A5191HRT HART Modem Description The A5191HRT is a single−chip, CMOS modem for use in highway addressable remote transducer (HART) field instruments and masters. The modem and a few external passive components provide all of the functions needed to satisfy HART physical layer requirements including modulation, demodulation, receive filtering, carrier detect, and transmit−signal shaping. The A5191HRT uses phase continuous frequency shift keying (FSK) at 1200 bits per second. To conserve power the receive circuits are disabled during transmit operations and vice versa. This provides the half−duplex operation used in HART communications. Features • • • • • • • • • • • • Single−chip, Half−duplex 1200 Bits per Second FSK Modem Bell 202 Shift Frequencies of 1200 Hz and 2200 Hz 3.0 V − 5.5 V Power Supply Transmit−signal Wave Shaping Receive Band−pass Filter Low Power: Optimal for Intrinsically Safe Applications Compatible with 3.3 V or 5 V Microcontroller Internal Oscillator Requires 460.8 kHz Crystal or Ceramic Resonator Meets HART Physical Layer Requirements Industrial Temperature Range of −40°C to +85°C Available in 28−pin PLCC, 32−pin QFN and 32−pin LQFP Packages These are Pb−Free Devices http://onsemi.com PLCC−28 P SUFFIX CASE 776AA QFN−32 N SUFFIX CASE 488AM LQFP−32 L SUFFIX CASE 561AB MARKING DIAGRAMS (Top Views) 1 28 XXXXYZZ A5191HRTPG 32 1 XXXXYZZ A5191 HRTLG Applications • HART Multiplexers • HART Modem Interfaces • 4 − 20 mA Loop Powered Transmitters 1 A5191 HRTNG AWLYYWW G A5191HRTxx = Specific Device Code xx = P (PLCC), L (LQFP) or N (QFN) XXXX = Date Code Y = Plant Identifier ZZ = Traceability Code A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G or G = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet. © Semiconductor Components Industries, LLC, 2013 March, 2013 − Rev. 6 1 Publication Order Number: A5191HRT/D A5191HRT BLOCK DIAGRAM VDD VDDA RxAFI RxAF RESET RxA Demodulator Logic Rx Comp RxD FSK_IN Rx HP Filter AREF Carrier Detect Counter CD CDREF Carrier Comp Numeric Controlled Oscillator TxD DEMODULATOR TxA Sine Shaper FSK_OUT MODULATOR RTS Crystal Oscillator XOUT XIN A5191HRT BIAS CBIAS VSS VSSA KVDE20130228.2 Figure 1. Block Diagram A5191HRT ELECTRICAL SPECIFICATIONS Table 1. ABSOLUTE MAXIMUM RATINGS (Notes 1 and 2) Min Max Units TA Ambient Parameter −40 +85 °C TS Storage Temperature −55 150 °C Supply Voltage −0.3 6.0 V DC Input, Output −0.3 VDD + 0.3 V Symbol VDD VIN, VOUT Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. CMOS devices are damaged by high−energy electrostatic discharge. Devices must be stored in conductive foam or with all pins shunted. Precautions should be taken to avoid application of voltages higher than the maximum rating. Stresses above absolute maximum ratings may result in damage to the device. 2. Remove power before insertion or removal of this device. http://onsemi.com 2 A5191HRT Table 2. DC CHARACTERISTICS (VDD = 3.0 V to 5.5 V, VSS = 0 V, TA = −40°C to +85°C) Parameter Symbol VDD Min Typ Max Units 0.3 * VDD V VIL Input Voltage, Low 3.0 – 5.5 V VIH Input Voltage, High 3.0 – 5.5 V VOL Output Voltage, Low (IOL = 0.67 mA) 3.0 – 5.5 V VOH Output Voltage, High (IOH = −0.67 mA) 3.0 – 5.5 V CIN Input Capacitance of: Analog Input RXA Digital Input IIL/IIH Input Leakage Current ±500 nA IOLL Output Leakage Current ±10 mA IDDA Power Supply Current (RBIAS = 500 kW, AREF = 1.235 V) 3.3 V 5.0 V 150 150 450 600 mA mA IDDD Dynamic Digital Current 5.0 V 25 200 mA AREF Analog Reference 3.3 V 5.0 V 1.2 2.6 V V Carrier Detect Reference (AREF – 0.08 V) 3.3 V 5.0 V CDREF (Note 3) CBIAS 0.7 * VDD V 0.4 V 2.4 V 2.9 25 3.5 pF pF pF 330 300 1.235 