10.2
12.0
15.6
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
4.0
4.5
5.1
6.0
7.8
ns
Enable to Pad, Z to H/L,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Hi Slew
6.5
7.5
8.5
10.0
13.0
ns
Enable to Pad, H/L to Z,
Lo Slew
6.5
7.5
8.5
10.0
13.0
ns
IOCLK Pad to Pad H/L,
Hi Slew
7.5
7.5
9.0
10.0
13.0
ns
IOCLK Pad to Pad H/L,
Lo Slew
11.3
11.3
13.5
15.0
19.5
ns
dTLHHS
Delta Low to High, Hi Slew
0.02
0.02
0.03
0.03
0.04
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
Max.
Max.
Max.
Max.
Max. Units
1
I/O Module – CMOS Output Timing
tDHS
Data to Pad, High Slew
6.2
7.0
7.9
9.3
12.1
ns
tDLS
Data to Pad, Low Slew
11.7
13.1
14.9
17.5
22.8
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
5.2
5.9
6.6
7.8
10.1
ns
Enable to Pad, Z to H/L,
Lo Slew
8.9
10.0
11.3
13.3
17.3
ns
Enable to Pad, H/L to Z,
Hi Slew
6.7
7.5
8.5
10.0
13.0
ns
Enable to Pad, H/L to Z,
Lo Slew
6.7
7.5
9.0
10.0
13.0
ns
IOCLK Pad to Pad H/L,
Hi Slew
8.9
8.9
10.7
11.8
15.3
ns
IOCLK Pad to Pad H/L,
Lo Slew
13.0
13.0
15.6
17.3
22.5
ns
dTLHHS
Delta Low to High, Hi Slew
0.04
0.04
0.05
0.06
0.08
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.07
0.08
0.09
0.11
0.14
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.03
0.03
0.03
0.04
0.05
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
Note:
1. Delays based on 35pF loading.
1-201
A1415A, A14V15A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
Dedicated (Hard-Wired) I/O Clock
Network
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tIOCKH
Input Low to High
(Pad to I/O Module Input)
Max.
2.0
Max.
2.3
Max.
2.6
Max.
3.0
Max. Units
3.5
ns
tIOPWH
Minimum Pulse Width High
1.9
2.4
3.3
3.8
4.8
ns
tIOPWL
Minimum Pulse Width Low
1.9
2.4
3.3
3.8
4.8
ns
tIOSAPW
Minimum Asynchronous
Pulse Width
1.9
2.4
3.3
3.8
4.8
ns
tIOCKSW
Maximum Skew
tIOP
Minimum Period
fIOMAX
Maximum Frequency
0.4
4.0
0.4
5.0
0.4
6.8
0.4
8.0
0.4
10.0
ns
ns
250
200
150
125
100
MHz
Input Low to High
(Pad to S-Module Input)
3.0
3.4
3.9
4.5
5.5
ns
Input High to Low
(Pad to S-Module Input)
3.0
3.4
3.9
4.5
5.5
ns
Dedicated (Hard-Wired) Array Clock
Network
tHCKH
tHCKL
tHPWH
Minimum Pulse Width High
1.9
2.4
3.3
3.8
4.8
ns
tHPWL
Minimum Pulse Width Low
1.9
2.4
3.3
3.8
4.8
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.3
4.0
0.3
5.0
0.3
6.8
0.3
8.0
0.3
10.0
ns
ns
250
200
150
125
100
MHz
Routed Array Clock Networks
tRCKH
Input Low to High (FO=64)
3.7
4.1
4.7
5.5
9.0
ns
tRCKL
Input High to Low (FO=64)
4.0
4.5
5.1
6.0
9.0
ns
tRPWH
Min. Pulse Width High
(FO=64)
3.3
3.8
4.2
4.9
6.5
ns
Min. Pulse Width Low
(FO=64)
3.3
3.8
4.2
4.9
6.5
ns
tRPWL
tRCKSW
Maximum Skew (FO=128)
tRP
Minimum Period (FO=64)
fRMAX
Maximum Frequency
(FO=64)
0.7
6.8
0.8
8.0
150
0.9
8.7
125
1.0
10.0
115
1.0
13.4
100
ns
ns
75
MHz
Clock-to-Clock Skews
tIOHCKSW
I/O Clock to H-Clock Skew
0.0
1.7
0.0
1.8
0.0
2.0
0.0
2.2
0.0
3.0
ns
tIORCKSW
I/O Clock to R-Clock Skew
(FO = 64)
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
3.0
ns
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
0.0
1.0
3.0
ns
tHRCKSW
H-Clock to R-Clock Skew
(FO = 64)
(FO = 50% max.)
Note:
1. Delays based on 35pF loading.
1-202
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1425A, A14V25A Timing Characteristics
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C) 1
Logic Module Propagation Delays2
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed 3.3V Speed1
Parameter
Description
Min.
Min.
Min.
Min.
tPD
Internal Array Module
2.0
2.3
2.6
3.0
3.9
ns
tCO
Sequential Clock to Q
2.0
2.3
2.6
3.0
3.9
ns
tCLR
Asynchronous Clear to Q
2.0
2.3
2.6
3.0
3.9
ns
Predicted Routing
Max.
Max.
Max.
Max.
Min.
Max. Units
Delays3
tRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
Logic Module Sequential Timing
tSUD
Flip-Flop Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tSUD
Latch Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Latch Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.9
2.4
3.2
3.8
4.8
ns
tWCLKA
Flip-Flop Clock Pulse Width
1.9
2.4
3.2
3.8
4.8
ns
tA
Flip-Flop Clock Input Period
4.0
5.0
6.8
8.0
10.0
ns
fMAX
Flip-Flop Clock Frequency
250
200
150
125
100
MHz
Notes:
1. VCC = 3.0 V for 3.3V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-203
A1425A, A14V25A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module Input Propagation Delays
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tINY
Input Data Pad to Y
2.8
3.2
3.6
4.2
5.5
ns
tICKY
Input Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCKY
Output Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tICLRY
Input Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
Output Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCLRY
Predicted Input Routing
Max.
Max.
Max.
Max.
Max. Units
Delays1
tIRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tIRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tIRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tIRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tIRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
I/O Module Sequential Timing
tINH
tINSU
tIDEH
tIDESU
tOUTH
tOUTSU
tODEH
tODESU
Input F-F Data Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input F-F Data Setup
(w.r.t. IOCLK Pad)
1.8
2.0
2.3
2.7
3.0
ns
Input Data Enable Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input Data Enable Setup
(w.r.t. IOCLK Pad)
5.8
6.5
7.5
8.6
8.6
ns
Output F-F Data Hold
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output F-F Data Setup
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output Data Enable Hold
(w.r.t. IOCLK Pad)
0.3
0.4
0.4
0.5
0.5
ns
Output Data Enable Setup
(w.r.t. IOCLK Pad)
1.3
1.5
1.7
2.0
2.0
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-204
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1425A, A14V25A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module – TTL Output Timing1
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tDHS
Data to Pad, High Slew
5.0
5.6
6.4
7.5
9.8
ns
tDLS
Data to Pad, Low Slew
8.0
9.0
10.2
12.0
15.6
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
4.0
4.5
5.1
6.0
7.8
ns
Enable to Pad, Z to H/L,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Hi Slew
6.5
7.5
8.5
10.0
13.0
ns
Enable to Pad, H/L to Z,
Lo Slew
6.5
7.5
8.5
10.0
13.0
ns
IOCLK Pad to Pad H/L,
Hi Slew
7.5
7.5
9.0
10.0
13.0
ns
IOCLK Pad to Pad H/L,
Lo Slew
11.3
11.3
13.5
15.0
19.5
ns
dTLHHS
Delta Low to High, Hi Slew
0.02
0.02
0.03
0.03
0.04
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
I/O Module – CMOS
Max.
