Actel A54SX16-P-2TQG208PP Sx family fpgas Datasheet

v3.2
SX Family FPGAs
™
u e
Leading Edge Performance
•
•
•
•
Features
320 MHz Internal Performance
3.7 ns Clock-to-Out (Pin-to-Pin)
0.1 ns Input Setup
0.25 ns Clock Skew
•
•
•
•
•
•
•
•
Specifications
•
•
•
•
12,000 to 48,000 System Gates
Up to 249 User-Programmable I/O Pins
Up to 1,080 Flip-Flops
0.35 µ CMOS
•
•
66 MHz PCI
CPLD and FPGA Integration
Single-Chip Solution
100% Resource Utilization with 100% Pin Locking
3.3 V and 5.0 V Operation with 5.0 V Input Tolerance
Very Low Power Consumption
Deterministic, User-Controllable Timing
Unique In-System Diagnostic and Debug Capability
with Silicon Explorer II
Boundary Scan Testing in Compliance with IEEE
Standard 1149.1 (JTAG)
Secure Programming Technology Prevents Reverse
Engineering and Design Theft
SX Product Profile
Device
A54SX08
A54SX16
A54SX16P
A54SX32
8,000
12,000
16,000
24,000
16,000
24,000
32,000
48,000
Logic Modules
Combinatorial Cells
768
512
1,452
924
1,452
924
2,880
1,800
Register Cells (Dedicated Flip-Flops)
256
528
528
1,080
Maximum User I/Os
130
175
175
249
Capacity
Typical Gates
System Gates
Clocks
JTAG
PCI
Clock-to-Out
Input Setup (external)
Speed Grades
Temperature Grades
Packages (by pin count)
PLCC
PQFP
VQFP
TQFP
PBGA
FBGA
June 2006
© 2006 Actel Corporation
3
3
3
3
Yes
Yes
Yes
Yes
–
–
Yes
–
3.7 ns
3.9 ns
4.4 ns
4.6 ns
0.8 ns
0.5 ns
0.5 ns
0.1 ns
Std, –1, –2, –3
Std, –1, –2, –3
Std, –1, –2, –3
Std, –1, –2, –3
C, I, M
C, I, M
C, I, M
C, I, M
84
208
100
144, 176
–
144
–
208
100
176
–
–
–
208
100
144, 176
–
–
–
208
–
144, 176
313, 329
–
i
See the Actel website for the latest version of the datasheet.
SX Family FPGAs
Ordering Information
A54SX16
–
P
PQ
2
G
208
Application (Temperature Range)
Blank = Commercial (0 to +70˚C)
I = Industrial (–40 to +85˚C)
M = Military (–55 to +125˚C)
PP = Pre-production
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS Compliant Packaging
Package Type
BG = Ball Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
FG = Fine Pitch Ball Grid Array (1.0 mm)
Speed Grade
Blank = Standard Speed
–1 = Approximately 15% Faster than Standard
–2 = Approximately 25% Faster than Standard
–3 = Approximately 35% Faster than Standard
Blank = Not PCI Compliant
P = PCI Compliant
Part Number
A54SX08 = 12,000 System Gates
A54SX16 = 24,000 System Gates
A54SX16P = 24,000 System Gates
A54SX32 = 48,000 System Gates
Plastic Device Resources
User I/Os (including clock buffers)
PLCC
84-Pin
VQFP
100-Pin
PQFP
208-Pin
TQFP
144-Pin
TQFP
176-Pin
PBGA
313-Pin
PBGA
329-Pin
FBGA
144-Pin
A54SX08
69
81
130
113
128
–
–
111
A54SX16
–
81
175
–
147
–
–
–
A54SX16P
–
81
175
113
147
–
–
–
A54SX32
–
–
174
113
147
249
249
–
Device
Note: Package Definitions (Consult your local Actel sales representative for product availability):
PLCC = Plastic Leaded Chip Carrier
PQFP = Plastic Quad Flat Pack
TQFP = Thin Quad Flat Pack
VQFP = Very Thin Quad Flat Pack
PBGA = Plastic Ball Grid Array
FBGA = Fine Pitch (1.0 mm) Ball Grid Array
ii
v3.2
SX Family FPGAs
Table of Contents
SX Family FPGAs
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
SX Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
3.3 V / 5 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
PCI Compliance for the SX Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
A54SX16P AC Specifications for (PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
A54SX16P DC Specifications (3.3 V PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . 1-12
A54SX16P AC Specifications (3.3 V PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Power-Up Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Power-Down Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Evaluating Power in SX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
SX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Package Pin Assignments
84-Pin PLCC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
176-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
100-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
313-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
329-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
International Traffic in Arms Regulations (ITAR) and Export Administration
Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
v3.2
iii
SX Family FPGAs
SX Family FPGAs
General Description
SX Family Architecture
The Actel SX family of FPGAs features a sea-of-modules
architecture that delivers device performance and
integration levels not currently achieved by any other
FPGA architecture. SX devices greatly simplify design
time, enable dramatic reductions in design costs and
power consumption, and further decrease time to
market for performance-intensive applications.
The SX family architecture was designed to satisfy nextgeneration performance and integration requirements
for production-volume designs in a broad range of
applications.
The Actel SX architecture features two types of logic
modules, the combinatorial cell (C-cell) and the register
cell (R-cell), each optimized for fast and efficient
mapping of synthesized logic functions. The routing and
interconnect resources are in the metal layers above the
logic modules, providing optimal use of silicon. This
enables the entire floor of the device to be spanned with
an uninterrupted grid of fine-grained, synthesis-friendly
logic modules (or “sea-of-modules”), which reduces the
distance signals have to travel between logic modules. To
minimize signal propagation delay, SX devices employ
both local and general routing resources. The high-speed
local routing resources (DirectConnect and FastConnect)
enable very fast local signal propagation that is optimal
for fast counters, state machines, and datapath logic.
The general system of segmented routing tracks allows
any logic module in the array to be connected to any
other logic or I/O module. Within this system,
propagation delay is minimized by limiting the number
of antifuse interconnect elements to five (90 percent of
connections typically use only three antifuses). The
unique local and general routing structure featured in
SX devices gives fast and predictable performance,
allows 100 percent pin-locking with full logic utilization,
enables concurrent PCB development, reduces design
time, and allows designers to achieve performance goals
with minimum effort.
The SX family provides efficient use of silicon by locating
the routing interconnect resources between the Metal 2
(M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2).
This completely eliminates the channels of routing and
interconnect resources between logic modules (as
implemented on SRAM FPGAs and previous generations
of antifuse FPGAs), and enables the entire floor of the
device to be spanned with an uninterrupted grid of logic
modules.
Programmable Interconnect Element
Interconnection between these logic modules is achieved
using The Actel patented metal-to-metal programmable
antifuse interconnect elements, which are embedded
between the M2 and M3 layers. The antifuses are
normally open circuit and, when programmed, form a
permanent low-impedance connection.
The extremely small size of these interconnect elements
gives the SX family abundant routing resources and
provides excellent protection against design pirating.
Reverse engineering is virtually impossible because it is
extremely difficult to distinguish between programmed
and unprogrammed antifuses, and there is no
configuration bitstream to intercept.
Additionally, the interconnect elements (i.e., the
antifuses and metal tracks) have lower capacitance and
lower resistance than any other device of similar
capacity, leading to the fastest signal propagation in the
industry.
Further complementing SX’s flexible routing structure is
a hardwired, constantly loaded clock network that has
been tuned to provide fast clock propagation with
minimal clock skew. Additionally, the high performance
of the internal logic has eliminated the need to embed
latches or flip-flops in the I/O cells to achieve fast clockto-out or fast input setup times. SX devices have easy to
use I/O cells that do not require HDL instantiation,
facilitating design reuse and reducing design and
verification time.
Logic Module Design
The SX family architecture is described as a “sea-ofmodules” architecture because the entire floor of the
device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. The Actel SX family provides two types of logic
modules, the register cell (R-cell) and the combinatorial
cell (C-cell).
v3.2
1-1
SX Family FPGAs
The R-cell contains a flip-flop featuring asynchronous
clear, asynchronous preset, and clock enable (using the
S0 and S1 lines) control signals (Figure 1-2). The R-cell
registers feature programmable clock polarity selectable
on a register-by-register basis. This provides additional
flexibility while allowing mapping of synthesized
functions into the SX FPGA. The clock source for the
R-cell can be chosen from either the hardwired clock or
the routed clock.
Routing Tracks
Metal 3
Amorphous Silicon/
Dielectric Antifuse
Tungsten Plug Via
Tungsten Plug Via
Metal 2
Metal 1
Tungsten Plug
Contact
Silicon Substrate
Figure 1-1 •
SX Family Interconnect Elements
Routed Data Input
S1
S0
PSETB
Direct
Connect
Input
D
Q
Y
HCLK
CLKA, CLKB,
Internal Logic
CLRB
CKS
Figure 1-2 •
CKP
R-Cell
The C-cell implements a range of combinatorial functions
up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the
DB input and its associated inverter function dramatically
increases the number of combinatorial functions that can
be implemented in a single module from 800 options in
previous architectures to more than 4,000 in the SX
architecture. An example of the improved flexibility
1 -2
v3.2
enabled by the inversion capability is the ability to
integrate a 3-input exclusive-OR function into a single
C-cell. This facilitates construction of 9-bit parity-tree
functions with 2 ns propagation delays. At the same
time, the C-cell structure is extremely synthesis friendly,
simplifying the overall design and reducing synthesis
time.
SX Family FPGAs
Chip Architecture
To increase design efficiency and device performance,
Actel has further organized these modules into
SuperClusters (Figure 1-4). SuperCluster 1 is a two-wide
grouping of Type 1 clusters. SuperCluster 2 is a two-wide
group containing one Type 1 cluster and one Type 2
cluster. SX devices feature more SuperCluster 1 modules
than SuperCluster 2 modules because designers typically
require significantly more combinatorial logic than flipflops.
The SX family chip architecture provides a unique
approach to module organization and chip routing that
delivers the best register/logic mix for a wide variety of
new and emerging applications.
Module Organization
Actel has arranged all C-cell and R-cell logic modules into
horizontal banks called clusters. There are two types of
clusters: Type 1 contains two C-cells and one R-cell, while
Type 2 contains one C-cell and two R-cells.
D0
D1
Y
D2
D3
Sb
Sa
DB
A0
Figure 1-3 •
B0
A1
B1
C-Cell
C-Cell
R-Cell
D0
Routed Data Input
S0
D1
S1
Y
PSETB
D2
Direct
Connect
Input
D
Q
D3
Y
Sa
Sb
HCLK
CLRB
CLKA, CLKB,
Internal Logic
DB
CKS
CKP
Cluster 1
A0
Cluster 2
Cluster 2
Type 1 SuperCluster
Figure 1-4 •
B0
A1
B1
Cluster 1
Type 2 SuperCluster
Cluster Organization
v3.2
1-3
SX Family FPGAs
Routing Resources
Clusters and SuperClusters can be connected through the use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within
clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number
of antifuses required to complete a circuit, ensuring the highest possible performance.
DirectConnect
• No antifuses
• 0.1 ns routing delay
FastConnect
• One antifuse
• 0.4 ns routing delay
Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
Figure 1-5 •
DirectConnect and FastConnect for Type 1 SuperClusters
DirectConnect
• No antifuses
• 0.1 ns routing delay
FastConnect
• One antifuse
• 0.4 ns routing delay
Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
Figure 1-6 •
1 -4
DirectConnect and FastConnect for Type 2 SuperClusters
v3.2
SX Family FPGAs
Performance
DirectConnect is a horizontal routing resource that
provides connections from a C-cell to its neighboring Rcell in a given SuperCluster. DirectConnect uses a
hardwired signal path requiring no programmable
interconnection to achieve its fast signal propagation
time of less than 0.1 ns.
The combination of architectural features described
above enables SX devices to operate with internal clock
frequencies exceeding 300 MHz, enabling very fast
execution of even complex logic functions. Thus, the SX
family is an optimal platform upon which to integrate
the functionality previously contained in multiple CPLDs.
In addition, designs that previously would have required
a gate array to meet performance goals can now be
integrated into an SX device with dramatic
improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve
highly deterministic device performance. With SX
devices, designers do not need to use complicated
performance-enhancing design techniques such as the
use of redundant logic to reduce fanout on critical nets
or the instantiation of macros in HDL code to achieve
high performance.
FastConnect enables horizontal routing between any
two logic modules within a given SuperCluster and
vertical routing with the SuperCluster immediately
below it. Only one programmable connection is used in a
FastConnect path, delivering maximum pin-to-pin
propagation of 0.4 ns.
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. The Actel segmented routing structure provides
a variety of track lengths for extremely fast routing
between SuperClusters. The exact combination of track
lengths and antifuses within each path is chosen by the
100 percent automatic place-and-route software to
minimize signal propagation delays.
I/O Modules
Each I/O on an SX device can be configured as an input,
an output, a tristate output, or a bidirectional pin.
The Actel high-drive routing structure provides three
clock networks. The first clock, called HCLK, is hardwired
from the HCLK buffer to the clock select multiplexer
(MUX) in each R-cell. This provides a fast propagation
path for the clock signal, enabling the 3.7 ns clock-to-out
(pin-to-pin) performance of the SX devices. The
hardwired clock is tuned to provide clock skew as low as
0.25 ns. The remaining two clocks (CLKA, CLKB) are
global clocks that can be sourced from external pins or
from internal logic signals within the SX device.