2.5 Comparator Bias Current (RBIAS = 500 kW, AREF = 1.235 V) 1.15 2.42 V 2.5 mA 3. The HART specification requires carrier detect (CD) to be active between 80 and 120 mVp−p. Setting CDREF at AREF − 0.08 VDC will set the carrier detect to a nominal 100 mVp−p. Table 3. AC CHARACTERISTICS (VDD = 3.0 V to 5.5 V, VSS = 0 V, TA = −40°C to +85°C) (Note 4) Pin Name RxA RxAF RxAFI TxA Description Min Typ Max Units Receive analog input Leakage current Frequency – mark (logic 1) Frequency – space (logic 0) 1190 2180 1200 2200 ±150 1210 2220 nA Hz Hz Output of the high−pass filter Slew rate Gain bandwidth (GBW) Voltage range 150 0.15 VDD – 0.15 V/ms kHz V ±500 nA 0.025 Carrier detect and receive filter input Leakage current Modulator output Frequency – mark (logic 1) Frequency – space (logic 0) Amplitude (AREF 1.235 V) Slew Rate − mark (logic 1) Slew Rate − space (logic 0) Loading (AREF = 1.235 V) 30 RxD Receive digital output Rise/fall time 20 CD Carrier detect output Rise/fall time 20 4. The modular output frequencies are proportional to the input clock frequency (460.8 kHz). http://onsemi.com 3 1196.9 2194.3 500 1860 3300 Hz Hz mV V/s V/s kW ns ns A5191HRT Table 4. MODEM CHARACTERISTICS (VDD = 3.0 V to 5.5 V, VSS = 0 V, TA = −40°C to +85°C) Min Parameter Typ Demodulator jitter Conditions 1. Input frequencies at 1200 Hz ± 10 Hz, 2200 Hz ± 20 Hz 2. Clock frequency of 460.8 kHz ± 0.1% 3. Input (RxA) asymmetry, 0 Max Units 12 % of 1 bit Table 5. CERAMIC RESONATOR − External Clock Specifications (VDD = 3.0 V to 5.5 V, VSS = 0 V, TA = −40°C to +85°C) Parameter Min Typ Resonator Tolerance Frequency 460.8 External Clock frequency Duty cycle Amplitude 456.2 40 460.8 50 VOH − VOL Max Units 1.0 % kHz 465.4 60 kHz % V TYPICAL APPLICATION POWER 3.0 to 5.5 V VDD CAT808 VDDA RxAFI RxAF RxA RESET VDDA RxD AREF A5191HRT CD LM285 mC KVDE 20130 228.1 HART IN TxD CDREF RTS TxA XOUT 460.8 kHz XIN CBIAS VSS S VSSA 4 – 20 mA DAC OUT Figure 2. Application Diagram A5191HRT http://onsemi.com 4 HART & 4 – 20 mA OUT TEST4 TEST3 TEST2 TEST1 TEST12 CD RxD A5191HRT 4 3 2 1 28 27 26 TEST5 5 25 TEST11 RESET 6 24 TxD TEST7 7 23 RTS TEST8 8 22 VDD TEST9 9 21 VSS A5191HRT 12 13 14 15 16 17 18 RxAFI XOUT RxAF 19 RxA 11 VDDA XIN AREF TEST10 20 CBIAS 10 CDREF TxA Figure 3. Pin Out A5191HRT in 28-pin PLCC Table 6. PIN OUT SUMMARY 28−PIN PLCC Pin No. Signal Name Type Pin Description 1 TEST1 Input Connect to VSS 2, 3, 4 TEST2, 3, 4 − Do Not Connect 5 TEST5 Input Connect to VSS 6 RESETB Input Reset all digital logic when low 7, 8, 9 TEST7, 8, 9 Input Connect to VSS 10 TxA Output 11 AREF Input Analog reference voltage 12 CDREF Input Carrier detect reference voltage 13 CBIAS Output 14 TEST10 Input 15 VDDA Power 16 RxA Input 17 RxAF Output 18 RxAFI Input 19 XOUT Output 20 XIN Input 21 VSS Ground Ground 22 VDD Power Digital supply voltage 23 RTSB Input Request to send 24 TxD Input Input transmit date, transmitted HART data stream from microcontroller 25 TEST11 − 26 RxD Output Received demodulated HART data to microcontroller 27 CD Output Carrier detect output 28 TEST12 − Transmit Data Modulator output Comparator bias current Connect to VSS Analog supply voltage Receive Data Modulator input Analog receive filter output Analog receive comparator input Crystal oscillator output Crystal oscillator input Do Not Connect Do Not Connect http://onsemi.com 5 RxD TEST12 CD 27 26 TEST1 28 25 VDD TEST2 29 TEST3 30 TEST4 32 RxD 25 31 TEST12 CD 26 TEST1 28 27 VDD TEST2 29 TEST3 31 30 TEST4 32 A5191HRT TEST5 1 24 TEST11 TEST5 1 24 RESET 2 23 TxD RESET 2 23 TxD TEST7 3 22 RTS TEST7 3 22 RTS 21 VDD TEST8 4 21 VDD 20 VSS TEST9 5 20 VSS TEST11 TEST8 4 