Max.
Max.
Max.
Max. Units
Output Timing1
tDHS
Data to Pad, High Slew
6.2
7.0
7.9
9.3
12.1
ns
tDLS
Data to Pad, Low Slew
11.7
13.1
14.9
17.5
22.8
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
5.2
5.9
6.6
7.8
10.1
ns
Enable to Pad, Z to H/L,
Lo Slew
8.9
10.0
11.3
13.3
17.3
ns
Enable to Pad, H/L to Z,
Hi Slew
6.7
7.5
8.5
10.0
13.0
ns
Enable to Pad, H/L to Z,
Lo Slew
6.7
7.5
9.0
10.0
13.0
ns
IOCLK Pad to Pad H/L,
Hi Slew
8.9
8.9
10.7
11.8
15.3
ns
IOCLK Pad to Pad H/L,
Lo Slew
13.0
13.0
15.6
17.3
22.5
ns
dTLHHS
Delta Low to High, Hi Slew
0.04
0.04
0.05
0.06
0.08
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.07
0.08
0.09
0.11
0.14
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.03
0.03
0.03
0.04
0.05
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
Note:
1. Delays based on 35pF loading.
1-205
A1425A, A14V25A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
Dedicated (Hard-Wired) I/O Clock
Network
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tIOCKH
Input Low to High
(Pad to I/O Module Input)
Max.
2.0
Max.
2.3
Max.
2.6
Max.
3.0
Max. Units
3.5
ns
tIOPWH
Minimum Pulse Width High
1.9
2.4
3.3
3.8
4.8
ns
tIOPWL
Minimum Pulse Width Low
1.9
2.4
3.3
3.8
4.8
ns
tIOSAPW
Minimum Asynchronous
Pulse Width
1.9
2.4
3.3
3.8
4.8
ns
tIOCKSW
Maximum Skew
tIOP
Minimum Period
fIOMAX
Maximum Frequency
0.4
4.0
0.4
5.0
0.4
6.8
0.4
8.0
0.4
10.0
ns
ns
250
200
150
125
100
MHz
Input Low to High
(Pad to S-Module Input)
3.0
3.4
3.9
4.5
5.5
ns
Input High to Low
(Pad to S-Module Input)
3.0
3.4
3.9
4.5
5.5
ns
Dedicated (Hard-Wired) Array Clock
Network
tHCKH
tHCKL
tHPWH
Minimum Pulse Width High
1.9
2.4
3.3
3.8
4.8
ns
tHPWL
Minimum Pulse Width Low
1.9
2.4
3.3
3.8
4.8
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.3
4.0
0.3
5.0
0.3
6.8
0.3
8.0
0.3
10.0
ns
ns
250
200
150
125
100
MHz
Routed Array Clock Networks
tRCKH
Input Low to High (FO=64)
3.7
4.1
4.7
5.5
9.0
ns
tRCKL
Input High to Low (FO=64)
4.0
4.5
5.1
6.0
9.0
ns
tRPWH
Min. Pulse Width High
(FO=64)
3.3
3.8
4.2
4.9
6.5
ns
tRPWL
Min. Pulse Width Low
(FO=64)
3.3
3.8
4.2
4.9
6.5
ns
tRCKSW
Maximum Skew (FO=128)
tRP
Minimum Period (FO=64)
fRMAX
Maximum Frequency
(FO=64)
0.7
6.8
0.8
8.0
150
0.9
8.7
125
1.0
10.0
115
1.0
13.4
100
ns
ns
75
MHz
Clock-to-Clock Skews
tIOHCKSW
I/O Clock to H-Clock Skew
0.0
1.7
0.0
1.8
0.0
2.0
0.0
2.2
0.0
3.0
ns
tIORCKSW
I/O Clock to R-Clock Skew
(FO = 64)
(FO = 80)
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
3.0
3.0
ns
ns
H-Clock to R-Clock Skew
(FO = 64)
(FO = 80)
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
ns
ns
tHRCKSW
Note:
1. Delays based on 35pF loading.
1-206
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1440A, A14V40A Timing Characteristics
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C) 1
Logic Module Propagation Delays2
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed 3.3V Speed1
Parameter
Description
Min.
Min.
Min.
Min.
tPD
Internal Array Module
2.0
2.3
2.6
3.0
3.9
ns
tCO
Sequential Clock to Q
2.0
2.3
2.6
3.0
3.9
ns
tCLR
Asynchronous Clear to Q
2.0
2.3
2.6
3.0
3.9
ns
Predicted Routing
Max.
Max.
Max.
Max.
Min.
Max. Units
Delays3
tRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
Logic Module Sequential Timing
tSUD
Flip-Flop Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tSUD
Latch Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Latch Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.9
2.4
3.2
3.8
4.8
ns
tWCLKA
Flip-Flop Clock Pulse Width
1.9
2.4
3.2
3.8
4.8
ns
tA
Flip-Flop Clock Input Period
4.0
5.0
6.8
8.0
10.0
ns
fMAX
Flip-Flop Clock Frequency
250
200
150
125
100
MHz
Notes:
1. VCC = 3.0 V for 3.3V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-207
A1440A, A14V40A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module Input Propagation Delays
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tINY
Input Data Pad to Y
2.8
3.2
3.6
4.2
5.5
ns
tICKY
Input Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCKY
Output Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tICLRY
Input Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
Output Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCLRY
Predicted Input Routing
Max.
Max.
Max.
Max.
Max. Units
Delays1
tIRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tIRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tIRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tIRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tIRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
I/O Module Sequential Timing
tINH
tINSU
tIDEH
tIDESU
tOUTH
tOUTSU
tODEH
tODESU
Input F-F Data Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input F-F Data Setup
(w.r.t. IOCLK Pad)
1.5
1.7
2.0
2.3
2.3
ns
Input Data Enable Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input Data Enable Setup
(w.r.t. IOCLK Pad)
5.8
6.5
7.5
8.6
8.6
ns
Output F-F Data Hold
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output F-F Data Setup
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output Data Enable Hold
(w.r.t. IOCLK Pad)
0.3
0.4
0.4
0.5
0.5
ns
Output Data Enable Setup
(w.r.t. IOCLK Pad)
1.3
1.5
1.7
2.0
2.0
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-208
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1440A, A14V40A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module – TTL Output Timing1
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tDHS
Data to Pad, High Slew
5.0
5.6
6.4
7.5
9.8
ns
tDLS
Data to Pad, Low Slew
8.0
9.0
10.2
12.0
15.6
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
4.0
4.5
5.1
6.0
7.8
ns
Enable to Pad, Z to H/L,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Hi Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
IOCLK Pad to Pad H/L,
Hi Slew
8.5
8.5
9.5
11.0
14.3
ns
IOCLK Pad to Pad H/L,
Lo Slew
11.3
11.3
13.5
15.0
19.5
ns
dTLHHS
Delta Low to High, Hi Slew
0.02
0.02
0.03
0.03
0.04
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
I/O Module – CMOS
Max.