Even without the inclusion of dedicated I/O registers,
these I/Os, in combination with array registers, can
achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns.
I/O cells that have embedded latches and flip-flops
require instantiation in HDL code; this is a design
complication not encountered in SX FPGAs. Fast pin-topin timing ensures that the device will have little trouble
interfacing with any other device in the system, which in
turn enables parallel design of system components and
reduces overall design time.
Other Architectural Features
Power Requirements
The SX family supports 3.3 V operation and is designed
to tolerate 5.0 V inputs. (Table 1-1). Power consumption
is extremely low due to the very short distances signals
are required to travel to complete a circuit. Power
requirements are further reduced because of the small
number of low-resistance antifuses in the path. The
antifuse architecture does not require active circuitry to
hold a charge (as do SRAM or EPROM), making it the
lowest power architecture on the market.
Technology
The Actel SX family is implemented on a high-voltage
twin-well CMOS process using 0.35 µ design rules. The
metal-to-metal antifuse is made up of a combination of
amorphous silicon and dielectric material with barrier
metals and has a programmed ("on" state) resistance of
25 Ω with a capacitance of 1.0 fF for low signal impedance.
Table 1-1 •
Supply Voltages
Device
VCCA
VCCI
VCCR
Maximum Input Tolerance
Maximum Output Drive
A54SX08
A54SX16
A54SX32
3.3 V
3.3 V
5.0 V
5.0 V
3.3 V
A54SX16-P*
3.3 V
3.3 V
3.3 V
3.3 V
3.3 V
3.3 V
3.3 V
5.0 V
5.0 V
3.3 V
3.3 V
5.0 V
5.0 V
5.0 V
5.0 V
Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.
v3.2
1-5
SX Family FPGAs
Boundary Scan Testing (BST)
Development Tool Support
All SX devices are IEEE 1149.1 compliant. SX devices offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
These functions are controlled through the special test
pins in conjunction with the program fuse. The
functionality of each pin is described in Table 1-2. In the
dedicated test mode, TCK, TDI, and TDO are dedicated
pins and cannot be used as regular I/Os. In flexible mode,
TMS should be set HIGH through a pull-up resistor of
10 kΩ. TMS can be pulled LOW to initiate the test
sequence.
The SX family of FPGAs is fully supported by both the
Actel Libero® Integrated Design Environment (IDE) and
Designer FPGA Development software. Actel Libero IDE
is a design management environment, seamlessly
integrating design tools while guiding the user through
the design flow, managing all design and log files, and
passing necessary design data among tools. Libero IDE
allows users to integrate both schematic and HDL
synthesis into a single flow and verify the entire design
in a single environment. Libero IDE includes Synplify® for
Actel from Synplicity®, ViewDraw® for Actel from
Mentor Graphics®, ModelSim® HDL Simulator from
Mentor
Graphics,
WaveFormer
Lite™
from
SynaptiCAD™, and Designer software from Actel. Refer
to the Libero IDE flow diagram (located on the Actel
website) for more information.
The program fuse determines whether the device is in
dedicated or flexible mode. The default (fuse not blown)
is flexible mode.
Table 1-2 •
Boundary Scan Pin Functionality
Program Fuse Blown
(Dedicated Test Mode)
Program Fuse Not Blown
(Flexible Mode)
TCK, TDI, TDO are dedicated TCK, TDI, TDO are flexible and
BST pins.
may be used as I/Os.
No need for pull-up resistor for Use a pull-up resistor of 10 kΩ
TMS
on TMS.
Dedicated Test Mode
In Dedicated mode, all JTAG pins are reserved for BST;
designers cannot use them as regular I/Os. An internal
pull-up resistor is automatically enabled on both TMS
and TDI pins, and the TMS pin will function as defined in
the IEEE 1149.1 (JTAG) specification.
To select Dedicated mode, users need to reserve the JTAG
pins in Actel's Designer software by checking the
"Reserve JTAG" box in "Device Selection Wizard"
(Figure 1-7). JTAG pins comply with LVTTL/TTL I/O
specification regardless of whether they are used as a
user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8
for detailed specifications.
Actel Designer software is a place-and-route tool and
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
timing-driven place-and-route, and a world-class
integrated static timing analyzer and constraints editor.
With the Designer software, a user can select and lock
package pins while only minimally impacting the results
of place-and-route. Additionally, the back-annotation
flow is compatible with all the major simulators, and the
simulation results can be cross-probed with Silicon
Explorer II, Actel integrated verification and logic
analysis tool. Another tool included in the Designer
software is the SmartGen core generator, which easily
creates popular and commonly used logic functions for
implementation into your schematic or HDL design. Actel
Designer software is compatible with the most popular
FPGA design entry and verification tools from companies
such as Mentor Graphics, Synplicity, Synopsys®, and
Cadence® Design Systems. The Designer software is
available for both the Windows® and UNIX® operating
systems.
Probe Circuit Control Pins
The Silicon Explorer II tool uses the boundary scan ports
(TDI, TCK, TMS, and TDO) to select the desired nets for
verification. The selected internal nets are assigned to
the PRA/PRB pins for observation. Figure 1-8 on page 1-7
illustrates the interconnection between Silicon Explorer II
and the FPGA to perform in-circuit verification.
Design Considerations
The TDI, TCK, TDO, PRA, and PRB pins should not be used
as input or bidirectional ports. Because these pins are
active during probing, critical signals input through
these pins are not available while probing. In addition,
the Security Fuse should not be programmed because
doing so disables the Probe Circuitry.
Figure 1-7 • Device Selection Wizard
1 -6
v3.2
SX Family FPGAs
16 Channels
TDI
TCK
TMS
Silicon
Explorer II
Serial Connection
SX FPGA
TDO
PRA
PRB
Figure 1-8 •
Probe Setup
Programming
The procedure for programming an SX device using
Silicon Sculptor II are as follows:
Device programming is supported through Silicon
Sculptor series of programmers. In particular, Silicon
Sculptor II are compact, robust, single-site and multi-site
device programmer for the PC.
1. Load the .AFM file
2. Select the device to be programmed
3. Begin programming
When the design is ready to go to production, Actel
offers device volume-programming services either
through distribution partners or via in-house
programming from the factory.
With standalone software, Silicon Sculptor II allows
concurrent programming of multiple units from the
same PC, ensuring the fastest programming times
possible. Each fuse is subsequently verified by Silicon
Sculptor II to insure correct programming. In addition,
integrity tests ensure that no extra fuses are
programmed. Silicon Sculptor II also provides extensive
hardware self-testing capability.
For more details on programming SX devices, refer to the
Programming Antifuse Devices application note and the
Silicon Sculptor II User's Guide.
3.3 V / 5 V Operating Conditions
Table 1-3 •
Absolute Maximum Ratings1
Symbol
VCCR
2
Parameter
DC Supply
Voltage3
Limits
Units
–0.3 to + 6.0
V
VCCA2
DC Supply Voltage
–0.3 to + 4.0
V
VCCI2
DC Supply Voltage (A54SX08, A54SX16, A54SX32)
–0.3 to + 4.0
V
DC Supply Voltage (A54SX16P)
–0.3 to + 6.0
V
VI
Input Voltage
–0.5 to + 5.5
V
VO
Output Voltage
–0.5 to + 3.6
V
IIO
I/O Source Sink Current3
–30 to + 5.0
mA
TSTG
Storage Temperature
–65 to +150
°C
VCCI
2
Notes:
1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute
maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the
Recommended Operating Conditions.
2. VCCR in the A54SX16P must be greater than or equal to VCCI during power-up and power-down sequences and during normal
operation.
3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC +
0.5 V or less than GND – 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.
v3.2
1-7
SX Family FPGAs
Table 1-4 •
Recommended Operating Conditions
Parameter
Commercial
Industrial
Military
Units
0 to + 70
–40 to + 85
–55 to +125
°C
3.3 V Power Supply Tolerance
±10
±10
±10
%VCC
5.0 V Power Supply Tolerance
±5
±10
±10
%VCC
Temperature Range*
Note: *Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military.
Table 1-5 •
Electrical Specifications
Commercial
Symbol
Parameter
VOH
(IOH = –20 µA) (CMOS)
(IOH = –8 mA) (TTL)
Min.
Max.
Min.
Max.
Units
(VCCI – 0.1)
VCCI
(VCCI – 0.1)
VCCI
V
2.4
VCCI
2.4
VCCI
(IOH = –6 mA) (TTL)
VOL
Industrial
(IOL= 20 µA) (CMOS)
0.10
(IOL = 12 mA) (TTL)
0.50
V
(IOL = 8 mA) (TTL)
0.50
0.8
VIL
VIH
2.0
0.8
2.0
V
V
tR , tF
Input Transition Time tR, tF
50
50
ns
CIO
CIO I/O Capacitance
10
10
pF
ICC
Standby Current, ICC
4.0
4.0
mA
ICC(D)
ICC(D) IDynamic VCC Supply Current
1 -8
See "Evaluating Power in SX Devices" on page 1-16.
v3.2
SX Family FPGAs
PCI Compliance for the SX Family
The SX family supports 3.3 V and 5.0 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.
Table 1-6 •
A54SX16P DC Specifications (5.0 V PCI Operation)
Symbol
Parameter
VCCA
Condition
Min.
Max.
Units
Supply Voltage for Array
3.0
3.6
V
VCCR
Supply Voltage required for Internal Biasing
4.75
5.25
V
VCCI
Supply Voltage for I/Os
4.75
5.25
V
2.0
VCC + 0.5
V
–0.5
0.8
V
1
VIH
Input High Voltage
VIL
Input Low Voltage1
IIH
Input High Leakage Current
VIN = 2.7
70
µA
IIL
Input Low Leakage Current
VIN = 0.5
–70
µA
VOH
Output High Voltage
IOUT = –2 mA
VOL
Output Low Voltage2
IOUT = 3 mA, 6 mA
Capacitance3
CIN
Input Pin
CCLK
CLK Pin Capacitance
CIDSEL
IDSEL Pin
2.4
5
Capacitance4
V
0.55
V
10
pF
12
pF
8
pF
Notes:
1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter include,
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and
ACK64#.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
v3.2
1-9
SX Family FPGAs
A54SX16P AC Specifications for (PCI Operation)
Table 1-7 •
A54SX16P AC Specifications for (PCI Operation)
Symbol
Parameter
Condition
Min.
IOH(AC)
Switching Current High
0 < VOUT ≤ 1.41
1.4 ≤ VOUT < 2.4
1, 2
3.1 < VOUT <
IOL(AC)
Max.
–44
mA
–44 + (VOUT – 1.4)/0.024
mA
VCC1, 3
EQ 1-1 on page 1-11
3
(Test Point)
VOUT = 3.1
Switching Current High
VOUT ≥ 2.21
–142
95
2.2 > VOUT > 0.55
1
VOUT /0.023
0.71 > VOUT > 0
ICL
slewR
slewF
3
VOUT = 0.71
Low Clamp Current
–5 < VIN ≤ –1
Output Rise Slew Rate
Output Fall Slew Rate
mA
mA
1, 3
(Test Point)
Units
EQ 1-2 on page 1-11
mA
206
mA
–25 + (VIN + 1) /0.015
mA
0.4 V to 2.4 V
load4
1
5
V/ns
2.4 V to 0.4 V
load4
1
5
V/ns
Notes:
1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half
of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#,
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,
which are open drain outputs.
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than
toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A
and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter
with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not
required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates;
therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should
ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.
Pin
1/2 in. max.
Output
Buffer
1 kΩ
1 kΩ
1 -1 0
VCC
10 pF
v3.2
SX Family FPGAs
Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P
device.
0.50
0.45
0.40
PCI IOL Maximum
0.35
Current (A)
0.30
0.25
SX PCI IOL
0.20
0.15
0.10
PCI IOL Mininum
0.05
0
1
–0.05
–0.10
2
3
4
5
6
PCI IOH Mininum
SX PCI IOH
–0.15
PCI IOH Maximum
–0.20
Voltage Out
Figure 1-9 •
5.0 V PCI Curve for A54SX16P Device
IOH = 11.9 × (VOUT – 5.25) × (VOUT + 2.45)
IOL = 78.5 × VOUT × (4.4 – VOUT)
for VCC > VOUT > 3.1 V
for 0 V < VOUT < 0.71 V
EQ 1-1
EQ 1-2
v3.2
1-11
SX Family FPGAs
A54SX16P DC Specifications (3.3 V PCI Operation)
Table 1-8 •
A54SX16P DC Specifications (3.3 V PCI Operation)
Symbol
Parameter
VCCA
Min.
Max.
Units
Supply Voltage for Array
3.0
3.6
V
VCCR
Supply Voltage required for Internal Biasing
3.0
3.6
V
VCCI
Supply Voltage for I/Os
3.0
3.6
V
VIH
Input High Voltage
0.5VCC
VCC + 0.5
V
VIL
Input Low Voltage
–0.5
0.3VCC
V
IIPU
Input Pull-up Voltage
Condition
1
0.7VCC
2
IIL
Input Leakage Current
VOH
Output High Voltage
IOUT = –500 µA
VOL
Output Low Voltage
IOUT = 1500 µA
Input Pin
CCLK
CLK Pin Capacitance
IDSEL Pin
±10
0.9VCC
Capacitance3
CIN
CIDSEL
0 < VIN < VCC
5
Capacitance4
V
µA
V
0.1VCC
V
10
pF
12
pF
8
pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a
floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current
at this input voltage.