TEST9 5 VSS 6 19 VSSA VSS 6 19 VSSA TxA AREF 7 18 XIN TxA 7 18 XIN 8 17 XOUT AREF 8 17 XOUT 12 13 14 15 16 VDDA RxA RxAF RxAFI RxAFI VSSA 16 RxAF 11 15 RxA TEST10 14 VDDA 9 13 VSSA 10 12 TEST10 CBIAS 11 CBIAS A5191HRT CDREF 9 10 CDREF A5191HRT Figure 4. Pin Out A5191HRT in 32-pin QFN and LQFP (top view) Table 7. PIN OUT SUMMARY 32−PIN QFN AND LQFP Pin No. Signal Name Type Pin Description 1 TEST5 Input Connect to VSS 2 RESETB Input Reset all logic when low, connect to VDD for normal operation 3, 4, 5 TEST7, 8, 9 Input Connect to VSS 6 VSS Ground Digital ground 7 TxA Output Transmit Data Modulator output 8 AREF Input Analog reference voltage Carrier detect reference voltage 9 CDREF Input 10 CBIAS Output 11 TEST10 Input 12 VSSA Ground Analog ground 13 VDDA Power Analog supply voltage 14 RxA Input 15 RxAF Output 16 RxAFI Input 17 XOUT Output Comparator bias current Connect to VSS Receive Data Modulator input Analog receive filter input Analog receive comparator input Crystal oscillator output 18 XIN Input 19 VSSA Ground Analog ground 20 VSS Ground Digital ground 21 VDD Power Digital supply voltage 22 RTSB Input Request to send 23 TxD Input Input transmit data, transmit HART data stream from microcontroller 24 TEST11 − 25 RxD Output Received demodulated HART data to microcontroller 26 CD Output Carrier detect output 27 TEST12 − Do Not Connect 28 TEST1 Input Connect to VSS 29 TEST2 − Do Not Connect 30 VDD Power 31, 32 TEST3, 4 − EP Exposed Pad Power Crystal oscillator input Do Not Connect Digital supply voltage Do Not Connect Connect to VSS (QFN only) http://onsemi.com 6 A5191HRT Pin Descriptions Table 8. PIN DESCRIPTIONS Symbol Pin Name Description AREF Analog reference voltage Receiver Reference Voltage. Normally 1.23 V is selected (in combination with VDDA = 3.3 V). See Table 2. CDREF Carrier detect reference voltage Carrier Detect Reference voltage. The value should be 85 mV below AREF to set the carrier detection to a nominal of 100 mVp−p. RESETB Reset digital logic When at logic low (VSS) this input holds all the digital logic in reset. During normal operation RESETB should be at VDD. RESETB should be held low for a minimum of 10 nS after VDD = 2.5 V as shown in Figure 14. RTSB Request to send Active−low input selects the operation of the modulator. TxA is enabled when this signal is low. This signal must be held high during power−up. RxA Analog receive input Receive Data Demodulator Input. Accepts a HART 1200 / 2200 Hz FSK modulated square wave serial data stream as input. RxAFI Analog receive comparator input Positive input of the carrier detect comparator and the receiver filter comparator. TxD Digital transmit input Input to the modulator accepts digital data in NRZ form. When TxD is low, the modulator output frequency is 2200 Hz. When TxD is high, the modulator output frequency is 1200 Hz. XIN Oscillator input Input to the internal oscillator must be connected to a parallel mode 460.8 kHz ceramic resonator when using the internal oscillator or grounded when using an external 460.8 kHz clock signal. CBIAS Comparator bias current Connection to the external bias resistor. RBIAS should be selected such that AREF / RBIAS = 2.5 mA ± 5 % CD Carrier detect output Output goes high when a valid input is recognized on RxA. If the received signal is greater than the threshold specified on CDREF for four cycles of the RxA signal, the valid input is recognized. RxAF Analog receive filter output The output of the three pole high pass receive data filter RxD Digital receive output Signal outputs the digital receive data. When the received signal (RxA) is 1200 Hz, RxD outputs logic high. When