Max.
Max.
Max.
Max. Units
Output Timing1
tDHS
Data to Pad, High Slew
6.2
7.0
7.9
9.3
12.1
ns
tDLS
Data to Pad, Low Slew
11.7
13.1
14.9
17.5
22.8
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
5.2
5.9
6.6
7.8
10.1
ns
Enable to Pad, Z to H/L,
Lo Slew
8.9
10.0
11.3
13.3
17.3
ns
Enable to Pad, H/L to Z,
Hi Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
IOCLK Pad to Pad H/L,
Hi Slew
9.0
9.0
10.1
11.8
14.3
ns
IOCLK Pad to Pad H/L,
Lo Slew
13.0
13.0
15.6
17.3
22.5
ns
dTLHHS
Delta Low to High, Hi Slew
0.04
0.04
0.05
0.06
0.08
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.07
0.08
0.09
0.11
0.14
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.03
0.03
0.03
0.04
0.05
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
Note:
1. Delays based on 35pF loading.
1-209
A1440A, A14V40A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
Dedicated (Hard-Wired) I/O Clock
Network
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tIOCKH
Input Low to High
(Pad to I/O Module Input)
Max.
2.0
Max.
2.3
Max.
2.6
Max.
3.0
Max. Units
3.5
ns
tIOPWH
Minimum Pulse Width High
1.9
2.4
3.3
3.8
4.8
ns
tIOPWL
Minimum Pulse Width Low
1.9
2.4
3.3
3.8
4.8
ns
tIOSAPW
Minimum Asynchronous
Pulse Width
1.9
2.4
3.3
3.8
4.8
ns
tIOCKSW
Maximum Skew
tIOP
Minimum Period
fIOMAX
Maximum Frequency
0.4
4.0
0.4
5.0
0.4
6.8
0.4
8.0
0.4
10.0
ns
ns
250
200
150
125
100
MHz
Input Low to High
(Pad to S-Module Input)
3.0
3.4
3.9
4.5
5.5
ns
Input High to Low
(Pad to S-Module Input)
3.0
3.4
3.9
4.5
5.5
ns
Dedicated (Hard-Wired) Array Clock
Network
tHCKH
tHCKL
tHPWH
Minimum Pulse Width High
1.9
2.4
3.3
3.8
4.8
ns
tHPWL
Minimum Pulse Width Low
1.9
2.4
3.3
3.8
4.8
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.3
4.0
0.3
5.0
0.3
6.8
0.3
8.0
0.3
10.0
ns
ns
250
200
150
125
100
MHz
Routed Array Clock Networks
tRCKH
Input Low to High (FO=64)
3.7
4.1
4.7
5.5
9.0
ns
tRCKL
Input High to Low (FO=64)
4.0
4.5
5.1
6.0
9.0
ns
tRPWH
Min. Pulse Width High
(FO=64)
3.3
3.8
4.2
4.9
6.5
ns
Min. Pulse Width Low
(FO=64)
3.3
3.8
4.2
4.9
6.5
ns
tRPWL
tRCKSW
Maximum Skew (FO=128)
tRP
Minimum Period (FO=64)
fRMAX
Maximum Frequency
(FO=64)
0.7
6.8
0.8
8.0
150
0.9
8.7
125
1.0
10.0
115
1.0
13.4
100
ns
ns
75
MHz
Clock-to-Clock Skews
tIOHCKSW
I/O Clock to H-Clock Skew
0.0
1.7
0.0
1.8
0.0
2.0
0.0
2.2
0.0
3.0
ns
tIORCKSW
I/O Clock to R-Clock Skew
(FO = 64)
(FO = 144)
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
3.0
3.0
ns
ns
H-Clock to R-Clock Skew
(FO = 64)
(FO = 144)
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
ns
ns
tHRCKSW
Note:
1. Delays based on 35pF loading.
1-210
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1460A, A14V60A Timing Characteristics
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C) 1
Logic Module Propagation Delays2
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed 3.3V Speed1
Parameter
Description
Min.
Min.
Min.
Min.
tPD
Internal Array Module
2.0
2.3
2.6
3.0
3.9
ns
tCO
Sequential Clock to Q
2.0
2.3
2.6
3.0
3.9
ns
tCLR
Asynchronous Clear to Q
2.0
2.3
2.6
3.0
3.9
ns
Predicted Routing
Max.
Max.
Max.
Max.
Min.
Max. Units
Delays3
tRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
Logic Module Sequential Timing
tSUD
Flip-Flop Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tSUD
Latch Data Input Setup
0.5
0.6
0.7
0.8
0.8
ns
tHD
Latch Data Input Hold
0.0
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
2.4
3.2
3.8
4.8
6.5
ns
tWCLKA
Flip-Flop Clock Pulse Width
2.4
3.2
3.8
4.8
6.5
ns
tA
Flip-Flop Clock Input Period
5.0
6.8
8.0
10.0
13.4
ns
fMAX
Flip-Flop Clock Frequency
200
150
125
100
75
MHz
Notes:
1. VCC = 3.0 V for 3.3V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-211
A1460A, A14V60A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module Input Propagation Delays
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tINY
Input Data Pad to Y
2.8
3.2
3.6
4.2
5.5
ns
tICKY
Input Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCKY
Output Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tICLRY
Input Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
Output Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCLRY
Predicted Input Routing
Max.
Max.
Max.
Max.
Max. Units
Delays1
tIRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tIRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tIRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tIRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tIRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
I/O Module Sequential Timing
tINH
tINSU
tIDEH
tIDESU
tOUTH
tOUTSU
tODEH
tODESU
Input F-F Data Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input F-F Data Setup
(w.r.t. IOCLK Pad)
1.3
1.5
1.8
2.0
2.0
ns
Input Data Enable Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input Data Enable Setup
(w.r.t. IOCLK Pad)
5.8
6.5
7.5
8.6
8.6
ns
Output F-F Data Hold
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output F-F Data Setup
(w.r.t. IOCLK Pad)
0.7
0.8
0.9
1.0
1.0
ns
Output Data Enable Hold
(w.r.t. IOCLK Pad)
0.3
0.4
0.4
0.5
0.5
ns
Output Data Enable Setup
(w.r.t. IOCLK Pad)
1.3
1.5
1.7
2.0
2.0
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-212
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A1460A, A14V60A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module – TTL Output Timing1
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tDHS
Data to Pad, High Slew
5.0
5.6
6.4
7.5
9.8
ns
tDLS
Data to Pad, Low Slew
8.0
9.0
10.2
12.0
15.6
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
4.0
4.5
5.1
6.0
7.8
ns
Enable to Pad, Z to H/L,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Hi Slew
7.8
8.7
9.9
11.6
15.1
ns
Enable to Pad, H/L to Z,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
IOCLK Pad to Pad H/L,
Hi Slew
9.0
9.0
10.0
11.5
15.0
ns
IOCLK Pad to Pad H/L,
Lo Slew
12.8
12.8
15.3
17.0
22.1
ns
dTLHHS
Delta Low to High, Hi Slew
0.02
0.02
0.03
0.03
0.04
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
I/O Module – CMOS
Max.