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
1 -1 2
v3.2
SX Family FPGAs
A54SX16P AC Specifications (3.3 V PCI Operation)
Table 1-9 •
A54SX16P AC Specifications (3.3 V PCI Operation)
Symbol Parameter
Condition
Switching Current High
IOH(AC)
Min.
0 < VOUT ≤ 0.3VCC1
0.3VCC ≤ VOUT <
–12VCC
0.7VCC < VOUT <
VCC1, 2
–17.1 + (VCC – VOUT)
mA
0.7VCC2
VOUT =
Switching Current High
VCC > VOUT ≥ 0.6VCC1
0.6VCC > VOUT >
EQ 1-3 on page 1-14
–32VCC
mA
mA
0.1VCC1
0.18VCC > VOUT > 0
Units
mA
0.9VCC1
(Test Point)
IOL(AC)
Max.
16VCC
1, 2
mA
26.7VOUT
EQ 1-4 on page 1-14
0.18VCC2
mA
(Test Point)
VOUT =
ICL
Low Clamp Current
–3 < VIN ≤ –1
–25 + (VIN + 1)/0.015
mA
ICH
High Clamp Current
–3 < VIN ≤ –1
25 + (VIN – VOUT – 1)/0.015
mA
slewR
slewF
Rate3
0.2VCC to 0.6VCC load
1
4
V/ns
Rate3
0.6VCC to 0.2VCC load
1
4
V/ns
Output Rise Slew
Output Fall Slew
38VCC
Notes:
1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be
one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to
CLK and RST# which are system outputs. “Switching Current High” specification are not relevant to SERR#, INTA#, INTB#,
INTC#, and INTD# which are open drain outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums
(C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be
met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output
driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate
at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet
this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both
maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply
to open drain outputs.
Pin
1/2 in. max.
Output
Buffer
VCC
10 pF
1 kΩ
1 kΩ
v3.2
1-13
SX Family FPGAs
Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P
device.
0.50
0.45
0.40
PCI IOL Maximum
0.35
Current (A)
0.30
0.25
0.20
SX PCI IOL
0.15
0.10
PCI IOL Minimum
0.05
SX PCI IOH
0
–0.05
1
2
3
PCI IOH Minimum
4
5
6
PCI IOH Maximum
–0.10
–0.15
–0.20
Voltage Out
Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device
IOH = (98.0/VCC) × (VOUT – VCC) × (VOUT + 0.4VCC)
IOL = (256/VCC) × VOUT × (VCC – VOUT)
for VCC > VOUT > 0.7 VCC
for 0 V < VOUT < 0.18 VCC
EQ 1-3
1 -1 4
v3.2
EQ 1-4
SX Family FPGAs
Power-Up Sequencing
Table 1-10 • Power-Up Sequencing
VCCA
VCCR
VCCI
Power-Up Sequence
Comments
3.3 V
5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
Possible damage to device
A54SX08, A54SX16, A54SX32
3.3 V
5.0 V
A54SX16P
3.3 V
3.3 V
3.3 V
3.3 V Only
No possible damage to device
3.3 V
5.0 V
3.3 V
5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
Possible damage to device
5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
3.3 V
5.0 V
5.0 V
Note: No inputs should be driven (high or low) before completion of power-up.
Power-Down Sequencing
Table 1-11 • Power-Down Sequencing
VCCA
VCCR
VCCI
Power-Down Sequence
Comments
3.3 V
5.0 V First
3.3 V Second
Possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
A54SX08, A54SX16, A54SX32
3.3 V
5.0 V
A54SX16P
3.3 V
3.3 V
3.3 V
3.3 V Only
No possible damage to device
3.3 V
5.0 V
3.3 V
5.0 V First
3.3 V Second
Possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
3.3 V
5.0 V
5.0 V
Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.
v3.2
1-15
SX Family FPGAs
Evaluating Power in SX Devices
AC Power Dissipation
A critical element of system reliability is the ability of
electronic devices to safely dissipate the heat generated
during operation. The thermal characteristics of a circuit
depend on the device and package used, the operating
temperature, the operating current, and the system's
ability to dissipate heat.
The power dissipation of the SX Family is usually
dominated by the dynamic power dissipation. Dynamic
power dissipation is a function of frequency, equivalent
capacitance, and power supply voltage. The AC power
dissipation is defined in EQ 1-7 and EQ 1-8.
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer
You should complete a power evaluation early in the
design process to help identify potential heat-related
problems in the system and to prevent the system from
exceeding the device’s maximum allowed junction
temperature.
The actual power dissipated by most applications is
significantly lower than the power the package can
dissipate. However, a thermal analysis should be
performed for all projects. To perform a power
evaluation, follow these steps:
1. Estimate the
application.
power
consumption
of
the
EQ 1-7
PAC = VCCA2 × [(m × CEQM × fm)Module +
(n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer +
(0.5 × (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA +
(0.5 × (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB +
(0.5 × (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK]
EQ 1-8
Definition of Terms Used in Formula
2. Calculate the maximum power allowed for the
device and package.
m
n
p
q1
=
=
=
=
3. Compare the estimated power and maximum
power values.
q2
=
x
y
r1
r2
=
=
=
=
s1
=
CEQM
CEQI
CEQO
CEQCR
CEQHV
CEQHF
CL
fm
fn
fp
fq1
fq2
fs1
=
=
=
=
=
=
=
=
=
=
=
=
=
Estimating Power Consumption
The total power dissipation for the SX family is the sum
of the DC power dissipation and the AC power
dissipation. Use EQ 1-5 to calculate the estimated power
consumption of your application.
PTotal = PDC + PAC
EQ 1-5
DC Power Dissipation
The power due to standby current is typically a small
component of the overall power. The Standby power is
shown in Table 1-12 for commercial, worst-case
conditions (70°C).
Table 1-12 • Standby Power
ICC
VCC
Power
4 mA
3.6 V
14.4 mW
The DC power dissipation is defined in EQ 1-6.
PDC = (Istandby) × VCCA + (Istandby) × VCCR +
(Istandby) × VCCI + xVOL × IOL + y(VCCI – VOH) × VOH
EQ 1-6
1 -1 6
v3.2
Number of logic modules switching at fm
Number of input buffers switching at fn
Number of output buffers switching at fp
Number of clock loads on the first routed array
clock
Number of clock loads on the second routed array
clock
Number of I/Os at logic low
Number of I/Os at logic high
Fixed capacitance due to first routed array clock
Fixed capacitance due to second routed array
clock
Number of clock loads on the dedicated array
clock
Equivalent capacitance of logic modules in pF
Equivalent capacitance of input buffers in pF
Equivalent capacitance of output buffers in pF
Equivalent capacitance of routed array clock in pF
Variable capacitance of dedicated array clock
Fixed capacitance of dedicated array clock
Output lead capacitance in pF
Average logic module switching rate in MHz
Average input buffer switching rate in MHz
Average output buffer switching rate in MHz
Average first routed array clock rate in MHz
Average second routed array clock rate in MHz
Average dedicated array clock rate in MHz
SX Family FPGAs
Table 1-13
devices.
shows
capacitance
values
for
Guidelines for Calculating Power
Consumption
various
Table 1-13 • Capacitance Values for Devices
The power consumption guidelines are meant to
represent worst-case scenarios so that they can be
generally used to predict the upper limits of power
dissipation. These guidelines are shown in Table 1-14.
A54SX08
A54SX16
A54SX16P A54SX32
CEQM (pF)
4.0
4.0
4.0
4.0
CEQI (pF)
3.4
3.4
3.4
3.4
CEQO (pF)
4.7
4.7
4.7
4.7
Sample Power Calculation
CEQCR (pF)
One of the designs used to characterize the SX family
was a 528 bit serial-in, serial-out shift register. The design
utilized 100 percent of the dedicated flip-flops of an
A54SX16P device. A pattern of 0101… was clocked into
the device at frequencies ranging from 1 MHz to
200 MHz. Shifting in a series of 0101… caused 50 percent
of the flip-flops to toggle from low to high at every clock
cycle.
1.6
1.6
1.6
1.6
CEQHV
0.615
0.615
0.615
0.615
CEQHF
60
96
96
140
r1 (pF)
87
138
138
171
r2 (pF)
87
138
138
171
Table 1-14 • Power Consumption Guidelines
Description
Power Consumption Guideline
Logic Modules (m)
20% of modules
Inputs Switching (n)
# inputs/4
Outputs Switching (p)
# outputs/4
First Routed Array Clock Loads (q1)
20% of register cells
Second Routed Array Clock Loads (q2)
20% of register cells
Load Capacitance (CL)
35 pF
Average Logic Module Switching Rate (fm)
f/10
Average Input Switching Rate (fn)
f/5
Average Output Switching Rate (fp)
f/10
Average First Routed Array Clock Rate (fq1)
f/2
Average Second Routed Array Clock Rate (fq2)
f/2
Average Dedicated Array Clock Rate (fs1)
f
Dedicated Clock Array Clock Loads (s1)
20% of regular modules
AC Power Dissipation
Follow the steps below to estimate power consumption.
The values provided for the sample calculation below are
for the shift register design above. This method for
estimating power consumption is conservative and the
actual power consumption of your design may be less
than the estimated power consumption.
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer
EQ 1-10
2
PAC = VCCA × [(m × CEQM × fm)Module +
(n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer +
(0.5 (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA +
(0.5 (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB +
(0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK]
The total power dissipation for the SX family is the sum
of the AC power dissipation and the DC power
dissipation.
PTotal = PAC (dynamic power) + PDC (static power)
EQ 1-9
EQ 1-11
v3.2
1-17
SX Family FPGAs
Step 1: Define Terms Used in Formula
VCCA
3.3
Number of logic modules switching
at fm (Used 50%)
m
264
Average logic modules switching rate
fm (MHz) (Guidelines: f/10)
fm
20
Module capacitance CEQM (pF)
CEQM
4.0
Number of input buffers switching at fn
n
1
Average input switching rate fn (MHz)
(Guidelines: f/5)
fn
40
Input buffer capacitance CEQI (pF)
CEQI
3.4
Step 2: Calculate Dynamic Power Consumption
VCCA × VCCA
10.89
0.02112
m × fm × CEQM
n × fn × CEQI
0.000136
p × fp × (CEQO+CL)
0.000794
0.11208
0.5 (q1 × CEQCR × fq1) + (r1 × fq1)
0.5(q2 × CEQCR × fq2) + (r2 × fq2)
0
0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1)
0
PAC = 1.461 W
Module
Input Buffer
Step 3: Calculate DC Power Dissipation
DC Power Dissipation
PDC = (Istandby) × VCCA + (Istandby) × VCCR + (Istandby) ×
VCCI + X × VOL × IOL + Y(VCCI – VOH) × VOH
Output Buffer
Number of output buffers switching at fp p
1
Average output buffers switching rate
fp(MHz) (Guidelines: f/10)
fp
20
Output buffers buffer capacitance
CEQO (pF)
CEQO
4.7
Output Load capacitance CL (pF)
CL
35
Number of Clock loads q1
q1
528
Capacitance of routed array clock (pF)
CEQCR
1.6
Average clock rate (MHz)
fq1
200
Fixed capacitance (pF)
r1
138
Number of Clock loads q2
q2
0
Capacitance of routed array clock (pF)
CEQCR
1.6
Average clock rate (MHz)
fq2
0
Fixed capacitance (pF)
r2
138
Number of Clock loads
s1
0
Variable capacitance of dedicated
array clock (pF)
CEQHV 0.61
5
Fixed capacitance of dedicated
array clock (pF)
CEQHF
96
Average clock rate (MHz)
fs1
0
EQ 1-12
For a rough estimate of DC Power Dissipation, only use
PDC = (Istandby) × VCCA. The rest of the formula provides a
very small number that can be considered negligible.
PDC = (Istandby) × VCCA
PDC = .55 mA × 3.3 V
RCLKA
PDC = 0.001815 W
Step 4: Calculate Total Power Consumption
PTotal = PAC + PDC
PTotal = 1.461 + 0.001815
PTotal = 1.4628 W
RCLKB
Step 5: Compare Estimated Power Consumption
against Characterized Power Consumption
The estimated total power consumption for this design is
1.46 W. The characterized power consumption for this
design at 200 MHz is 1.0164 W.
HCLK
1 -1 8
v3.2
SX Family FPGAs
Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging
from 1 MHz to 200 MHz.
1200
Power Dissipation mW
1000
800
600
400
200
0
0
20
40
60
80
100
120
140
160
180
200
Frequency MHz
Figure 1-11 • Power Dissipation
Junction Temperature (TJ)
P
The temperature that you select in Designer Series
software is the junction temperature, not ambient
temperature. This is an important distinction because the
heat generated from dynamic power consumption is
usually hotter than the ambient temperature. Use the
equation below to calculate junction temperature.
= Power calculated from
Consumption section
Estimating
Power
θja = Junction to ambient of package. θja numbers are
located in the "Package Thermal Characteristics"
section.
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two
different air flow rates.
Junction Temperature = ΔT + Ta
EQ 1-13
Where:
The maximum junction temperature is 150 °C.