the received signal (RxA) is 2200 Hz, RxD outputs logic low. The HART receive data stream is only active if Carrier Detect (CD) is high. TxA Analog transmit output Transmit Data Modulator Output. A trapezoidal shaped waveform with a frequency of 1200 Hz or 2200 Hz corresponding to a data value of 1 or 0 respectively applied to TxD. TxA is active when RTSB is low. TxA equals 0.5 V when RTSB is high. XOUT Oscillator output Output from the internal oscillator must be connected to an external 460.8 kHz clock signal or to a parallel mode 460.8 kHz ceramic resonator when using the internal oscillator. TEST(12:1) Factory test Factory test pins; for normal operation, tie these signals as per Tables 6 and 7 VDD Digital power Power for the digital modem circuitry VDDA Analog supply voltage Power for the analog modem circuitry VSS Ground Digital ground (and Analog ground in the case of PLCC package) VSSA Analog ground Analog ground http://onsemi.com 7 A5191HRT Functional Description The A5191HRT is a single-chip modem for use in Highway Addressable Remote Transducer (HART) field instruments and masters. The modem IC contains a transmit data modulator with signal shaper, carrier detect circuitry, an analog receiver, demodulator circuitry and a crystal oscillator, as shown in the block diagram in Figure 1. The modulator accepts digital data at its digital input TxD and generates a sine shaped FSK modulated signal at the analog output TxA. A digital “1” or mark is represented with a frequency of 1200 Hz. A digital “0” or space is represented with a frequency of 2200 Hz. The used bit rate is 1200 baud. The demodulator receives the FSK signal at its analog input, filters it with a band-pass filter and generates 2 digital signals: RxD: Received Data and CD: Carrier Detect. At the digital output RxD the original modulated signal is received. CD outputs the Carrier Detect signal. It goes logic high if the received signal is above 100 mVpp during 4 consecutive carrier periods. The oscillator provides the modem with a stable time base using either a simple external resonator or an external clock source. The Numeric Controlled Oscillator NCO works in a phase continuous mode preventing abrupt phase shifts when switching between mark and space frequency. The control signal Request To Send RTSB enables the NCO. When RTSB is logic low the modulator is active and A5191HRT is in transmit mode. When RTSB is logic high the modulator is disabled and A5191HRT is in receive mode. The digital outputs of the NCO are shaped in the Wave Shaper block to a trapezoidal signal. This circuit controls the rising and falling edge to be inside the standard HART waveshape limits. Figure 7 shows the transmit-signal forms captured at TxA for mark and space frequency. The slew rates are SRm = 1860 V/s at the mark frequency and SRs = 3300 V/s at the space frequency. For AREF = 1.235 V, TxA will have a voltage swing from approximately 0.25 to 0.75 VDC. VTxA “1” = Mark; fm =1.2 kHz 0.5 V 0.5 V SRm = 1860 V/s Detailed Description 0 Modulator VTxA The modulator accepts digital data in NRZ form at the TxD input and generates the FSK modulated signal at the TxA output. t (ms) 1 2 “0” = Space; fs =2.2 kHz 0.5 V 0.5 V t (ms) SRs = 3300 V/s TxD Numeric Controlled Oscillator RTS TxA Sine Shaper 0 FSK_OUT 2 Figure 7. Modulator shaped output signal for Mark and Space frequency at TxA pin. MODULATOR Figure 5. Modulator Block Diagram Demodulator A logic “1” or mark is represented by a frequency fm = 1200 Hz. A logic “0”or space is represented by a frequency fs = 2200 Hz. “1” = Mark 1.2 kHz 1 The demodulator accepts a FSK signal at the