Max.
Max.
Max.
Max. Units
Output Timing1
tDHS
Data to Pad, High Slew
6.2
7.0
7.9
9.3
12.1
ns
tDLS
Data to Pad, Low Slew
11.7
13.1
14.9
17.5
22.8
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
5.2
5.9
6.6
7.8
10.1
ns
Enable to Pad, Z to H/L,
Lo Slew
8.9
10.0
11.3
13.3
17.3
ns
Enable to Pad, H/L to Z,
Hi Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
IOCLK Pad to Pad H/L,
Hi Slew
10.4
10.4
12.1
13.8
17.9
ns
IOCLK Pad to Pad H/L,
Lo Slew
14.5
14.5
17.4
19.3
25.1
ns
dTLHHS
Delta Low to High, Hi Slew
0.04
0.04
0.05
0.06
0.08
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.07
0.08
0.09
0.11
0.14
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.03
0.03
0.03
0.04
0.05
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
Note:
1. Delays based on 35pF loading.
1-213
A1460A, A14V60A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
Dedicated (Hard-Wired) I/O Clock
Network
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tIOCKH
Input Low to High
(Pad to I/O Module Input)
Max.
2.3
Max.
2.6
Max.
3.0
Max.
3.5
Max. Units
4.5
ns
tIOPWH
Minimum Pulse Width High
2.4
3.2
3.8
4.8
6.5
ns
tIOPWL
Minimum Pulse Width Low
2.4
3.2
3.8
4.8
6.5
ns
tIOSAPW
Minimum Asynchronous
Pulse Width
2.4
3.2
3.8
4.8
6.5
ns
tIOCKSW
Maximum Skew
tIOP
Minimum Period
fIOMAX
Maximum Frequency
0.6
5.0
0.6
6.8
0.6
8.0
0.6
10.0
0.6
13.4
ns
ns
200
150
125
100
75
MHz
Input Low to High
(Pad to S-Module Input)
3.7
4.1
4.7
5.5
7.0
ns
Input High to Low
(Pad to S-Module Input)
3.7
4.1
4.7
5.5
7.0
ns
Dedicated (Hard-Wired) Array Clock
Network
tHCKH
tHCKL
tHPWH
Minimum Pulse Width High
2.4
3.2
3.8
4.8
6.5
ns
tHPWL
Minimum Pulse Width Low
2.4
3.2
3.8
4.8
6.5
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.6
5.0
0.6
6.8
0.6
8.0
0.6
10.0
0.6
13.4
ns
ns
200
150
125
100
75
MHz
Routed Array Clock Networks
tRCKH
Input Low to High (FO=256)
6.0
6.8
7.7
9.0
11.8
ns
tRCKL
Input High to Low (FO=256)
6.0
6.8
7.7
9.0
11.8
ns
tRPWH
Min. Pulse Width High
(FO=256)
4.1
4.5
5.4
6.1
8.2
ns
Min. Pulse Width Low
(FO=256)
4.1
4.5
5.4
6.1
8.2
ns
tRPWL
tRCKSW
Maximum Skew (FO=128)
tRP
Minimum Period (FO=256)
fRMAX
Maximum Frequency
(FO=256)
1.2
8.3
1.4
9.3
120
1.6
11.1
105
1.8
12.5
90
1.8
16.7
80
ns
ns
60
MHz
Clock-to-Clock Skews
tIOHCKSW
I/O Clock to H-Clock Skew
0.0
2.6
0.0
2.7
0.0
2.9
0.0
3.0
0.0
3.0
ns
tIORCKSW
I/O Clock to R-Clock Skew
(FO = 64)
(FO = 216)
0.0
0.0
1.7
5.0
0.0
0.0
1.7
5.0
0.0
0.0
1.7
5.0
0.0
0.0
1.7
5.0
0.0
0.0
5.0
5.0
ns
ns
H-Clock to R-Clock Skew
(FO = 64)
(FO = 216)
0.0
0.0
1.3
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
ns
ns
tHRCKSW
Note:
1. Delays based on 35pF loading.
1-214
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A14100A, A14V100A Timing Characteristics
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C) 1
Logic Module Propagation Delays2
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed 3.3V Speed1
Parameter
Description
Min.
Min.
Min.
Min.
tPD
Internal Array Module
2.0
2.3
2.6
3.0
3.9
ns
tCO
Sequential Clock to Q
2.0
2.3
2.6
3.0
3.9
ns
tCLR
Asynchronous Clear to Q
2.0
2.3
2.6
3.0
3.9
ns
Predicted Routing
Max.
Max.
Max.
Max.
Min.
Max. Units
Delays3
tRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
Logic Module Sequential Timing
tSUD
Flip-Flop Data Input Setup
0.5
0.6
0.8
0.8
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.5
0.5
0.5
ns
tSUD
Latch Data Input Setup
0.5
0.6
0.8
0.8
0.8
ns
tHD
Latch Data Input Hold
0.0
0.0
0.5
0.5
0.5
ns
tWASYN
Asynchronous Pulse Width
2.4
3.2
3.8
4.8
6.5
ns
tWCLKA
Flip-Flop Clock Pulse Width
2.4
3.2
3.8
4.8
6.5
ns
tA
Flip-Flop Clock Input Period
5.0
6.8
8.0
10.0
13.4
ns
fMAX
Flip-Flop Clock Frequency
200
150
125
100
75
MHz
Notes:
1. VCC = 3.0 V for 3.3V specifications.
2. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-215
A14100A, A14V100A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
I/O Module Input Propagation Delays
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tINY
Input Data Pad to Y
2.8
3.2
3.6
4.2
5.5
ns
tICKY
Input Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCKY
Output Reg IOCLK Pad to Y
4.7
5.3
6.0
7.0
9.2
ns
tICLRY
Input Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
Output Asynchronous
Clear to Y
4.7
5.3
6.0
7.0
9.2
ns
tOCLRY
Predicted Input Routing
Max.
Max.
Max.
Max.