Ta = Ambient Temperature
A sample calculation of the absolute maximum power
dissipation allowed for a TQFP 176-pin package at
commercial temperature and still air is as follows:
ΔT = Temperature gradient between junction (silicon)
and ambient
ΔT = θja × P
150°C – 70°C
Max. junction temp. (°C) – Max. ambient temp. (°C)
Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------ = ----------------------------------- = 2.86 W
28°C/W
θ ja (°C/W)
EQ 1-14
v3.2
1-19
SX Family FPGAs
Table 1-15 • Package Thermal Characteristics
Pin Count
θjc
θja
Still Air
θja
300 ft/min.
Units
Plastic Leaded Chip Carrier (PLCC)
84
12
32
22
°C/W
Thin Quad Flat Pack (TQFP)
144
11
32
24
°C/W
Thin Quad Flat Pack (TQFP)
176
11
28
21
°C/W
Very Thin Quad Flatpack (VQFP)
100
10
38
32
°C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader
208
8
30
23
°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader
208
3.8
20
17
°C/W
Plastic Ball Grid Array (PBGA)
272
3
20
14.5
°C/W
Plastic Ball Grid Array (PBGA)
313
3
23
17
°C/W
Plastic Ball Grid Array (PBGA)
329
3
18
13.5
°C/W
Fine Pitch Ball Grid Array (FBGA)
144
3.8
38.8
26.7
°C/W
Package Type
Note: SX08 does not have a heat spreader.
Table 1-16 • Temperature and Voltage Derating Factors*
Junction Temperature
VCCA
–55
–40
0
25
70
85
125
3.0
0.75
0.78
0.87
0.89
1.00
1.04
1.16
3.3
0.70
0.73
0.82
0.83
0.93
0.97
1.08
3.6
0.66
0.69
0.77
0.78
0.87
0.92
1.02
Note: *Normalized to worst-case commercial, TJ = 70°C, VCCA = 3.0 V
1 -2 0
v3.2
SX Family FPGAs
SX Timing Model
Input Delays
I/O Module
tINY = 1.5 ns
Predicted
Routing
Delays
Internal Delays
Combinatorial Cell
Output Delays
I/O Module
tIRD2 = 0.6 ns
tDHL = 1.6 ns
tRD1 = 0.3 ns
tRD4 = 1.0 ns
tRD8 = 1.9 ns
tPD = 0.6 ns
I/O Module
tDLH = 1.6 ns
Register Cell
D
Register Cell
D
Q
Q
tRD1 = 0.3 ns
tRD1 = 0.3 ns
tENZH = 2.3 ns
tSUD = 0.5 ns
tHD = 0.0 ns
Routed
Clock
tRCO = 0.8 ns
tRCO = 0.8 ns
tRCKH = 1.5 ns (100% Load)
FMAX = 250 MHz
Hardwired
Clock
tHCKH = 1.0 ns
FHMAX = 320 MHz
Note: Values shown for A54SX08-3, worst-case commercial conditions.
Figure 1-12 • SX Timing Model
Hardwired Clock
External Setup = tINY + tIRD1 + tSUD – tHCKH
= 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns
Routed Clock
External Setup = tINY + tIRD1 + tSUD – tRCKH
= 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns
EQ 1-15
EQ 1-17
Clock-to-Out (Pin-to-Pin)
Clock-to-Out (Pin-to-Pin)
= tHCKH + tRCO + tRD1 + tDHL
= tRCKH + tRCO + tRD1 + tDHL
= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns
= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns
EQ 1-16
EQ 1-18
v3.2
1-21
SX Family FPGAs
E
D
VCC
VCC
In
VOL
1.5 V
1.5 V
tDLH
En
GND
50% 50%
VOH
Out
PAD To AC Test Loads (shown below)
TRIBUFF
Out
GND
50% 50%
VCC
1.5 V
10%
VOL
tDHL
GND
VOH
Out
GND
tENLZ
tENZL
VCC
50% 50%
En
90%
1.5 V
tENZH
tENHZ
Figure 1-13 • Output Buffer Delays
Load 2
(used to measure
disable delays)
VCC
GND
Load 2
(used to measure
enable delays)
VCC
GND
Load 1
(used to measure
propagation delay)
To Output
Under Test
35 pF
To Output
Under Test
R to VCC for tPLZ
R to GND for tPHZ
R = 1 kΩ
R to VCC for tPLZ
R to GND for tPHZ
R = 1 kΩ
To Output
Under Test
35 pF
35 pF
Figure 1-14 • AC Test Loads
PAD
INBUF
S
A
B
Y
Y
VCC
S, A ,or B
In
3V
1.5 V 1.5 V
VCC
Out
GND
VCC
Out
GND
0V
50%
tPD
tINY
Figure 1-15 • Input Buffer Delays
1 -2 2
50%
50%
tPD
tPD
Out
50%
50%
tINY
GND
50% 50%
Figure 1-16 • C-Cell Delays
v3.2
GND
tPD
VCC
50%
SX Family FPGAs
Register Cell Timing Characteristics
Q
PRESET
D
CLR
CLK
(positive edge triggered)
tHD
D
tSUD
CLK
tHP
tHPWH'
RPWH
tRCO
tHPWL'
RPWL
Q
tCLR
tPRESET
CLR
tWASYN
PRESET
Figure 1-17 • Flip-Flops
Timing Characteristics
Long Tracks
Timing characteristics for SX devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer
characteristics are common to all SX family members.
Internal routing delays are device-dependent. Design
dependency means actual delays are not determined
until after placement and routing of the user’s design is
complete. Delay values may then be determined by using
the DirectTime Analyzer utility or performing simulation
with post-layout delays.
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows,
columns, or modules. Long tracks employ three and
sometimes five antifuse connections. This increases
capacitance and resistance, resulting in longer net delays
for macros connected to long tracks. Typically up to 6
percent of nets in a fully utilized device require long
tracks. Long tracks contribute approximately 4 ns to 8.4
ns delay. This additional delay is represented statistically
in higher fanout (FO = 24) routing delays in the
datasheet specifications section.
Critical Nets and Typical Nets
Timing Derating
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most timecritical paths. Critical nets are determined by net
property assignment prior to placement and routing. Up
to 6% of the nets in a design may be designated as
critical, while 90% of the nets in a design are typical.
SX devices are manufactured in a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process variations. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case
processing. Maximum timing parameters reflect
minimum operating voltage, maximum operating
temperature, and worst-case processing.
v3.2
1-23
SX Family FPGAs
A54SX08 Timing Characteristics
Table 1-17 • A54SX08 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing
0.6
0.7
0.8
0.9
ns
Delays2
tDC
FO = 1 Routing Delay, Direct Connect
0.1
0.1
0.1
0.1
ns
tFC
FO = 1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO = 2 Routing Delay
0.6
0.7
0.8
0.9
ns
tRD3
FO = 3 Routing Delay
0.8
0.9
1.0
1.2
ns
tRD4
FO = 4 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD8
FO = 8 Routing Delay
1.9
2.2
2.5
2.9
ns
tRD12
FO = 12 Routing Delay
2.8
3.2
3.7
4.3
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.8
1.1
1.2
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.5
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
1.5
1.7
1.9
2.2
ns
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
Input Module Predicted Routing Delays2
tIRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO = 2 Routing Delay
0.6
0.7
0.8
0.9
ns
tIRD3
FO = 3 Routing Delay
0.8
0.9
1.0
1.2
ns
tIRD4
FO = 4 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD8
FO = 8 Routing Delay
1.9
2.2
2.5
2.9
ns
tIRD12
FO = 12 Routing Delay
2.8
3.2
3.7
4.3
ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
1 -2 4
v3.2
SX Family FPGAs
Table 1-17 • A54SX08 Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Network
tHCKH
Input LOW to HIGH (pad to R-Cell input)
1.0
1.1
1.3
1.5
ns
tHCKL
Input HIGH to LOW (pad to R-Cell input)
1.0
1.2
1.4
1.6
ns
tHPWH
Minimum Pulse Width HIGH
1.4
1.6
1.8
2.1
ns
tHPWL
Minimum Pulse Width LOW
1.4
1.6
1.8
2.1
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.1
2.7
0.2
3.1
0.2
3.6
0.2
4.2
ns
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (light load)
(pad to R-Cell input)
1.3
1.5
1.7
2.0
ns
tRCKL
Input HIGH to LOW (light load)
(pad to R-Cell Input)
1.4
1.6
1.8
2.1
ns
tRCKH
Input LOW to HIGH (50% load)
(pad to R-Cell input)
1.4
1.7
1.9
2.2
ns
tRCKL
Input HIGH to LOW (50% load)
(pad to R-Cell input)
1.5
1.7
2.0
2.3
ns
tRCKH
Input LOW to HIGH (100% load)
(pad to R-Cell input)
1.5
1.7
1.9
2.2
ns
tRCKL
Input HIGH to LOW (100% load)
(pad to R-Cell input)
1.5
1.8
2.0
2.3
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (light load)
0.1
0.2
0.2
0.2
ns
tRCKSW
Maximum Skew (50% load)
0.3
0.3
0.4
0.4
ns
tRCKSW
Maximum Skew (100% load)
0.3
0.3
0.4
0.4
ns
TTL Output Module Timing1
tDLH
Data-to-Pad LOW to HIGH
1.6
1.9
2.1
2.5
ns
tDHL
Data-to-Pad HIGH to LOW
1.6
1.9
2.1
2.5
ns
tENZL
Enable-to-Pad, Z to L
2.1
2.4
2.8
3.2
ns
tENZH
Enable-to-Pad, Z to H
2.3
2.7
3.1
3.6
ns
tENLZ
Enable-to-Pad, L to Z
1.4
1.7
1.9
2.2
ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
v3.2
1-25
SX Family FPGAs
A54SX16 Timing Characteristics
Table 1-18 • A54SX16 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing
0.6
0.7
0.8
0.9
ns
Delays2
tDC
FO = 1 Routing Delay, Direct Connect
0.1
0.1
0.1
0.1
ns
tFC
FO = 1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO = 2 Routing Delay
0.6
0.7
0.8
0.9
ns
tRD3
FO = 3 Routing Delay
0.8
0.9
1.0
1.2
ns
tRD4
FO = 4 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD8
FO = 8 Routing Delay
1.9
2.2
2.5
2.9
ns
tRD12
FO = 12 Routing Delay
2.8
3.2
3.7
4.3
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.8
1.1
1.2
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.5
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
1.5
1.7
1.9
2.2
ns
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
Predicted Input Routing Delays2
tIRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO = 2 Routing Delay
0.6
0.7
0.8
0.9
ns
tIRD3
FO = 3 Routing Delay
0.8
0.9
1.0
1.2
ns
tIRD4
FO = 4 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD8
FO = 8 Routing Delay
1.9
2.2
2.5
2.9
ns
tIRD12
FO = 12 Routing Delay
2.8
3.2
3.7
4.3
ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF.
1 -2 6
v3.2
SX Family FPGAs
Table 1-18 • A54SX16 Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Network
tHCKH
Input LOW to HIGH (pad to R-Cell input)
1.2
1.4
1.5
1.8
ns
tHCKL
Input HIGH to LOW (pad to R-Cell input)
1.2
1.4
1.6
1.9
ns
tHPWH
Minimum Pulse Width HIGH
1.4
1.6
1.8
2.1
ns
tHPWL
Minimum Pulse Width LOW
1.4
1.6
1.8
2.1
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.2
2.7
0.2
3.1
0.3
3.6
0.3
4.2
ns
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (light load)
(pad to R-Cell input)
1.6
1.8
2.1
2.5
ns
tRCKL
Input HIGH to LOW (light load)
(pad to R-Cell input)
1.8
2.0
2.3
2.7
ns
tRCKH
Input LOW to HIGH (50% load)
(pad to R-Cell input)
1.8
2.1
2.5
2.8
ns
tRCKL
Input HIGH to LOW (50% load)
(pad to R-Cell input)
2.0
2.2
2.5
3.0
ns
tRCKH
Input LOW to HIGH (100% load)
(pad to R-Cell input)
1.8
2.1
2.4
2.8
ns
tRCKL
Input HIGH to LOW (100% load)
(pad to R-Cell input)
2.0
2.2
2.5
3.0
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (light load)
0.5
0.5
0.5
0.7
ns
tRCKSW
Maximum Skew (50% load)
0.5
0.6
0.7
0.8
ns
tRCKSW
Maximum Skew (100% load)
0.5
0.6
0.7
0.8
ns
TTL Output Module Timing3
tDLH
Data-to-Pad LOW to HIGH
1.6
1.9
2.1
2.5
ns
tDHL
Data-to-Pad HIGH to LOW
1.6
1.9
2.1
2.5
ns
tENZL
Enable-to-Pad, Z to L
2.1
2.4
2.8
3.2
ns
tENZH
Enable-to-Pad, Z to H
2.3
2.7
3.1
3.6
ns
tENLZ
Enable-to-Pad, L to Z
1.4
1.7
1.9
2.2
ns
tENHZ
Enable-to-Pad, H to Z
1.3
1.5
1.7
2.0
ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF.
v3.2
1-27
SX Family FPGAs
A54SX16P Timing Characteristics
Table 1-19 • A54SX16P Timing Characteristics
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing Delays
0.6
0.7
0.8
0.9
ns
2
tDC
FO = 1 Routing Delay, Direct Connect
0.1
0.1
0.1
0.1
ns
tFC
FO = 1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO = 2 Routing Delay
0.6
0.7
0.8
0.9
ns
tRD3
FO = 3 Routing Delay
0.8
0.9
1.0
1.2
ns
tRD4
FO = 4 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD8
FO = 8 Routing Delay
1.9
2.2
2.5
2.9
ns
tRD12
FO = 12 Routing Delay
2.8
3.2
3.7
4.3
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.9
1.1
1.3
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.5
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
1.5
1.7
1.9
2.2
ns
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
Predicted Input Routing Delays
2
tIRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO = 2 Routing Delay
0.6
0.7
0.8
0.9
ns
tIRD3
FO = 3 Routing Delay
0.8
0.9
1.0
1.2
ns
tIRD4
FO = 4 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD8
FO = 8 Routing Delay
1.9
2.2
2.5
2.9
ns
tIRD12
FO = 12 Routing Delay
2.8
3.2
3.7
4.3
ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 10 pF loading.
