Comparators and Reference Circuits ADCMP350/ADCMP352/ADCMP354/ADCMP356 FEATURES FUNCTIONAL BLOCK DIAGRAMS Comparators with 0.6 V on-chip references Output stages: Open-drain active-low (ADCMP350) Push-pull active-low (ADCMP352) Open-drain active-high (ADCMP354) Push-pull active-high (ADCMP356) High voltage (up to 22 V) tolerance on VIN and open-drain output pins Low power consumption (10 µA) 10 nA input bias current 15 mV hysteresis 5 µs propagation delay Specified over −40°C to +125°C temperature range 4-lead SC70 package VCC ADCMP350/ADCMP352 REF OUT (OD/PP) VIN GND VCC ADCMP354/ADCMP356 VIN OUT (OD/PP) REF Voltage detectors Microprocessor systems Computers Battery monitors Intelligent instruments Portable equipment 04745-001 APPLICATIONS GND ` Figure 1. GENERAL DESCRIPTION The ADCMP350/ADCMP352/ADCMP354/ADCMP356 parts are comparator and reference circuits suitable for use in general-purpose applications. The high voltage input and output structures will allow voltages of up to 22 V on the input of all devices and the output of the open-drain devices. High performance over the −40°C to +125°C temperature range makes them suitable for use in automotive and other thermally harsh applications, while low power consumption and spaceefficient SC70 packaging make them ideal for battery-powered portable equipment. Table 1. Selection Table Part No. ADCMP350 ADCMP352 ADCMP354 ADCMP356 Reference Voltage (V) 0.6 0.6 0.6 0.6 Input Connection Inverting Inverting Noninverting Noninverting Output Open Drain Push-Pull Open Drain Push-Pull Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. ADCMP350/ADCMP352/ADCMP354/ADCMP356 TABLE OF CONTENTS Specifications..................................................................................... 3 Applications........................................................................................9 Absolute Maximum Ratings............................................................ 4 Adding Hysteresis..........................................................................9 ESD Caution.................................................................................. 4 Voltage Detector ............................................................................9 Pin Configuration and Function Descriptions............................. 5 Outline Dimensions ....................................................................... 10 Typical Performance Characteristics ............................................. 6 Ordering Guide .......................................................................... 10 REVISION HISTORY 10/04—Revision 0: Initial Version Rev. 0 | Page 2 of 12 ADCMP350/ADCMP352/ADCMP354/ADCMP356 SPECIFICATIONS VCC = Full operating range, TA = –40°C to +125°C, unless otherwise noted. Table 2. Parameter SUPPLY VCC Operating Voltage Range VIN Operating Voltage Range Supply Current VIN THRESHOLD RISING VIN THRESHOLD FALLING Min Typ 2.25 0 10 0.6 0.6 0.585 0.585 10 170 30 5 0.579 0.579 0.564 0.564 INPUT BIAS CURRENT THRESHOLD TEMPERATURE COEFFICIENT VIN TO OUT DELAY OUT VOLTAGE LOW OUT VOLTAGE HIGH OUTPUT RISE TIME OUTPUT FALL TIME OUTPUT LEAKAGE CURRENT Max Unit 5.5 22 15 0.621 0.624 0.606 0.609 V V µA V V V V nA µA ppm/°C µs V V 0.4 0.8 × VCC 30 45 1 Rev. 0 | Page 3 of 12 ns ns µA Test Conditions/Comments VCC = 3.3V, TA = −40°C to +85°C VCC = 3.3V, TA = −40°C to +125°C VCC = 3.3V, TA = −40°C to +85°C VCC = 3.3V, TA = −40°C to +125°C VIN = 0.6 V VIN = 22 V VIN = VTH to (VTH − 100 mV) VIN < VTH min, ISINK = 1.2 mA VIN > VTH max, ISOURCE = 500 µA, Push-pull only Cout = 15 pF Cout = 15 pF OUT = 22 V, open drain only ADCMP350/ADCMP352/ADCMP354/ADCMP356 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 3. Parameter VCC VIN OUT (Open Drain) OUT (Push-Pull) Operating