Max. Units
Delays1
tIRD1
FO=1 Routing Delay
0.9
1.0
1.1
1.3
1.7
ns
tIRD2
FO=2 Routing Delay
1.2
1.4
1.6
1.8
2.4
ns
tIRD3
FO=3 Routing Delay
1.4
1.6
1.8
2.1
2.8
ns
tIRD4
FO=4 Routing Delay
1.7
1.9
2.2
2.5
3.3
ns
tIRD8
FO=8 Routing Delay
2.8
3.2
3.6
4.2
5.5
ns
I/O Module Sequential Timing
tINH
tINSU
tIDEH
tIDESU
tOUTH
tOUTSU
tODEH
tODESU
Input F-F Data Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input F-F Data Setup
(w.r.t. IOCLK Pad)
1.2
1.4
1.5
1.8
1.8
ns
Input Data Enable Hold
(w.r.t. IOCLK Pad)
0.0
0.0
0.0
0.0
0.0
ns
Input Data Enable Setup
(w.r.t. IOCLK Pad)
5.8
6.5
7.5
8.6
8.6
ns
Output F-F Data Hold
(w.r.t. IOCLK Pad)
0.7
0.8
1.0
1.0
1.0
ns
Output F-F Data Setup
(w.r.t. IOCLK Pad)
0.7
0.8
1.0
1.0
1.0
ns
Output Data Enable Hold
(w.r.t. IOCLK Pad)
0.3
0.4
0.5
0.5
0.5
ns
Output Data Enable Setup
(w.r.t. IOCLK Pad)
1.3
1.5
2.0
2.0
2.0
ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
1-216
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
A14100A, A14V100A Timing Characteristics (continued)
(Worst-Case Commercial Conditions )
I/O Module – TTL Output Timing1
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tDHS
Data to Pad, High Slew
5.0
5.6
6.4
7.5
9.8
ns
tDLS
Data to Pad, Low Slew
8.0
9.0
10.2
12.0
15.6
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
4.0
4.5
5.1
6.0
7.8
ns
Enable to Pad, Z to H/L,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
Enable to Pad, H/L to Z,
Hi Slew
8.0
9.0
10.2
12.0
15.6
ns
Enable to Pad, H/L to Z,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
IOCLK Pad to Pad H/L,
Hi Slew
9.5
9.5
10.5
12.0
15.6
ns
IOCLK Pad to Pad H/L,
Lo Slew
12.8
12.8
15.3
17.0
22.1
ns
dTLHHS
Delta Low to High, Hi Slew
0.02
0.02
0.03
0.03
0.04
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.05
0.05
0.06
0.07
0.09
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
I/O Module – CMOS
Max.
Max.
Max.
Max.
Max. Units
Output Timing1
tDHS
Data to Pad, High Slew
6.2
7.0
7.9
9.3
12.1
ns
tDLS
Data to Pad, Low Slew
11.7
13.1
14.9
17.5
22.8
ns
tENZHS
Enable to Pad, Z to H/L,
Hi Slew
5.2
5.9
6.6
7.8
10.1
ns
Enable to Pad, Z to H/L,
Lo Slew
8.9
10.0
11.3
13.3
17.3
ns
Enable to Pad, H/L to Z,
Hi Slew
8.0
9.0
10.0
12.0
15.6
ns
Enable to Pad, H/L to Z,
Lo Slew
7.4
8.3
9.4
11.0
14.3
ns
IOCLK Pad to Pad H/L,
Hi Slew
10.4
10.4
12.4
13.8
17.9
ns
IOCLK Pad to Pad H/L,
Lo Slew
14.5
14.5
17.4
19.3
25.1
ns
dTLHHS
Delta Low to High, Hi Slew
0.04
0.04
0.05
0.06
0.08
ns/pF
dTLHLS
Delta Low to High, Lo Slew
0.07
0.08
0.09
0.11
0.14
ns/pF
dTHLHS
Delta High to Low, Hi Slew
0.03
0.03
0.03
0.04
0.05
ns/pF
dTHLLS
Delta High to Low, Lo Slew
0.04
0.04
0.04
0.05
0.07
ns/pF
tENZLS
tENHSZ
tENLSZ
tCKHS
tCKLS
Note:
1. Delays based on 35pF loading.
1-217
A14100A, A14V100A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
Dedicated (Hard-Wired) I/O Clock
Network
‘–3’ Speed
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
3.3V Speed
Parameter
Description
Min.
Min.
Min.
Min.
Min.
tIOCKH
Input Low to High
(Pad to I/O Module Input)
Max.
2.3
Max.
2.6
Max.
3.0
Max.
3.5
Max. Units
4.5
ns
tIOPWH
Minimum Pulse Width High
2.4
3.3
3.8
4.8
6.5
ns
tIOPWL
Minimum Pulse Width Low
2.4
3.3
3.8
4.8
6.5
ns
tIOSAPW
Minimum Asynchronous
Pulse Width
2.4
3.3
3.8
4.8
6.5
ns
tIOCKSW
Maximum Skew
tIOP
Minimum Period
fIOMAX
Maximum Frequency
0.6
5.0
0.6
6.8
0.7
8.0
0.8
10.0
0.6
13.4
ns
ns
200
150
125
100
75
MHz
Input Low to High
(Pad to S-Module Input)
3.7
4.1
4.7
5.5
7.0
ns
Input High to Low
(Pad to S-Module Input)
3.7
4.1
4.7
5.5
7.0
ns
Dedicated (Hard-Wired) Array Clock
Network
tHCKH
tHCKL
tHPWH
Minimum Pulse Width High
2.4
3.3
3.8
4.8
6.5
ns
tHPWL
Minimum Pulse Width Low
2.4
3.3
3.8
4.8
6.5
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.6
5.0
0.6
6.8
0.7
8.0
0.8
10.0
0.6
13.4
ns
ns
200
150
125
100
75
MHz
Routed Array Clock Networks
tRCKH
Input Low to High (FO=256)
6.0
6.8
7.7
9.0
11.8
ns
tRCKL
Input High to Low (FO=256)
6.0
6.8
7.7
9.0
11.8
ns
tRPWH
Min. Pulse Width High
(FO=256)
4.1
4.5
5.4
6.1
8.2
ns
Min. Pulse Width Low
(FO=256)
4.1
4.5
5.4
6.1
8.2
ns
tRPWL
tRCKSW
Maximum Skew (FO=128)
tRP
Minimum Period (FO=256)
fRMAX
Maximum Frequency
(FO=256)
1..2
8.3
1.4
9.3
120
1.6
11.1
105
1.8
12.5
90
1.8
16.7
80
ns
ns
60
MHz
Clock-to-Clock Skews
tIOHCKSW
I/O Clock to H-Clock Skew
0.0
2.6
0.0
2.7
0.0
2.9
0.0
3.0
0.0
3.0
ns
tIORCKSW
I/O Clock to R-Clock Skew
(FO = 64)
(FO = 350)
0.0
0.0
1.7
5.0
0.0
0.0
17
5.0
0.0
0.0
1.7
5.0
0.0
0.0
1.7
5.0
0.0
0.0
5.0
5.0
ns
H-Clock to R-Clock Skew
(FO = 64)
(FO = 350)
0.0
0.0
1.3
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
ns
tHRCKSW
Note:
1. Delays based on 35pF loading.
1-218
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Package Pin Assignments
100-Pin PQFP (Top View)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
81
50
82
49
83
48
84
47
85
46
86
45
87
44
88
43
89
42
100-Pin
90
41
PQFP
91
40
92
39
93
38
94
37
95
36
96
35
97
34
98
33
99
32
100
31
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pin Number
A1415 Function
A1425 Function
2
IOCLK, I/O
IOCLK, I/O
14
CLKA, I/O
15
Pin Number
A1415 Function
A1425 Function
48
VCC
VCC
CLKA, I/O
61
PRB, I/O
PRB, I/O
CLKB, I/O
CLKB, I/O
62
GND
GND
16
VCC
VCC
63
VCC
VCC
17
GND
GND
64
GND
GND
18
VCC
VCC
65
VCC
VCC
19
GND
GND
67
HCLK, I/O
HCLK, I/O
20
PRA, I/O
PRA, I/O
78
IOPCL, I/O
IOPCL, I/O
27
DCLK, I/O
DCLK, I/O
79
GND
GND
28
GND
GND
85
VCC
VCC
29
SDI, I/O
SDI, I/O
86
VCC
VCC
34
MODE
MODE
87
GND
GND
35
VCC
VCC
96
VCC
VCC
36
GND
GND
97
GND
GND
47
GND
GND
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-219
Package Pin Assignments (continued)
84-Pin PLCC (Top View)
11
10
9
8
7
6
5
4
2
1
84 83
82
81
80
79 78
77 76
75
12
74
13
73
14
72
15
71
16
70
17
69
18
68
19
67
20
66
21
65
84-Pin
PLCC
22
64
23
63
24
62
25
61
26
60
27
59
28
58
29
57
30
56
31
55
32
54
33
1-220
3
34 35
36
37
38 39
40
41 42
43 44 45
46
47
48
49 50
51 52
53
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
84-Pin PLCC
A1415
A14V15 Function
A1425
A14V25 Function
A1440
A14V40 Function
1
VCC
VCC
VCC
2
GND
GND
GND
3
VCC
VCC
VCC
4
PRA, I/O
PRA, I/O
PRA, I/O
11
DCLK, I/O
DCLK, I/O
DCLK, I/O
12
SDI, I/O
SDI, I/O
SDI, I/O
16
MODE
MODE
MODE
27
GND
GND
GND
28
VCC
VCC
VCC
40
PRB, I/O
PRB, I/O
PRB, I/O
41
VCC
VCC
VCC
42
GND
GND
GND
43
VCC
VCC
VCC
45
HCLK, I/O
HCLK, I/O
HCLK, I/O
53
IOPCL, I/O
IOPCL, I/O
IOPCL, I/O
59
VCC
VCC
VCC
60
VCC
VCC
VCC
61
GND
GND
GND
68
VCC
VCC
VCC
69
GND
GND
GND
74
IOCLK, I/O
IOCLK, I/O
IOCLK, I/O
83
CLKA, I/O
CLKA, I/O
CLKA, I/O
84
CLKB, I/O
CLKB, I/O
CLKB, I/O
Pin Number
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-221
Package Pin Assignments (continued)
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
160-Pin PQFP (Top View)
160-Pin
PQFP
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1-222
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
160-Pin PQFP
A1425
A14V25
Function
A1440
A14V40
Function
A1460
A14V60
Function
A1425
A14V25
Function
A1440
A14V40
Function
A1460
A14V60
Function
1
GND
GND
GND
90
VCC
VCC
VCC
2
SDI, I/O
SDI, I/O
SDI, I/O
91
VCC
VCC
VCC
5
NC
I/O
I/O
92
NC
I/O
I/O
9
MODE
MODE
MODE
93
NC
I/O
I/O
10
VCC
VCC
VCC
98
GND
GND
GND
14
NC
I/O
I/O
99
VCC
VCC
VCC
15
GND
GND
GND
100
NC
I/O
I/O
18
VCC
VCC
VCC
103
GND
GND
GND
19
GND
GND
GND
107
NC
I/O
I/O
20
NC
I/O
I/O
109
NC
I/O
I/O
24
NC
I/O
I/O
110
VCC
VCC
VCC
27
NC
I/O
I/O
111
GND
GND
GND
28
VCC
VCC
VCC
112
VCC
VCC
VCC
29
VCC
VCC
VCC
113
NC
I/O
I/O
40
GND
GND
GND
119
NC
I/O
I/O
41
NC
I/O
I/O
120
IOCLK, I/O
IOCLK, I/O
IOCLK, I/O
43
NC
I/O
I/O
121
GND
GND
GND
45
NC
I/O
I/O
124
NC
I/O
I/O
46
VCC
VCC
VCC
127
NC
I/O
I/O
47
NC
I/O
I/O
136
CLKA, I/O
CLKA, I/O
CLKA, I/O
49
NC
I/O
I/O
137
CLKB, I/O
CLKB, I/O
CLKB, I/O
51
NC
I/O
I/O
138
VCC
VCC
VCC
53
NC
I/O
I/O
139
GND
GND
GND
58
PRB, I/O
PRB, I/O
PRB, I/O
140
VCC
VCC
VCC
59
GND
GND
GND
141
GND
GND
GND
60
VCC
VCC
VCC
142
PRA, I/O
PRA, I/O
PRA, I/O
62
HCLK, I/O
HCLK, I/O
HCLK, I/O
143
NC
I/O
I/O
63
GND
GND
GND
145
NC
I/O
I/O
74
NC
I/O
I/O
147
NC
I/O
I/O
75
VCC
VCC
VCC
149
NC
I/O
I/O
76
NC
I/O
I/O
151
NC
I/O
I/O
77
NC
I/O
I/O
153
NC
I/O
I/O
78
NC
I/O
I/O
154
VCC
VCC
VCC
80
IOPCL, I/O
IOPCL, I/O
IOPCL, I/O
160
DCLK, I/O
DCLK, I/O
DCLK, I/O
81
GND
GND
GND
Pin
Number
Pin
Number
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-223
Package Pin Assignments (continued)
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
208-Pin PQFP, RQFP (Top View)
208-Pin
PQFP, RQFP
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
1-224
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
208-Pin PQFP, RQFP
A1460
A14V60
Function
A14100
A14V100
Function
A1460
A14V60
Function
A14100
A14V100
Function
1
GND
GND
115
VCC
VCC
2
SDI, I/O
SDI, I/O
116
NC
I/O
11
MODE
MODE
129
GND
GND
12
VCC
VCC
130
VCC
VCC
25
VCC
VCC
131
GND
GND
26
GND
GND
132
VCC
VCC
27
VCC
VCC
145
VCC
VCC
28
GND
GND
146
GND
GND
40
VCC
VCC
147
NC
I/O
41
VCC
VCC
148
VCC
VCC
52
GND
GND
156
IOCLK, I/O
IOCLK, I/O
53
NC
I/O
157
GND
GND
60
VCC
VCC
158
NC
I/O
65
NC
I/O
164
VCC
VCC
76
PRB, I/O
PRB, I/O
180
CLKA, I/O
CLKA, I/O
77
GND
GND
181
CLKB, I/O
CLKB, I/O
78
VCC
VCC
182
VCC
VCC
79
GND
GND
183
GND
GND
80
VCC
VCC
184
VCC
VCC
82
HCLK, I/O
HCLK, I/O
185
GND
GND
98
VCC
VCC
186
PRA, I/O
PRA, I/O
102
NC
I/O
195
NC
I/O
104
IOPCL, I/O
IOPCL, I/O
201
VCC
VCC
105
GND
GND
205
NC
I/O
114
VCC
VCC
208
DCLK, I/O
DCLK, I/O
Pin Number
Pin Number