1 -2 8
v3.2
SX Family FPGAs
Table 1-19 • A54SX16P Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Network
tHCKH
Input LOW to HIGH (pad to R-Cell input)
1.2
1.4
1.5
1.8
ns
tHCKL
Input HIGH to LOW (pad to R-Cell input)
1.2
1.4
1.6
1.9
ns
tHPWH
Minimum Pulse Width HIGH
1.4
1.6
1.8
2.1
ns
tHPWL
Minimum Pulse Width LOW
1.4
1.6
1.8
2.1
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.2
2.7
0.2
3.1
0.3
3.6
0.3
4.2
ns
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (light load)
(pad to R-Cell input)
1.6
1.8
2.1
2.5
ns
tRCKL
Input HIGH to LOW (Light Load)
(pad to R-Cell input)
1.8
2.0
2.3
2.7
ns
tRCKH
Input LOW to HIGH (50% load)
(pad to R-Cell input)
1.8
2.1
2.5
2.8
ns
tRCKL
Input HIGH to LOW (50% load)
(pad to R-Cell input)
2.0
2.2
2.5
3.0
ns
tRCKH
Input LOW to HIGH (100% load)
(pad to R-Cell input)
1.8
2.1
2.4
2.8
ns
tRCKL
Input HIGH to LOW (100% load)
(pad to R-Cell input)
2.0
2.2
2.5
3.0
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (light load)
0.5
0.5
0.5
0.7
ns
tRCKSW
Maximum Skew (50% load)
0.5
0.6
0.7
0.8
ns
tRCKSW
Maximum Skew (100% load)
0.5
0.6
0.7
0.8
ns
TTL Output Module Timing
tDLH
Data-to-Pad LOW to HIGH
2.4
2.8
3.1
3.7
ns
tDHL
Data-to-Pad HIGH to LOW
2.3
2.9
3.2
3.8
ns
tENZL
Enable-to-Pad, Z to L
3.0
3.4
3.9
4.6
ns
tENZH
Enable-to-Pad, Z to H
3.3
3.8
4.3
5.0
ns
tENLZ
Enable-to-Pad, L to Z
2.3
2.7
3.0
3.5
ns
tENHZ
Enable-to-Pad, H to Z
2.8
3.2
3.7
4.3
ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 10 pF loading.
v3.2
1-29
SX Family FPGAs
Table 1-19 • A54SX16P Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
TTL/PCI Output Module Timing
tDLH
Data-to-Pad LOW to HIGH
1.5
1.7
2.0
2.3
ns
tDHL
Data-to-Pad HIGH to LOW
1.9
2.2
2.4
2.9
ns
tENZL
Enable-to-Pad, Z to L
2.3
2.6
3.0
3.5
ns
tENZH
Enable-to-Pad, Z to H
1.5
1.7
1.9
2.3
ns
tENLZ
Enable-to-Pad, L to Z
2.7
3.1
3.5
4.1
ns
tENHZ
Enable-to-Pad, H to Z
2.9
3.3
3.7
4.4
ns
3
PCI Output Module Timing
tDLH
Data-to-Pad LOW to HIGH
1.8
2.0
2.3
2.7
ns
tDHL
Data-to-Pad HIGH to LOW
1.7
2.0
2.2
2.6
ns
tENZL
Enable-to-Pad, Z to L
0.8
1.0
1.1
1.3
ns
tENZH
Enable-to-Pad, Z to H
1.2
1.2
1.5
1.8
ns
tENLZ
Enable-to-Pad, L to Z
1.0
1.1
1.3
1.5
ns
tENHZ
Enable-to-Pad, H to Z
1.1
1.3
1.5
1.7
ns
TTL Output Module Timing
tDLH
Data-to-Pad LOW to HIGH
2.1
2.5
2.8
3.3
ns
tDHL
Data-to-Pad HIGH to LOW
2.0
2.3
2.6
3.1
ns
tENZL
Enable-to-Pad, Z to L
2.5
2.9
3.2
3.8
ns
tENZH
Enable-to-Pad, Z to H
3.0
3.5
3.9
4.6
ns
tENLZ
Enable-to-Pad, L to Z
2.3
2.7
3.1
3.6
ns
tENHZ
Enable-to-Pad, H to Z
2.9
3.3
3.7
4.4
ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 10 pF loading.
1 -3 0
v3.2
SX Family FPGAs
A54SX32 Timing Characteristics
Table 1-20 • A54SX32 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing
0.6
0.7
0.8
0.9
ns
Delays2
tDC
FO = 1 Routing Delay, Direct Connect
0.1
0.1
0.1
0.1
ns
tFC
FO = 1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO = 2 Routing Delay
0.7
0.8
0.9
1.0
ns
tRD3
FO = 3 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD4
FO = 4 Routing Delay
1.4
1.6
1.8
2.1
ns
tRD8
FO = 8 Routing Delay
2.7
3.1
3.5
4.1
ns
tRD12
FO = 12 Routing Delay
4.0
4.7
5.3
6.2
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.8
1.1
1.3
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.6
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
1.5
1.7
1.9
2.2
ns
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
Predicted Input Routing Delays2
tIRD1
FO = 1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO = 2 Routing Delay
0.7
0.8
0.9
1.0
ns
tIRD3
FO = 3 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD4
FO = 4 Routing Delay
1.4
1.6
1.8
2.1
ns
tIRD8
FO = 8 Routing Delay
2.7
3.1
3.5
4.1
ns
tIRD12
FO = 12 Routing Delay
4.0
4.7
5.3
6.2
ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.
v3.2
1-31
SX Family FPGAs
Table 1-20 • A54SX32 Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
'–3' Speed
Parameter
Description
Min.
Max.
'–2' Speed
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Network
tHCKH
Input LOW to HIGH (pad to R-Cell input)
1.9
2.1
2.4
2.8
ns
tHCKL
Input HIGH to LOW (pad to R-Cell input)
1.9
2.1
2.4
2.8
ns
tHPWH
Minimum Pulse Width HIGH
1.4
1.6
1.8
2.1
ns
tHPWL
Minimum Pulse Width LOW
1.4
1.6
1.8
2.1
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.3
2.7
0.4
3.1
0.4
3.6
0.5
4.2
ns
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (light load)
(pad to R-Cell input)
2.4
2.7
3.0
3.5
ns
tRCKL
Input HIGH to LOW (light load)
(pad to R-Cell input)
2.4
2.7
3.1
3.6
ns
tRCKH
Input LOW to HIGH (50% load)
(pad to R-Cell input)
2.7
3.0
3.5
4.1
ns
tRCKL
Input HIGH to LOW (50% load)
(pad to R-Cell input)
2.7
3.1
3.6
4.2
ns
tRCKH
Input LOW to HIGH (100% load)
(pad to R-Cell input)
2.7
3.1
3.5
4.1
ns
tRCKL
Input HIGH to LOW (100% load)
(pad to R-Cell input)
2.8
3.2
3.6
4.3
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (light load)
0.85
0.98
1.1
1.3
ns
tRCKSW
Maximum Skew (50% load)
1.23
1.4
1.6
1.9
ns
tRCKSW
Maximum Skew (100% load)
1.30
1.5
1.7
2.0
ns
TTL Output Module Timing3
tDLH
Data-to-Pad LOW to HIGH
1.6
1.9
2.1
2.5
ns
tDHL
Data-to-Pad HIGH to LOW
1.6
1.9
2.1
2.5
ns
tENZL
Enable-to-Pad, Z to L
2.1
2.4
2.8
3.2
ns
tENZH
Enable-to-Pad, Z to H
2.3
2.7
3.1
3.6
ns
tENLZ
Enable-to-Pad, L to Z
1.4
1.7
1.9
2.2
ns
tENHZ
Enable-to-Pad, H to Z
1.3
1.5
1.7
2.0
ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.
1 -3 2
v3.2
SX Family FPGAs
Pin Description
CLKA/B
Clock A and B
TCK
Test Clock
These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock
distribution networks. The clock input is buffered prior
to clocking the R-cells. If not used, this pin must be set
LOW or HIGH on the board. It must not be left floating.
(For A54SX72A, these clocks can be configured as
bidirectional.)
Test clock input for diagnostic probe and device
programming. In flexible mode, TCK becomes active
when the TMS pin is set LOW (refer to Table 1-2 on
page 1-6). This pin functions as an I/O when the
boundary scan state machine reaches the "logic reset"
state.
GND
TDI
Ground
LOW supply voltage.
HCLK
Serial input for boundary scan testing and diagnostic
probe. In flexible mode, TDI is active when the TMS pin is
set LOW (refer to Table 1-2 on page 1-6). This pin
functions as an I/O when the boundary scan state
machine reaches the "logic reset" state.
Dedicated (hardwired) Array Clock
This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential
modules. This input is directly wired to each R-cell and
offers clock speeds independent of the number of R-cells
being driven. If not used, this pin must be set LOW or
HIGH on the board. It must not be left floating.
I/O
TDO
Input/Output
TMS
No Connection
Probe A
The Probe A pin is used to output data from any userdefined design node within the device. This independent
diagnostic pin can be used in conjunction with the Probe
B pin to allow real-time diagnostic output of any signal
path within the device. The Probe A pin can be used as a
user-defined I/O when verification has been completed.
The pin’s probe capabilities can be permanently disabled
to protect programmed design confidentiality.
PRB, I/O
Test Mode Select
The TMS pin controls the use of the IEEE 1149.1
Boundary Scan pins (TCK, TDI, TDO). In flexible mode
when the TMS pin is set LOW, the TCK, TDI, and TDO pins
are boundary scan pins (refer to Table 1-2 on page 1-6).
Once the boundary scan pins are in test mode, they will
remain in that mode until the internal boundary scan
state machine reaches the "logic reset" state. At this
point, the boundary scan pins will be released and will
function as regular I/O pins. The "logic reset" state is
reached 5 TCK cycles after the TMS pin is set HIGH. In
dedicated test mode, TMS functions as specified in the
IEEE 1149.1 specifications.
This pin is not connected to circuitry within the device.
PRA, I/O
Test Data Output
Serial output for boundary scan testing. In flexible mode,
TDO is active when the TMS pin is set LOW (refer to
Table 1-2 on page 1-6). This pin functions as an I/O when
the boundary scan state machine reaches the “logic
reset” state.
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Based on certain configurations,
input and output levels are compatible with standard
TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused
I/O pins are automatically tristated by the Designer Series
software.
NC
Test Data Input
VCCI
Supply Voltage
Supply voltage for I/Os. See Table 1-1 on page 1-5.
Probe B
VCCA
The Probe B pin is used to output data from any node
within the device. This diagnostic pin can be used in
conjunction with the Probe A pin to allow real-time
diagnostic output of any signal path within the device.
The Probe B pin can be used as a user-defined I/O when
verification has been completed. The pin’s probe
capabilities can be permanently disabled to protect
programmed design confidentiality.
Supply Voltage
Supply voltage for Array. See Table 1-1 on page 1-5.