RxA input and reconstructs the original modulated signal at the RxD output. Figure 8 illustrates the demodulation process. “0” = Space 2.2 kHz FSK_IN RxD LSB IDLE (mark) t MSB Start D0 D1 D2 “0” “1” “0” “1” tBIT IDLE (mark) D3 D4 D5 D6 D7 Par “0” “0” “1” “0” “1” “0” 8 data bits Stop t BIT Figure 8. Modulation Timing tBIT = 833 ms This HART bit stream follows a standard 11-bit UART frame with 1 startbit, 8 databits, 1 paritybit (odd) and 1 stopbit. The communication speed is 1200 baud. tBIT = 454 m s Figure 6. Modulation Timing http://onsemi.com 8 A5191HRT Receive Filter and Comparator output pin CD high if RTSB is high and four consecutive pulses out of the comparator have arrived. CD stays high as long as RTSB is high and the next comparator pulse is received in less than 2.5 ms. Once CD goes inactive, it takes four consecutive pulses out of the comparator to assert CD again. Four consecutive pulses amount to 3.33 ms when the received signal is 1200 Hz and to 1.82 ms when the received signal is 2200 HZ. The received FSK signal first is filtered using a band-pass filter build around the low noise receiver operational amplifier “Rx HP filter”. This filter blocks interferences outside the HART signal band. R6 R5 RxAF RxAFI Miscellaneous Analog Circuitry HART IN 15 MW RxA Rx Comp C3 C2 R4 Rx HP Filter DEMODULATOR R3 AREF Voltage References C1 The A5191HRT requires two voltage references, AREF and CDREF. AREF sets the DC operating point of the internal operational amplifiers and is the reference for the Rx comparator. If A5191HRT operates at VDD = 3.3 V the ON Semiconductor LM285D 1.235 V reference is recommended. The level at which CD (Carrier Detect) becomes active is determined by the DC voltage difference (CDREF - AREF). Selecting a voltage difference of 80 mV will set the carrier detect to a nominal 100 mVp-p. R1 R2 1.235 VDC Figure 9. Demodulator Receive Filter and Signal Comparator The filter output is fed into the Rx comparator. The threshold value equals the analog ground making the comparator to toggle on every zero crossing of the filtered FSK signal. The maximum demodulator jitter is 12 % of one bit given the input frequencies are within the HART specifications, a clock frequency of 460.8 kHz (±1.0 %) and zero input (RxA) asymmetry. Bias Current Resistor The A5191HRT requires a bias current resistor RBIAS to be connected between CBIAS and VSS. The bias current controls the operating parameters of the internal operational amplifiers and comparators and should be set to 2.5 mA. Carrier Detect Circuitry Low HART input signal levels increases the risk for the generation of bit errors. Therefore the minimum signal amplitude is set to 80 − 120 mVpp. If the received signal is below this level the demodulator is disabled. This level detection is done in the Carrier Detector. The output of the demodulator is qualified with the carrier detect signal (CD), therefore, only RxA signals large enough to be detected (100 mVp-p typically) by the carrier detect circuit produce received serial data at RxD. BIAS 2.5 mA C4 AREF OPA FILTERED HART IN RxAFI CBIAS RxD Demodulator Logic Rx Comp 15 MW RBIAS Figure 11. Bias Circuit AREF CD Carrier Detect Counter DEMODULATOR CDREF The value of the bias current resistor is determined by the reference voltage AREF and the following formula: 1.235 VDC R BIAS + AREF 2.5 mA VAREF – 80 mV Carrier Comp The recommended bias current resistor is 500 KW when AREF is equal to 1.235 V. Figure 10. Demodulator Carrier and Signal Comparator Oscillator The carrier detect comparator shown in Figure 10 generates logic low output if the RxAFI voltage is below CDREF. The