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-225
Package Pin Assignments (continued)
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
176-Pin TQFP (Top View)
176-Pin
TQFP
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
1-226
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
176-Pin TQFP
A1440
A14V40
Function
A1460
A14V60
Function
A1440
A14V40
Function
A1460
A14V60
Function
1
GND
GND
98
VCC
VCC
2
SDI, I/O
SDI, I/O
99
VCC
VCC
10
MODE
MODE
108
GND
GND
11
VCC
VCC
109
VCC
VCC
20
NC
I/O
110
GND
GND
21
GND
GND
119
NC
I/O
22
VCC
VCC
121
NC
I/O
23
GND
GND
122
VCC
VCC
32
VCC
VCC
123
GND
GND
33
VCC
VCC
124
VCC
VCC
44
GND
GND
132
IOCLK, I/O
IOCLK, I/O
49
NC
I/O
133
GND
GND
51
NC
I/O
138
NC
I/O
63
NC
I/O
152
CLKA, I/O
CLKA, I/O
64
PRB, I/O
PRB, I/O
153
CLKB, I/O
CLKB, I/O
65
GND
GND
154
VCC
VCC
66
VCC
VCC
155
GND
GND
67
VCC
VCC
156
VCC
VCC
69
HCLK, I/O
HCLK, I/O
157
PRA, I/O
PRA, I/O
82
NC
I/O
158
NC
I/O
83
NC
I/O
170
NC
I/O
88
IOPCL, I/O
IOPCL, I/O
176
DCLK, I/O
DCLK, I/O
89
GND
GND
Pin
Number
Pin
Number
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-227
Package Pin Assignments (continued)
76
77
78
80
79
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
100-Pin VQFP (Top View)
1
75
2
74
3
73
4
72
5
71
6
70
7
69
8
68
9
67
10
66
11
65
100-Pin
VQFP
12
13
63
50
49
48
47
46
45
44
43
42
41
40
39
51
38
52
25
37
53
24
36
54
23
35
55
22
34
56
21
33
57
20
32
58
19
31
59
18
30
60
17
29
61
16
28
62
15
27
14
26
1-228
64
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
100-Pin VQFP
A1415
A14V15 Function
A1425
A14V25 Function
A1440
A14V40 Function
1
GND
GND
GND
2
SDI, I/O
SDI, I/O
SDI, I/O
7
MODE
MODE
MODE
8
VCC
VCC
VCC
9
GND
GND
GND
20
VCC
VCC
VCC
21
NC
I/O
I/O
34
PRB, I/O
PRB, I/O
PRB, I/O
35
VCC
VCC
VCC
36
GND
GND
GND
37
VCC
VCC
VCC
39
HCLK, I/O
HCLK, I/O
HCLK, I/O
50
IOPCL, I/O
IOPCL, I/O
IOPCL, I/O
51
GND
GND
GND
57
VCC
VCC
VCC
58
VCC
VCC
VCC
67
VCC
VCC
VCC
68
GND
GND
GND
69
GND
GND
GND
74
NC
I/O
I/O
75
IOCLK, I/O
IOCLK, I/O
IOCLK, I/O
87
CLKA, I/O
CLKA, I/O
CLKA, I/O
88
CLKB, I/O
CLKB, I/O
CLKB, I/O
89
VCC
VCC
VCC
90
VCC
VCC
VCC
91
GND
GND
GND
92
PRA, I/O
PRA, I/O
PRA, I/O
93
NC
I/O
I/O
100
DCLK, I/O
DCLK, I/O
DCLK, I/O
Pin Number
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-229
Package Pin Assigments (continued)
132-Pin CQFP (Top View)
132 131 130 129 128 127 126 125 124
107 106 105 104 103 102 101 100
Pin #1
Index
1
99
2
98
3
97
4
96
5
95
6
94
7
93
8
92
132-Pin
CQFP
25
75
26
74
27
73
28
72
29
71
30
70
31
69
32
68
33
67
34 35 36 37 38 39 40 41 42
1-230
59 60 61 62 63 64 65 66
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
132-Pin CQFP
Pin Number
A1425 Function
Pin Number
A1425 Function
1
NC
74
GND
2
GND
75
VCC
3
SDI, I/O
78
VCC
9
MODE
89
VCC
10
GND
90
GND
11
VCC
91
VCC
22
VCC
92
GND
26
GND
98
IOCLK, I/O
27
VCC
99
NC
34
NC
100
NC
36
GND
101
GND
42
GND
106
GND
43
VCC
107
VCC
48
PRB, I/O
116
CLKA, I/O
50
HCLK, I/O
117
CLKB, I/O
58
GND
118
PRA, I/O
59
VCC
122
GND
64
IOPCL, I/O
123
VCC
65
GND
131
DCLK, I/O
66
NC
132
NC
67
NC
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-231
Package Pin Assigments (continued)
196-Pin CQFP (Top View)
196 195 194 193 192 191 190 189 188
155 154 153 152 151 150 149 148
Pin #1
Index
1
147
2
146
3
145
4
144
5
143
6
142
7
141
8
140
196-Pin
CQFP
41
107
42
106
43
105
44
104
45
103
46
102
47
101
48
100
49
99
50 51 52 53 54 55 56 57 58
1-232
91 92 93 94 95 96 97 98
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
196-Pin CQFP
Pin Number
A1460 Function
Pin Number
A1460 Function
1
GND
110
VCC
2
SDI, I/O
111
VCC
11
MODE
112
GND
12
VCC
137
VCC
13
GND
138
GND
37
GND
139
GND
38
VCC
140
VCC
39
VCC
148
IOCLK, I/O
51
GND
149
GND
52
GND
155
VCC
59
VCC
162
GND
64
GND
172
CLKA, I/O
77
HCLK, I/O
173
CLKB, I/O
79
PRB, I/O
174
PRA, I/O
86
GND
183
GND
94
VCC
189
VCC
98
GND
193
GND
100
IOPCL, I/O
196
DCLK, I/O
101
GND
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC : Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-233
Package Pin Assigments (continued)
256-Pin CQFP (Top View)
256 255 254 253 252 251 250 249 248
200 199 198 197 196 195 194 193
Pin #1
Index
1
192
2
191
3
190
4
189
5
188
6
187
7
186
8
185
256-Pin
CQFP
56
137
57
136
58
135
59
134
60
133
61
132
62
131
63
130
64
129
65 66 67 68 69 70 71 72 73
1-234
121 122 123 124 125 126 127 128
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
256-Pin CQFP
Pin Number
A14100 Function
Pin Number
A14100 Function
1
GND
158
GND
2
SDI, I/O
159
VCC
11
MODE
160
GND
28
VCC
161
VCC
29
GND
174
VCC
30
VCC
175
GND
31
GND
176
GND
46
VCC
188
IOCLK, I/O
59
GND
189
GND
90
PRB, I/O
219
CLKA, I/O
91
GND
220
CLKB, I/O
92
VCC
221
VCC
93
GND
222
GND
94
VCC
223
VCC
96
HCLK, I/O
224
GND
110
GND
225
PRA, I/O
127
IOPCL, I/O
240
GND
128
GND
256
DCLK, I/O
141
VCC
Notes:
1. All unlisted pin numbers are user I/Os.
2. NC: Denotes No Connection
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-235
Package Pin Assignments (continued)
225-Pin BGA (Top View)
1
2
3
4
5
6
7
8
9
10
11 12
13 14
15
A
A
B
B
C
C
D
D
E
E
F
F
G
G
H
H
J
J
K
K
L
L
M
M
N
N
P
P
R
R
1
2
3
4
5
6
7
8
9
10
11 12
13 14
15
A1460 Function
Location
CLKA or I/O
C8
CLKB or I/O
B8
DCLK or I/O
B2
GND
A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15
HCLK or I/O
P9
IOCLK or I/O
B14
IOPCL or I/O
P14
MODE
D1
NC
A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14
PRA OR I/O
A7
PRB or I/O
L7
SDI or I/O
D4
VCC
A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13
Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-236
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Package Pin Assignments (continued)
313-Pin BGA (Top View)
1
2
3
4
5
6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A
A
B
B
C
C
D
D
E
E
F
F
G
G
H
H
J
J
K
K
L
L
M
M
N
N
P
P
R
R
T
U
T
U
V
V
W
W
Y
AA
Y
AA
AB
AB
AC
AC
AD
AD
AE
AE
1
2
3
4
5
6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A14100
A14V100 Function
Location
CLKA or I/O
J13
CLKB or I/O
G13
DCLK or I/O
B2
GND
A1, A25, AD2, AE25, J21, L13, M12, M14, N11, N13, N15, P12, P14, R13
HCLK or I/O
T14
IOCLK or I/O
B24
IOPCL or I/O
AD24
MODE
G3
NC
A3, A13, A23, AA5, AA9, AA23, AB2, AB4, AB20, AC13, AC25, AD22, AE1, AE21, B14, C5, C25,
D4, D24, E3, E21, F6, F10, F16, G1, G25, H18, H24, J1, J7, J25, K12, L15, L17, M6, N1, N5, N7,
N21, N23, P20, R11, T6, T8, U9, U13, U21, V16, W7, Y20, Y24
PRA OR I/O
H12
PRB or I/O
AD12
SDI or I/O
C1
VCC
AB18, AD6, AE13, C13, C19, E13, G9, H22, K8, K20, M16, N3, N9, N25, U5, W13, V2, V22, V24
Notes:
1.
2.
3.
Unused I/O pins are designated as outputs by ALS and are driven low.
All unassigned pins are available for use as I/Os.
MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-237
Package Pin Assignments (continued)
100-Pin CPGA (Top View)
1
2
3
4
5
6
7
8
9
10 11
A
A
B
B
C
C
D
D
E
E
100-Pin
CPGA
F
F
G
G
H
H
J
J
K
K
L
L
1
2
3
4
5
6
7
8
9
10 11
Orientation Pin
A1415 Function
Location
CLKA or I/O
C7
CLKB or I/O
D6
DCLK or I/O
C4
GND
C3, C6, C9, E9, F3, F9, J3, J6, J8, J9
HCLK or I/O
H6
IOCLK or I/O
C10
IOPCL or I/O
K9
MODE
C2
PRA OR I/O
A6
PRB or I/O
L3
SDI or I/O
B3
VCC
B6, B10, E11, F2, F10, G2, K2, K6, K10
Notes:
1.
2.
3.
1-238
Unused I/O pins are designated as outputs by ALS and are driven low.
All unassigned pins are available for use as I/Os.
MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Package Pin Assignments (continued)
133-Pin CPGA (Top View)
1
2
3
4
5
6
7
8
9
10 11 12 13
A
A
B
B
C
C
D
D
E
E
F
F
133-Pin
CPGA
G
G
H
H
J
J
K
K
L
L
M
M
N
N
1
2
3
4
5
6
7
8
9
10 11 12 13
A1425 Function
Location
CLKA or I/O
D7
CLKB or I/O
B6
DCLK or I/O
D4
GND
A2, C3, C7, C11, C12, F10, G3, G11, L3, L7, L11, M3, N12
HCLK or I/O
K7
IOCLK or I/O
C10
IOPCL or I/O
L10
MODE
E3
NC
A1, A7, A13, G1, G13, N1, N7, N13
PRA OR I/O
A6
PRB or I/O
L6
SDI or I/O
C2
VCC
B2, B7, B12, E11, G2, G12, J2, J12, M2, M7, M12
Notes:
1.
2.
3.
Unused I/O pins are designated as outputs by ALS and are driven low.
All unassigned pins are available for use as I/Os.
MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-239
Package Pin Assignments (continued)
175-Pin CPGA (Top View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
1
1
2
2
3
3
4
4
5
5
6
6
7
7
175-Pin
CPGA
8
8
9
9
10
10
11
11
12
12
13
13
14
14
15
15
A
B
C
D
E
A1440 Function
Location
CLKA or I/O
C9
CLKB or I/O
A9
F
G
H
J
K
L
M
N
P
R
DCLK or I/O
D5
GND
D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8,
M12
HCLK or I/O
R8
IOCLK or I/O
E12
IOPCL or I/O
P13
MODE
F3
NC
A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15
PRA OR I/O
B8
PRB or I/O
R7
SDI or I/O
D3
VCC
C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13
Notes:
1.
2.
3.
1-240
Unused I/O pins are designated as outputs by ALS and are driven low.
All unassigned pins are available for use as I/Os.
MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
A c c e l e ra to r S e ri e s F P G A s – A C T ™ 3 Fami l y
Package Pin Assignments (continued)
207-Pin CPGA (Top View)
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17
A
A
B
B
C
C
D
D
E
E
F
F
G
G
H
H
207-Pin
CPGA
J
J
K
K
L
L
M
M
N
N
P
P
R
R
S
S
T
T
1
2
3
4
5
A1460 Function
Location
CLKA or I/O
K1
CLKB or I/O
J3
6
7
8
9
10 11 12 13 14 15 16 17
DCLK or I/O
E4
GND
C15, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15
HCKL or I/O
J15
IOCLK or I/O
P5
IOPCL or I/O
N14
MODE
D7
NC
A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17
PRA OR I/O
H1
PRB or I/O
K16
SDI or I/O
C3
VCC
B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5
Notes:
1.
2.
3.
Unused I/O pins are designated as outputs by ALS and are driven low.
All unassigned pins are available for use as I/Os.
MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1-241
Package Pin Assignments (continued)
257-Pin CPGA (Top View)
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
A
A
B
B
C
C
D
D
E
E
F
F
G
G
H
H
J
J
257-Pin
CPGA
K
L
K
L
M
M
N
N
P
P
R
R
T
T
V
V
X
X
Y
Y
1
2
3
4
A14100 Function
Location
CLKA or I/O
L4
CLKB or I/O
L5
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
DCLK or I/O
E4
GND
B16, C4, D4, D10, D16, E11, J5, K4, K16, L15, R4, T4, T10, T16, T17, X7
HCLK or I/O
J16
IOCLK or I/O
T5
IOPCL or I/O
R16
MODE
A5
NC
E5
PRA OR I/O
J1
PRB or I/O
J17
SDI or I/O
B4
VCC
C3, C10, C13, C17, K3, K17, V3, V7, V10, V17, X14
Notes:
1.
2.
3.
1-242
Unused I/O pins are designated as outputs by ALS and are driven low.
All unassigned pins are available for use as I/Os.
MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
Similar pages