VCCR
Supply Voltage
Supply voltage for input tolerance (required for internal
biasing). See Table 1-1 on page 1-5.
v3.2
1-33
54SX Family FPGAs
Package Pin Assignments
84-Pin PLCC
1
84
84-Pin
PLCC
Figure 2-1 •
84-Pin PLCC (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v3.2
2-1
54SX Family FPGAs
84-Pin PLCC
84-Pin PLCC
2 -2
84-Pin PLCC
Pin Number
A54SX08
Function
Pin Number
A54SX08
Function
Pin Number
A54SX08
Function
1
VCCR
36
I/O
71
I/O
2
GND
37
I/O
72
I/O
3
VCCA
38
I/O
73
I/O
4
PRA, I/O
39
I/O
74
I/O
5
I/O
40
PRB, I/O
75
I/O
6
I/O
41
VCCA
76
I/O
7
VCCI
42
GND
77
I/O
8
I/O
43
VCCR
78
I/O
9
I/O
44
I/O
79
I/O
10
I/O
45
HCLK
80
I/O
11
TCK, I/O
46
I/O
81
I/O
12
TDI, I/O
47
I/O
82
I/O
13
I/O
48
I/O
83
CLKA
14
I/O
49
I/O
84
CLKB
15
I/O
50
I/O
16
TMS
51
I/O
17
I/O
52
TDO, I/O
18
I/O
53
I/O
19
I/O
54
I/O
20
I/O
55
I/O
21
I/O
56
I/O
22
I/O
57
I/O
23
I/O
58
I/O
24
I/O
59
VCCA
25
I/O
60
VCCI
26
I/O
61
GND
27
GND
62
I/O
28
VCCI
63
I/O
29
I/O
64
I/O
30
I/O
65
I/O
31
I/O
66
I/O
32
I/O
67
I/O
33
I/O
68
VCCA
34
I/O
69
GND
35
I/O
70
I/O
v3.2
54SX Family FPGAs
208-Pin PQFP
208
1
208-Pin PQFP
Figure 2-2 •
208-Pin PQFP (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v3.2
2-3
54SX Family FPGAs
208-Pin PQFP
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
GND
37
I/O
I/O
I/O
TDI, I/O
TDI, I/O
38
I/O
I/O
I/O
I/O
I/O
I/O
39
NC
I/O
I/O
4
NC
I/O
I/O
40
VCCI
VCCI
VCCI
5
I/O
I/O
I/O
41
VCCA
VCCA
VCCA
6
NC
I/O
I/O
42
I/O
I/O
I/O
7
I/O
I/O
I/O
43
I/O
I/O
I/O
8
I/O
I/O
I/O
44
I/O
I/O
I/O
9
I/O
I/O
I/O
45
I/O
I/O
I/O
10
I/O
I/O
I/O
46
I/O
I/O
I/O
11
TMS
TMS
TMS
47
I/O
I/O
I/O
12
VCCI
VCCI
VCCI
48
NC
I/O
I/O
13
I/O
I/O
I/O
49
I/O
I/O
I/O
14
NC
I/O
I/O
50
NC
I/O
I/O
15
I/O
I/O
I/O
51
I/O
I/O
I/O
16
I/O
I/O
I/O
52
GND
GND
GND
17
NC
I/O
I/O
53
I/O
I/O
I/O
18
I/O
I/O
I/O
54
I/O
I/O
I/O
19
I/O
I/O
I/O
55
I/O
I/O
I/O
20
NC
I/O
I/O
56
I/O
I/O
I/O
21
I/O
I/O
I/O
57
I/O
I/O
I/O
22
I/O
I/O
I/O
58
I/O
I/O
I/O
23
NC
I/O
I/O
59
I/O
I/O
I/O
24
I/O
I/O
I/O
60
VCCI
VCCI
VCCI
25
VCCR
VCCR
VCCR
61
NC
I/O
I/O
26
GND
GND
GND
62
I/O
I/O
I/O
27
VCCA
VCCA
VCCA
63
I/O
I/O
I/O
28
GND
GND
GND
64
NC
I/O
I/O
29
I/O
I/O
I/O
65*
I/O
I/O
NC*
30
I/O
I/O
I/O
66
I/O
I/O
I/O
31
NC
I/O
I/O
67
NC
I/O
I/O
32
I/O
I/O
I/O
68
I/O
I/O
I/O
33
I/O
I/O
I/O
69
I/O
I/O
I/O
34
I/O
I/O
I/O
70
NC
I/O
I/O
35
NC
I/O
I/O
71
I/O
I/O
I/O
36
I/O
I/O
I/O
72
I/O
I/O
I/O
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
1
GND
GND
2
TDI, I/O
3
Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
2 -4
v3.2
54SX Family FPGAs
208-Pin PQFP
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
I/O
109
I/O
I/O
I/O
I/O
I/O
110
I/O
I/O
I/O
NC
I/O
I/O
111
I/O
I/O
I/O
76
PRB, I/O
PRB, I/O
PRB, I/O
112
I/O
I/O
I/O
77
GND
GND
GND
113
I/O
I/O
I/O
78
VCCA
VCCA
VCCA
114
VCCA
VCCA
VCCA
79
GND
GND
GND
115
VCCI
VCCI
VCCI
80
VCCR
VCCR
VCCR
116
NC
I/O
I/O
81
I/O
I/O
I/O
117
I/O
I/O
I/O
82
HCLK
HCLK
HCLK
118
I/O
I/O
I/O
83
I/O
I/O
I/O
119
NC
I/O
I/O
84
I/O
I/O
I/O
120
I/O
I/O
I/O
85
NC
I/O
I/O
121
I/O
I/O
I/O
86
I/O
I/O
I/O
122
NC
I/O
I/O
87
I/O
I/O
I/O
123
I/O
I/O
I/O
88
NC
I/O
I/O
124
I/O
I/O
I/O
89
I/O
I/O
I/O
125
NC
I/O
I/O
90
I/O
I/O
I/O
126
I/O
I/O
I/O
91
NC
I/O
I/O
127
I/O
I/O
I/O
92
I/O
I/O
I/O
128
I/O
I/O
I/O
93
I/O
I/O
I/O
129
GND
GND
GND
94
NC
I/O
I/O
130
VCCA
VCCA
VCCA
95
I/O
I/O
I/O
131
GND
GND
GND
96
I/O
I/O
I/O
132
VCCR
VCCR
VCCR
97
NC
I/O
I/O
133
I/O
I/O
I/O
98
VCCI
VCCI
VCCI
134
I/O
I/O
I/O
99
I/O
I/O
I/O
135
NC
I/O
I/O
100
I/O
I/O
I/O
136
I/O
I/O
I/O
101
I/O
I/O
I/O
137
I/O
I/O
I/O
102
I/O
I/O
I/O
138
NC
I/O
I/O
103
TDO, I/O
TDO, I/O
TDO, I/O
139
I/O
I/O
I/O
104
I/O
I/O
I/O
140
I/O
I/O
I/O
105
GND
GND
GND
141
NC
I/O
I/O
106
NC
I/O
I/O
142
I/O
I/O
I/O
107
I/O
I/O
I/O
143
NC
I/O
I/O
108
NC
I/O
I/O
144
I/O
I/O
I/O
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
73
NC
I/O
74
I/O
75
Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
v3.2
2-5
54SX Family FPGAs
208-Pin PQFP
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
145
VCCA
VCCA
VCCA
181
CLKB
CLKB
CLKB
146
GND
GND
GND
182
VCCR
VCCR
VCCR
147
I/O
I/O
I/O
183
GND
GND
GND
148
VCCI
VCCI
VCCI
184
VCCA
VCCA
VCCA
149
I/O
I/O
I/O
185
GND
GND
GND
150
I/O
I/O
I/O
186
PRA, I/O
PRA, I/O
PRA, I/O
151
I/O
I/O
I/O
187
I/O
I/O
I/O
152
I/O
I/O
I/O
188
I/O
I/O
I/O
153
I/O
I/O
I/O
189
NC
I/O
I/O
154
I/O
I/O
I/O
190
I/O
I/O
I/O
155
NC
I/O
I/O
191
I/O
I/O
I/O
156
NC
I/O
I/O
192
NC
I/O
I/O
157
GND
GND
GND
193
I/O
I/O
I/O
158
I/O
I/O
I/O
194
I/O
I/O
I/O
159
I/O
I/O
I/O
195
NC
I/O
I/O
160
I/O
I/O
I/O
196
I/O
I/O
I/O
161
I/O
I/O
I/O
197
I/O
I/O
I/O
162
I/O
I/O
I/O
198
NC
I/O
I/O
163
I/O
I/O
I/O
199
I/O
I/O
I/O
164
VCCI
VCCI
VCCI
200
I/O
I/O
I/O
165
I/O
I/O
I/O
201
VCCI
VCCI
VCCI
166
I/O
I/O
I/O
202
NC
I/O
I/O
167
NC
I/O
I/O
203
NC
I/O
I/O
168
I/O
I/O
I/O
204
I/O
I/O
I/O
169
I/O
I/O
I/O
205
NC
I/O
I/O
170
NC
I/O
I/O
206
I/O
I/O
I/O
171
I/O
I/O
I/O
207
I/O
I/O
I/O
172
I/O
I/O
I/O
208
TCK, I/O
TCK, I/O
TCK, I/O
173
NC
I/O
I/O
174
I/O
I/O
I/O
175
I/O
I/O
I/O
176
NC
I/O
I/O
177
I/O
I/O
I/O
178
I/O
I/O
I/O
179
I/O
I/O
I/O
180
CLKA
CLKA
CLKA
Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
2 -6
v3.2
54SX Family FPGAs
144-Pin TQFP
144
1
144-Pin
TQFP
Figure 2-3 •
144-Pin TQFP (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v3.2
2-7
54SX Family FPGAs
144-Pin TQFP
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
1
GND
GND
GND
37
I/O
I/O
I/O
2
TDI, I/O
TDI, I/O
TDI, I/O
38
I/O
I/O
I/O
3
I/O
I/O
I/O
39
I/O
I/O
I/O
4
I/O
I/O
I/O
40
I/O
I/O
I/O
5
I/O
I/O
I/O
41
I/O
I/O
I/O
6
I/O
I/O
I/O
42
I/O
I/O
I/O
7
I/O
I/O
I/O
43
I/O
I/O
I/O
8
I/O
I/O
I/O
44
VCCI
VCCI
VCCI
9
TMS
TMS
TMS
45
I/O
I/O
I/O
10
VCCI
VCCI
VCCI
46
I/O
I/O
I/O
11
GND
GND
GND
47
I/O
I/O
I/O
12
I/O
I/O
I/O
48
I/O
I/O
I/O
13
I/O
I/O
I/O
49
I/O
I/O
I/O
14
I/O
I/O
I/O
50
I/O
I/O
I/O
15
I/O
I/O
I/O
51
I/O
I/O
I/O
16
I/O
I/O
I/O
52
I/O
I/O
I/O
17
I/O
I/O
I/O
53
I/O
I/O
I/O
18
I/O
I/O
I/O
54
PRB, I/O
PRB, I/O
PRB, I/O
19
VCCR
VCCR
VCCR
55
I/O
I/O
I/O
20
VCCA
VCCA
VCCA
56
VCCA
VCCA
VCCA
21
I/O
I/O
I/O
57
GND
GND
GND
22
I/O
I/O
I/O
58
VCCR
VCCR
VCCR
23
I/O
I/O
I/O
59
I/O
I/O
I/O
24
I/O
I/O
I/O
60
HCLK
HCLK
HCLK
25
I/O
I/O
I/O
61
I/O
I/O
I/O
26
I/O
I/O
I/O
62
I/O
I/O
I/O
27
I/O
I/O
I/O
63
I/O
I/O
I/O
28
GND
GND
GND
64
I/O
I/O
I/O
29
VCCI
VCCI
VCCI
65
I/O
I/O
I/O
30
VCCA
VCCA
VCCA
66
I/O
I/O
I/O
31
I/O
I/O
I/O
67
I/O
I/O
I/O
32
I/O
I/O
I/O
68
VCCI
VCCI
VCCI
33
I/O
I/O
I/O
69
I/O
I/O
I/O
34
I/O
I/O
I/O
70
I/O
I/O
I/O
35
I/O
I/O
I/O
71
TDO, I/O
TDO, I/O
TDO, I/O
36
GND
GND
GND
72
I/O
I/O
I/O
2 -8
v3.2
54SX Family FPGAs
144-Pin TQFP
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
73
GND
GND
GND
109
GND
GND
GND
74
I/O
I/O
I/O
110
I/O
I/O
I/O
75
I/O
I/O
I/O
111
I/O
I/O
I/O
76
I/O
I/O
I/O
112
I/O
I/O
I/O
77
I/O
I/O
I/O
113
I/O
I/O
I/O
78
I/O
I/O
I/O
114
I/O
I/O
I/O
79
VCCA
VCCA
VCCA
115
VCCI
VCCI
VCCI
80
VCCI
VCCI
VCCI
116
I/O
I/O
I/O
81
GND
GND
GND
117
I/O
I/O
I/O
82
I/O
I/O
I/O
118
I/O
I/O
I/O
83
I/O
I/O
I/O
119
I/O
I/O
I/O
84
I/O
I/O
I/O
120
I/O
I/O
I/O
85
I/O
I/O
I/O
121
I/O
I/O
I/O
86
I/O
I/O
I/O
122
I/O
I/O
I/O
87
I/O
I/O
I/O
123
I/O
I/O
I/O
88
I/O
I/O
I/O
124
I/O
I/O
I/O
89
VCCA
VCCA
VCCA
125
CLKA
CLKA
CLKA
90
VCCR
VCCR
VCCR
126
CLKB
CLKB
CLKB
91
I/O
I/O
I/O
127
VCCR
VCCR
VCCR
92
I/O
I/O
I/O
128
GND
GND
GND
93
I/O
I/O
I/O
129
VCCA
VCCA
VCCA
94
I/O
I/O
I/O
130
I/O
I/O
I/O
95
I/O
I/O
I/O
131
PRA, I/O
PRA, I/O
PRA, I/O
96
I/O