comparator output is fed into a carrier detect block. The carrier detect block drives the carrier detect The A5191HRT requires a 460.8 kHz clock signal. This can be provided by an external clock or a resonator connected to the A5191HRT internal oscillator. http://onsemi.com 9 A5191HRT Internal Oscillator Option The oscillator cell will function with either a 460.8 kHz crystal or ceramic resonator. A parallel resonant ceramic resonator can be connected between XIN and XOUT. Figure 12 illustrates the crystal option for clock generation using a 460.8 kHz (±1 % tolerance) parallel resonant crystal and two tuning capacitors Cx. The actual values of the capacitors may depend on the recommendations of the manufacturer of the resonator. Typically, capacitors in the range of 100 pF to 470 pF are used. Crystal Oscillator XOUT XIN 460.8 kHz Figure 13. Oscillator with External Clock Power On Reset During start-up the RESETB pin should be kept low until the voltage level on VDD is above the minimum level VDDH = 2.5 V to guarantee correct operation of the digital circuitry. As illustrated in Figure 14 RESETB should be kept low for at least tPOR = 10 ns after this threshold level is reached. Crystal Oscillator XOUT 460.8 kHz CX XIN VDD CX VDDH = 2.5 V t Figure 12. Crystal Oscillator RESET pin External Clock Option It may be desirable to use an external 460.8 kHz clock as shown in Figure 13 rather than the internal oscillator. In addition, the A5191HRT consumes less current when an external clock is used. Minimum current consumption occurs with the clock connected to XOUT and XIN connected to VSS. tPOR = 10 ns Figure 14. Power On Reset Timing http://onsemi.com 10 A5191HRT PACKAGE DIMENSIONS PLCC 28 LEAD CASE 776AA ISSUE O http://onsemi.com 11 A5191HRT PACKAGE DIMENSIONS QFN−32, 5x5 CASE 488AM ISSUE O PIN ONE LOCATION 2X ÉÉ ÉÉ 0.15 C 2X A B D NOTES: 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM TERMINAL 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. E DIM A A1 A3 b D D2 E E2 e K L TOP VIEW 0.15 C (A3) 0.10 C A 32 X 0.08 C C L 32 X 9 D2 SEATING PLANE A1 SIDE VIEW SOLDERING FOOTPRINT* 5.30 EXPOSED PAD 16 K 3.20 32 X 17 MILLIMETERS MIN NOM MAX 0.800 0.900 1.000 0.000 0.025 0.050 0.200 REF 0.180 0.250 0.300 5.00 BSC 2.950 3.100 3.250 5.00 BSC 2.950 3.100 3.250 0.500 BSC 0.200 −−− −−− 0.300 0.400 0.500 8 32 X 0.63 E2 1 3.20 24 32 25 32 X b 0.10 C A B 5.30 e 32 X 0.05 C 0.28 BOTTOM VIEW 28 X 0.50 PITCH *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 12 A5191HRT PACKAGE DIMENSIONS LQFP−32, 7x7 CASE 561AB ISSUE O http://onsemi.com 13 A5191HRT Ordering Information The A5191HRT is available in a 28−pin plastic leaded chip carrier (PLCC), 32−pin quad flat no−lead (QFN) and 32−pin low−profile quad flat pack (LQFP). Use the following part numbers when ordering. Contact your local sales representative for more information: www.onsemi.com. Table 9. ORDERING INFORMATION Part Number Package Shipping Configuration Temperature Range A5191HRTLG−XTD (Industrial) 32−pin LQFP Green / RoHS compliant 250 Units / Tray −40°C to +85°C A5191HRTLG−XTP (Industrial) 32−pin LQFP Green / RoHS compliant 2500 Units / Tape & Reel −40°C to +85°C A5191HRTPG−XTD (Industrial) 28−pin PLCC Green / RoHS compliant 37 Units / Tube −40°C to +85°C A5191HRTPG−XTP (Industrial) 28−pin PLCC Green / RoHS compliant 750 Units / Tape & Reel −40°C to +85°C A5191HRTNG−XTD (Industrial) 32−pin QFN Green / RoHS compliant 60 Units / Tube/Tray −40°C to +85°C A5191HRTNG−XTP (Industrial) 32−pin QFN Green / RoHS compliant 5000 Units / Tape & Reel −40°C to +85°C ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative A5191HRT/D