I/O
I/O
132
I/O
I/O
I/O
97
I/O
I/O
I/O
133
I/O
I/O
I/O
98
VCCA
VCCA
VCCA
134
I/O
I/O
I/O
99
GND
GND
GND
135
I/O
I/O
I/O
100
I/O
I/O
I/O
136
I/O
I/O
I/O
101
GND
GND
GND
137
I/O
I/O
I/O
102
VCCI
VCCI
VCCI
138
I/O
I/O
I/O
103
I/O
I/O
I/O
139
I/O
I/O
I/O
104
I/O
I/O
I/O
140
VCCI
VCCI
VCCI
105
I/O
I/O
I/O
141
I/O
I/O
I/O
106
I/O
I/O
I/O
142
I/O
I/O
I/O
107
I/O
I/O
I/O
143
I/O
I/O
I/O
108
I/O
I/O
I/O
144
TCK, I/O
TCK, I/O
TCK, I/O
v3.2
2-9
54SX Family FPGAs
176-Pin TQFP
176
1
176-Pin
TQFP
Figure 2-4 •
176-Pin TQFP (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
2 -1 0
v3.2
54SX Family FPGAs
176-Pin TQFP
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
GND
35
I/O
I/O
I/O
TDI, I/O
TDI, I/O
36
I/O
I/O
I/O
NC
I/O
I/O
37
I/O
I/O
I/O
4
I/O
I/O
I/O
38
I/O
I/O
I/O
5
I/O
I/O
I/O
39
I/O
I/O
I/O
6
I/O
I/O
I/O
40
NC
I/O
I/O
7
I/O
I/O
I/O
41
I/O
I/O
I/O
8
I/O
I/O
I/O
42
NC
I/O
I/O
9
I/O
I/O
I/O
43
I/O
I/O
I/O
10
TMS
TMS
TMS
44
GND
GND
GND
11
VCCI
VCCI
VCCI
45
I/O
I/O
I/O
12
NC
I/O
I/O
46
I/O
I/O
I/O
13
I/O
I/O
I/O
47
I/O
I/O
I/O
14
I/O
I/O
I/O
48
I/O
I/O
I/O
15
I/O
I/O
I/O
49
I/O
I/O
I/O
16
I/O
I/O
I/O
50
I/O
I/O
I/O
17
I/O
I/O
I/O
51
I/O
I/O
I/O
18
I/O
I/O
I/O
52
VCCI
VCCI
VCCI
19
I/O
I/O
I/O
53
I/O
I/O
I/O
20
I/O
I/O
I/O
54
NC
I/O
I/O
21
GND
GND
GND
55
I/O
I/O
I/O
22
VCCA
VCCA
VCCA
56
I/O
I/O
I/O
23
GND
GND
GND
57
NC
I/O
I/O
24
I/O
I/O
I/O
58
I/O
I/O
I/O
25
I/O
I/O
I/O
59
I/O
I/O
I/O
26
I/O
I/O
I/O
60
I/O
I/O
I/O
27
I/O
I/O
I/O
61
I/O
I/O
I/O
28
I/O
I/O
I/O
62
I/O
I/O
I/O
29
I/O
I/O
I/O
63
I/O
I/O
I/O
30
I/O
I/O
I/O
64
PRB, I/O
PRB, I/O
PRB, I/O
31
I/O
I/O
I/O
65
GND
GND
GND
32
VCCI
VCCI
VCCI
66
VCCA
VCCA
VCCA
33
VCCA
VCCA
VCCA
67
VCCR
VCCR
VCCR
34
I/O
I/O
I/O
68
I/O
I/O
I/O
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
1
GND
GND
2
TDI, I/O
3
v3.2
2-11
54SX Family FPGAs
176-Pin TQFP
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
69
HCLK
HCLK
70
I/O
71
2 -1 2
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
HCLK
103
I/O
I/O
I/O
I/O
I/O
104
I/O
I/O
I/O
I/O
I/O
I/O
105
I/O
I/O
I/O
72
I/O
I/O
I/O
106
I/O
I/O
I/O
73
I/O
I/O
I/O
107
I/O
I/O
I/O
74
I/O
I/O
I/O
108
GND
GND
GND
75
I/O
I/O
I/O
109
VCCA
VCCA
VCCA
76
I/O
I/O
I/O
110
GND
GND
GND
77
I/O
I/O
I/O
111
I/O
I/O
I/O
78
I/O
I/O
I/O
112
I/O
I/O
I/O
79
NC
I/O
I/O
113
I/O
I/O
I/O
80
I/O
I/O
I/O
114
I/O
I/O
I/O
81
NC
I/O
I/O
115
I/O
I/O
I/O
82
VCCI
VCCI
VCCI
116
I/O
I/O
I/O
83
I/O
I/O
I/O
117
I/O
I/O
I/O
84
I/O
I/O
I/O
118
NC
I/O
I/O
85
I/O
I/O
I/O
119
I/O
I/O
I/O
86
I/O
I/O
I/O
120
NC
I/O
I/O
87
TDO, I/O
TDO, I/O
TDO, I/O
121
NC
I/O
I/O
88
I/O
I/O
I/O
122
VCCA
VCCA
VCCA
89
GND
GND
GND
123
GND
GND
GND
90
NC
I/O
I/O
124
VCCI
VCCI
VCCI
91
NC
I/O
I/O
125
I/O
I/O
I/O
92
I/O
I/O
I/O
126
I/O
I/O
I/O
93
I/O
I/O
I/O
127
I/O
I/O
I/O
94
I/O
I/O
I/O
128
I/O
I/O
I/O
95
I/O
I/O
I/O
129
I/O
I/O
I/O
96
I/O
I/O
I/O
130
I/O
I/O
I/O
97
I/O
I/O
I/O
131
NC
I/O
I/O
98
VCCA
VCCA
VCCA
132
NC
I/O
I/O
99
VCCI
VCCI
VCCI
133
GND
GND
GND
100
I/O
I/O
I/O
134
I/O
I/O
I/O
101
I/O
I/O
I/O
135
I/O
I/O
I/O
102
I/O
I/O
I/O
136
I/O
I/O
I/O
v3.2
54SX Family FPGAs
176-Pin TQFP
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
137
I/O
I/O
138
I/O
139
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
I/O
157
PRA, I/O
PRA, I/O
PRA, I/O
I/O
I/O
158
I/O
I/O
I/O
I/O
I/O
I/O
159
I/O
I/O
I/O
140
VCCI
VCCI
VCCI
160
I/O
I/O
I/O
141
I/O
I/O
I/O
161
I/O
I/O
I/O
142
I/O
I/O
I/O
162
I/O
I/O
I/O
143
I/O
I/O
I/O
163
I/O
I/O
I/O
144
I/O
I/O
I/O
164
I/O
I/O
I/O
145
I/O
I/O
I/O
165
I/O
I/O
I/O
146
I/O
I/O
I/O
166
I/O
I/O
I/O
147
I/O
I/O
I/O
167
I/O
I/O
I/O
148
I/O
I/O
I/O
168
NC
I/O
I/O
149
I/O
I/O
I/O
169
VCCI
VCCI
VCCI
150
I/O
I/O
I/O
170
I/O
I/O
I/O
151
I/O
I/O
I/O
171
NC
I/O
I/O
152
CLKA
CLKA
CLKA
172
NC
I/O
I/O
153
CLKB
CLKB
CLKB
173
NC
I/O
I/O
154
VCCR
VCCR
VCCR
174
I/O
I/O
I/O
155
GND
GND
GND
175
I/O
I/O
I/O
156
VCCA
VCCA
VCCA
176
TCK, I/O
TCK, I/O
TCK, I/O
v3.2
2-13
54SX Family FPGAs
100-Pin VQFP
100
1
100-Pin
VQFP
Figure 2-5 •
100-Pin VQFP (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
2 -1 4
v3.2
54SX Family FPGAs
100-Pin VQFP
100-Pin VQFP
100-Pin VQFP
Pin
Number
A54SX08
Function
A54SX16,
A54SX16P
Function
Pin
Number
A54SX08
Function
A54SX16,
A54SX16P
Function
Pin
Number
A54SX08
Function
A54SX16,
A54SX16P
Function
1
GND
GND
35
VCCA
VCCA
69
GND
GND
2
TDI, I/O
TDI, I/O
36
GND
GND
70
I/O
I/O
3
I/O
I/O
37
VCCR
VCCR
71
I/O
I/O
4
I/O
I/O
38
I/O
I/O
72
I/O
I/O
5
I/O
I/O
39
HCLK
HCLK
73
I/O
I/O
6
I/O
I/O
40
I/O
I/O
74
I/O
I/O
7
TMS
TMS
41
I/O
I/O
75
I/O
I/O
8
VCCI
VCCI
42
I/O
I/O
76
I/O
I/O
9
GND
GND
43
I/O
I/O
77
I/O
I/O
10
I/O
I/O
44
VCCI
VCCI
78
I/O
I/O
11
I/O
I/O
45
I/O
I/O
79
I/O
I/O
12
I/O
I/O
46
I/O
I/O
80
I/O
I/O
13
I/O
I/O
47
I/O
I/O
81
I/O
I/O
14
I/O
I/O
48
I/O
I/O
82
VCCI
VCCI
15
I/O
I/O
49
TDO, I/O
TDO, I/O
83
I/O
I/O
16
I/O
I/O
50
I/O
I/O
84
I/O
I/O
17
I/O
I/O
51
GND
GND
85
I/O
I/O
18
I/O
I/O
52
I/O
I/O
86
I/O
I/O
19
I/O
I/O
53
I/O
I/O
87
CLKA
CLKA
20
VCCI
VCCI
54
I/O
I/O
88
CLKB
CLKB
21
I/O
I/O
55
I/O
I/O
89
VCCR
VCCR
22
I/O
I/O
56
I/O
I/O
90
VCCA
VCCA
23
I/O
I/O
57
VCCA
VCCA
91
GND
GND
24
I/O
I/O
58
VCCI
VCCI
92
PRA, I/O
PRA, I/O
25
I/O
I/O
59
I/O
I/O
93
I/O
I/O
26
I/O
I/O
60
I/O
I/O
94
I/O
I/O
27
I/O
I/O
61
I/O
I/O
95
I/O
I/O
28
I/O
I/O
62
I/O
I/O
96
I/O
I/O
29
I/O
I/O
63
I/O
I/O
97
I/O
I/O
30
I/O
I/O
64
I/O
I/O
98
I/O
I/O
31
I/O
I/O
65
I/O
I/O
99
I/O
I/O
32
I/O
I/O
66
I/O
I/O
100
TCK, I/O
TCK, I/O
33
I/O
I/O
67
VCCA
VCCA
34
PRB, I/O
PRB, I/O
68
GND
GND
v3.2
2-15
54SX Family FPGAs
313-Pin PBGA
1
A
B
C
A
B
C
D
D
E
F
G
E
F
G
H
J
H
J
K
L
K
L
M
N
P
R
M
N
P
R
T
U
T
U
V
W
V
W
Y
AA
AB
AC
Y
AA
AB
AC
AD
AE
AD
AE
1
Figure 2-6 •
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
313-Pin PBGA (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
2 -1 6
v3.2
54SX Family FPGAs
313-Pin PBGA
313-Pin PBGA
313-Pin PBGA
313-Pin PBGA
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
A1
GND
AC5
I/O
B10
I/O
E15
I/O
A3
NC
AC7
I/O
B12
I/O
E17
I/O
A5
I/O
AC9
I/O
B14
I/O
E19
I/O
A7
I/O
AC11
I/O
B16
I/O
E21
I/O
A9
I/O
AC13
VCCR
B18
I/O
E23
I/O
A11
I/O
AC15
I/O
B20
I/O
E25
I/O
A13
VCCR
AC17
I/O
B22
I/O
F2
I/O
A15
I/O
AC19
I/O
B24
I/O
F4
I/O
A17
I/O
AC21
I/O
C1
TDI, I/O
F6
NC
A19
I/O
AC23
I/O
C3
I/O
F8
I/O
A21
I/O
AC25
NC
C5
NC
F10
NC
A23
NC
AD2
GND
C7
I/O
F12
I/O
A25
GND
AD4
I/O
C9
I/O
F14
I/O
AA1
I/O
AD6
VCCI
C11
I/O
F16
NC
AA3
I/O
AD8
I/O
C13
VCCI
F18
I/O
AA5
NC
AD10
I/O
C15
I/O
F20
I/O
AA7
I/O
AD12
PRB, I/O
C17
I/O
F22
I/O
AA9
NC
AD14
I/O
C19
VCCI
F24
I/O
AA11
I/O
AD16
I/O
C21
I/O
G1
I/O
AA13
I/O
AD18
I/O
C23
I/O
G3
TMS
AA15
I/O
AD20
I/O
C25
NC
G5
I/O
AA17
I/O
AD22
NC
D2
I/O
G7
I/O
AA19
I/O
AD24
I/O
D4
NC
G9
VCCI
AA21
I/O
AE1
NC
D6
I/O
G11
I/O
AA23
NC
AE3
I/O
D8
I/O
G13
CLKB
AA25
I/O
AE5
I/O
D10
I/O
G15
I/O
AB2
NC
AE7
I/O
D12
I/O
G17
I/O
AB4
NC
AE9
I/O
D14
I/O
G19
I/O
AB6
I/O
AE11
I/O
D16
I/O
G21
I/O
AB8
I/O
AE13
VCCA
D18
I/O
G23
I/O
AB10
I/O
AE15
I/O
D20
I/O
G25
I/O
AB12
I/O
AE17
I/O
D22
I/O
H2
I/O
AB14
I/O
AE19
I/O
D24
NC
H4
I/O
AB16
I/O
AE21
I/O
E1
I/O
H6
I/O
AB18
VCCI
AE23
TDO, I/O
E3
NC
H8
I/O
AB20
NC
AE25
GND
E5
I/O
H10
I/O
AB22
I/O
B2
TCK, I/O
E7
I/O
H12
PRA, I/O
AB24
I/O
B4
I/O
E9
I/O
H14
I/O
AC1
I/O
B6
I/O
E11
I/O
H16
I/O
AC3
I/O
B8
I/O
E13
VCCA
H18
NC
v3.2
2-17
54SX Family FPGAs
313-Pin PBGA
313-Pin PBGA
313-Pin PBGA
313-Pin PBGA
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
H20
I/O
L25
I/O
R5
I/O
V10
I/O
H22
VCCI
M2
I/O
R7
I/O
V12
I/O
H24
I/O
M4
I/O
R9
I/O
V14
I/O
J1
I/O
M6
I/O
R11
I/O
V16
NC
J3
I/O
M8
I/O
R13
GND
V18
I/O
J5
I/O
M10
I/O
R15
I/O
V20
I/O
J7
NC
M12
GND
R17
I/O
V22
VCCA
J9
I/O
M14
GND
R19
I/O
V24
VCCI
J11
I/O
M16
VCCI
R21
I/O
W1
I/O
J13
CLKA
M18
I/O
R23
I/O
W3
I/O
J15
I/O
M20
I/O
R25
I/O
W5
I/O
J17
I/O
M22
I/O
T2
I/O
W7
NC
J19
I/O
M24
I/O
T4
I/O
W9
I/O
J21
GND
N1
I/O
T6
I/O
W11
I/O
J23
I/O
N3
VCCA
T8
I/O
W13
VCCI
J25
I/O
N5
VCCR
T10
I/O
W15
I/O
K2
I/O
N7
I/O
T12
I/O
W17
I/O
K4
I/O
N9
VCCI
T14
HCLK
W19
I/O
K6
I/O
N11
GND
T16
I/O
W21
I/O
K8
VCCI
N13
GND
T18
I/O
W23
I/O
K10
I/O
N15
GND
T20
I/O
W25
I/O
K12
I/O
N17
I/O
T22
I/O
Y2
I/O
K14
I/O
N19
I/O
T24
I/O
Y4
I/O
K16
I/O
N21
I/O
U1
I/O
Y6
I/O
K18
I/O
N23
VCCR
U3
I/O
Y8
I/O
K20
VCCA
N25
VCCA
U5
VCCI
Y10
I/O
K22
I/O
P2
I/O
U7
I/O
Y12
I/O
K24
I/O
P4
I/O
U9
I/O
Y14
I/O
L1
I/O
P6
I/O
U11
I/O
Y16
I/O
L3
I/O
P8
I/O
U13
I/O
Y18
I/O
L5
I/O
P10
I/O
U15
I/O
Y20
NC
L7
I/O
P12
GND
U17
I/O
Y22
I/O
L9
I/O
P14
GND
U19
I/O
Y24
NC
L11
I/O
P16
I/O
U21
I/O
L13
GND
P18
I/O
U23
I/O
L15
I/O
P20
NC
U25
I/O
L17
I/O
P22
I/O
V2
VCCA
L19
I/O
P24
I/O
V4
I/O
L21
I/O
R1
I/O
V6
I/O
L23
I/O
R3
I/O
V8
I/O
2 -1 8
v3.2
54SX Family FPGAs
329-Pin PBGA
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
Figure 2-7 •
329-Pin PBGA (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v3.2
2-19
54SX Family FPGAs
329-Pin PBGA
329-Pin PBGA
329-Pin PBGA
329-Pin PBGA
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
A1
GND
AA13
I/O
AC2
VCCI
B14
I/O
A2
GND
AA14
I/O
AC3
NC
B15
I/O
A3
VCCI
AA15
I/O
AC4
I/O
B16
I/O
A4
NC
AA16
I/O
AC5
I/O
B17
I/O
A5
I/O
AA17
I/O
AC6
I/O
B18
I/O
A6
I/O
AA18
I/O
AC7
I/O
B19
I/O
A7
VCCI
AA19
I/O
AC8
I/O
B20
I/O
A8
NC
AA20
TDO, I/O
AC9
VCCI
B21
I/O
A9
I/O
AA21
VCCI
AC10
I/O
B22
GND
A10
I/O
AA22
I/O
AC11
I/O
B23
VCCI
A11
I/O
AA23
VCCI
AC12
I/O
C1
NC
A12
I/O
AB1
I/O
AC13
I/O
C2
TDI, I/O
A13
CLKB
AB2
GND
AC14
I/O
C3
GND
A14
I/O
AB3
I/O
AC15
NC
C4
I/O
A15
I/O
AB4
I/O
AC16
I/O
C5
I/O
A16
I/O
AB5
I/O
AC17
I/O
C6
I/O
A17
I/O
AB6
I/O
AC18
I/O
C7
I/O
A18
I/O
AB7
I/O
AC19
I/O
C8
I/O
A19
I/O
AB8
I/O
AC20
I/O
C9
I/O
A20
I/O
AB9
I/O
AC21
NC
C10
I/O
A21
NC
AB10
I/O
AC22
VCCI
C11
I/O
A22
VCCI
AB11
PRB, I/O
AC23
GND
C12
I/O
A23
GND
AB12
I/O
B1
VCCI
C13
I/O
AA1
VCCI
AB13
HCLK
B2
GND
C14
I/O
AA2
I/O
AB14
I/O
B3
I/O
C15
I/O
AA3
GND
AB15
I/O
B4
I/O
C16
I/O
AA4
I/O
AB16
I/O
B5
I/O
C17
I/O
AA5
I/O
AB17
I/O
B6
I/O
C18
I/O
AA6
I/O
AB18
I/O
B7
I/O
C19
I/O
AA7
I/O
AB19
I/O
B8
I/O
C20
I/O
AA8
I/O
AB20
I/O
B9
I/O
C21
VCCI
AA9
I/O
AB21
I/O
B10
I/O
C22
GND
AA10
I/O
AB22
GND
B11
I/O
C23
NC
AA11
I/O
AB23
I/O
B12
PRA, I/O
D1
I/O
AA12
I/O
AC1
GND
B13
CLKA
D2
I/O
2 -2 0
v3.2
54SX Family FPGAs
329-Pin PBGA
329-Pin PBGA
329-Pin PBGA
329-Pin PBGA
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
D3
I/O
F22
I/O
K20
I/O
N11
GND
D4
TCK, I/O
F23
I/O
K21
I/O
N12
GND
D5
I/O
G1
I/O
K22
I/O
N13
GND
D6
I/O
G2
I/O
K23
I/O
N14
GND
D7
I/O
G3
I/O
L1
I/O
N20
NC
D8
I/O
G4
I/O
L2
I/O
N21
I/O
D9
I/O
G20
I/O
L3
I/O
N22
I/O
D10
I/O
G21
I/O
L4
VCCR
N23
I/O
D11
VCCA
G22
I/O
L10
GND
P1
I/O
D12
VCCR
G23
GND
L11
GND
P2
I/O
D13
I/O
H1
I/O
L12
GND
P3
I/O
D14
I/O
H2
I/O
L13
GND
P4
I/O
D15
I/O
H3
I/O
L14
GND
P10
GND
D16
I/O
H4
I/O
L20
VCCR
P11
GND
D17
I/O
H20
VCCA
L21
I/O
P12
GND
D18
I/O
H21
I/O
L22
I/O
P13
GND
D19
I/O
H22
I/O
L23
NC
P14
GND
D20
I/O
H23
I/O
M1
I/O
P20
I/O
D21
I/O
J1
NC
M2
I/O
P21
I/O
D22
I/O
J2
I/O
M3
I/O
P22
I/O
D23
I/O
J3
I/O
M4
VCCA
P23
I/O
E1
VCCI
J4
I/O
M10
GND
R1
I/O
E2
I/O
J20
I/O
M11
GND
R2
I/O
E3
I/O
J21
I/O
M12
GND
R3
I/O
E4
I/O
J22
I/O
M13
GND
R4
I/O
E20
I/O
J23
I/O
M14
GND
R20
I/O
E21
I/O
K1
I/O
M20
VCCA
R21
I/O
E22
I/O
K2
I/O
M21
I/O
R22
I/O
E23
I/O
K3
I/O
M22
I/O
R23
I/O
F1
I/O
K4
I/O
M23
VCCI
T1
I/O
F2
TMS
K10
GND
N1
I/O
T2
I/O
F3
I/O
K11
GND
N2
I/O
T3
I/O
F4
I/O
K12
GND
N3
I/O
T4
I/O
F20
I/O
K13
GND
N4
I/O
T20
I/O
F21
I/O
K14
GND
N10
GND
T21
I/O
v3.2
2-21
54SX Family FPGAs
329-Pin PBGA
329-Pin PBGA
329-Pin PBGA
329-Pin PBGA
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
Pin
Number
A54SX32
Function
T22
I/O
V4
I/O
W23
NC
Y12
VCCA
T23
I/O
V20
I/O
Y1
NC
Y13
VCCR
U1
I/O
V21
I/O
Y2
I/O
Y14
I/O
U2
I/O
V22
I/O
Y3
I/O
Y15
I/O
U3
VCCA
V23
I/O
Y4
GND
Y16
I/O
U4
I/O
W1
I/O
Y5
I/O
Y17
I/O
U20
I/O
W2
I/O
Y6
I/O
Y18
I/O
U21
VCCA
W3
I/O
Y7
I/O
Y19
I/O
U22
I/O
W4
I/O
Y8
I/O
Y20
GND
U23
I/O
W20
I/O
Y9
I/O
Y21
I/O
V1
VCCI
W21
I/O
Y10
I/O
Y22
I/O
V2
I/O
W22
I/O
Y11
I/O
Y23
I/O
V3
I/O
2 -2 2
v3.2
54SX Family FPGAs
144-Pin FBGA
1
2
3
4
5
6
7
8
9
10
11
12
A
B
C
D
E
F
G
H
J
K
L
M
Figure 2-8 •
144-Pin FBGA (Top View)
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v3.2
2-23
54SX Family FPGAs
144-Pin FBGA
144-Pin FBGA
144-Pin FBGA
144-Pin FBGA
Pin
Number
A54SX08
Function
Pin
Number
A54SX08
Function
Pin
Number
A54SX08
Function
Pin
Number
A54SX08
Function
A1
I/O
D1
I/O
G1
I/O
K1
I/O
A2
I/O
D2
VCCI
G2
GND
K2
I/O
A3
I/O
D3
TDI, I/O
G3
I/O
K3
I/O
A4
I/O
D4
I/O
G4
I/O
K4
I/O
A5
VCCA
D5
I/O
G5
GND
K5
I/O
A6
GND
D6
I/O
G6
GND
K6
I/O
A7
CLKA
D7
I/O
G7
GND
K7
GND
A8
I/O
D8
I/O
G8
VCCI
K8
I/O
A9
I/O
D9
I/O
G9
I/O
K9
I/O
A10
I/O
D10
I/O
G10
I/O
K10
GND
A11
I/O
D11
I/O
G11
I/O
K11
I/O
A12
I/O
D12
I/O
G12
I/O
K12
I/O
B1
I/O
E1
I/O
H1
I/O
L1
GND
B2
GND
E2
I/O
H2
I/O
L2
I/O
B3
I/O
E3
I/O
H3
I/O
L3
I/O
B4
I/O
E4
I/O
H4
I/O
L4
I/O
B5
I/O
E5
TMS
H5
VCCA
L5
I/O
B6
I/O
E6
VCCI
H6
VCCA
L6
I/O
B7
CLKB
E7
VCCI
H7
VCCI
L7
HCLK
B8
I/O
E8
VCCI
H8
VCCI
L8
I/O
B9
I/O
E9
VCCA
H9
VCCA
L9
I/O
B10
I/O
E10
I/O
H10
I/O
L10
I/O
B11
GND
E11
GND
H11
I/O
L11
I/O
B12
I/O
E12
I/O
H12
VCCR
L12
I/O
C1
I/O
F1
I/O
J1
I/O
M1
I/O
C2
I/O
F2
I/O
J2
I/O
M2
I/O
C3
TCK, I/O
F3
VCCR
J3
I/O
M3
I/O
C4
I/O
F4
I/O
J4
I/O
M4
I/O
C5
I/O
F5
GND
J5
I/O
M5
I/O
C6
PRA, I/O
F6
GND
J6
PRB, I/O
M6
I/O
C7
I/O
F7
GND
J7
I/O
M7
VCCA
C8
I/O
F8
VCCI
J8
I/O
M8
I/O
C9
I/O
F9
I/O
J9
I/O
M9
I/O
C10
I/O
F10
GND
J10
I/O
M10
I/O
C11
I/O
F11
I/O
J11
I/O
M11
TDO, I/O
C12
I/O
F12
I/O
J12
VCCA
M12
I/O
2 -2 4
v3.2
54SX Family FPGAs
Datasheet Information
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previous Version Changes in Current Version (v3.2)
v3.1
(June 2003)
v3.0.1
Page
The "Ordering Information" was updated to include RoHS information.
1-ii
The Product Plan was removed since all products have been released.
N/A
Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed.
1-6
The "Dedicated Test Mode" section is new.
1-6
The "Programming" section is new.
1-7
A note was added to the "Power-Up Sequencing" table.
1-15
A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the
following devices: A54SX08, A54SX16, A54SX32.
1-15
U11 and U13 were added to the "313-Pin PBGA" table.
2-17
Storage temperature in Table 1-3 was updated.
1-7
Table 1-1 was updated.
1-5
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet
Supplement." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
International Traffic in Arms Regulations (ITAR) and Export
Administration Regulations (EAR)
The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the
Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export
can include a release or disclosure to a foreign national inside or outside the United States.
v3.2
3-1
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
www.actel.com
Actel Corporation
Actel Europe Ltd.
Actel Japan
www.jp.actel.com
Actel Hong Kong
www.actel.com.cn
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
5172137-5/6.06
Similar pages