Temperature Range Storage Temperature Range θJA Thermal Impedance, SC70 Lead Temperature Soldering (10 sec) Vapor Phase (60 sec) Infrared (15 sec) Rating −0.3 V to +6 V −0.3 V to +25 V −0.3 V to +25 V −0.3 V to (VCC + 0.3 V) −40°C to +125°C −65°C to +150°C 146°C/W Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 300°C 215°C 220°C ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 4 of 12 ADCMP350/ADCMP352/ADCMP354/ADCMP356 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 GND 2 ADCMP350/ ADCMP352/ ADCMP354/ ADCMP356 4 VCC 3 OUT 04745-002 VIN Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 2 3 4 Mnemonic VIN GND OUT VCC Description Monitors Analog Input Voltage. Connected to inverting or noninverting input, depending on model number. Ground. Digital Output. Open-drain or push-pull options, depending on model number. Power Supply. Rev. 0 | Page 5 of 12 ADCMP350/ADCMP352/ADCMP354/ADCMP356 TYPICAL PERFORMANCE CHARACTERISTICS 20 11.0 18 10.5 TA +125°C TA +85°C 16 TA +25°C SUPPLY CURRENT (µA) 10.0 ICC (µA) 9.5 9.0 TA –40°C 8.5 8.0 14 12 10 8 6 4 7.5 VCC (V) 0 05112-003 7.0 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55 0 2 180 660 160 640 140 620 VTRIP TRIP RISING 600 VTRIP TRIP FALLING 560 65 80 95 110 125 TEMPERATURE (°C) TA = +125°C 60 0 2 6 8 10 12 14 16 18 20 22 Figure 7. Input Leakage vs. Input Voltage 1.0 18 0.9 16 0.8 12 10 8 6 0.7 0.6 TA = 25°C 0.5 0.4 0.3 4 0.2 2 0.1 –25 –10 5 20 35 50 65 80 95 TEMPERATURE (°C) 110 125 0 0 0.3 0.6 0.9 1.2 1.5 1.8 VIN (V) 2.1 2.4 2.7 3.0 Figure 8. VIN Leakage Current vs. VIN Voltage (VCC = 3.8 V) Figure 5. VIN Trip Hysteresis vs. Temperature Rev. 0 | Page 6 of 12 3.3 05112-019 VIN LEAKAGE (µA) HYSTERESIS 05112-005 HYSTERESIS (mV) 4 VIN (V) 20 0 –40 22 TA = +85°C Figure 4. VIN Trip Threshold vs. Temperature.(VCC = 3.3V) 14 20 0 05112-004 50 18 TA = –40°C 40 35 16 80 20 20 14 100 520 5 12 TA = +25°C 120 540 –10 10 05112-007 IN LEAKAGE (µA) VTRIP (mV) 200 680 –25 8 Figure 6. Supply Current vs. Input Voltage 700 500 –40 6 VIN (V) Figure 3. ICC vs. VCC over Temperature. 580 4 05112-006 2 ADCMP350/ADCMP352/ADCMP354/ADCMP356 10000 200 190 TA = +25°C TA = +125°C 1000 OUTPUT VOLTAGE (mV) 180 IN LEAKAGE (µA) 170 160 150 140 TA = +85°C TA = +25°C TA = –40°C 130 TA = +85°C 100 TA = +125°C TA = –40°C 10 1 120 VCC (V) 0.1 0.01 05112-008 100 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55 0.1 10 1 OUTPUT SINK CURRENT (mA) Figure 9. Input Leakage vs. Supply Voltage (VIN = 22 V) 05112-010 110 Figure 12. Output Voltage vs. Output Sink Current (Isink = 500 mA) 700 120 680 OUTPUT LOW VOLTAGE (mV) 660 620 VTRIP RISING 600 580 VTRIP FALLING 560 540 100 80 60 40 20 VCC (V) 0 2.25 2.40 2.70 3.00 3.30 3.60 3.90 4.20 4.50 4.80 5.20 5.50 05112-009 500 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55 SUPPLY VOLTAGE (V) 05112-011 520 Figure 13. Output Low Voltage vs. Supply Voltage (Isink = 500 mA) Figure 10. VIN Trip Threshold vs. VCC 200 18 180 16 160 14 140 FALL TIME (ns) 20 12 HYSTERESIS 10 8 120 100 80 6 60 4 40 2 20 RISE TIME 0 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55 VCC (V) 0 2.25 2.40 2.70 3.00 3.30 3.60 3.90 4.20 4.50 4.80 5.20 5.50 SUPPLY VOLTAGE (V) Figure 14. Fall Time vs. Supply Voltage Figure 11. VIN Trip Hysteresis vs. VCC Rev. 0 | Page 7 of 12 05112-012 FALL TIME 05112-020 HYSTERESIS (mV) VTRIP (mV) 640 ADCMP350/ADCMP352/ADCMP354/ADCMP356 100 80 1 CH1 = VIN 70 60 50 40 30 20 CH2 = VOUT 0 2.25 2.40 2.70 3.00 3.30 3.60 3.90 4.20 4.50 4.80 5.20 5.50 SUPPLY VOLTAGE (V) CH1 20mV/DIV Figure 15. Short-Circuit Sink Current vs. Supply Voltage (Vcc = 3.3, PUSH-PULL Only) CH2 1.00V/DIV TIMEBASE: 10µs/DIV 05112-015 2 10 05112-013 SHORT-CIRCUIT SINK CURRENT (mA) 90 Figure 17. Propagation Delay Timing, 10 mV Overdrive 25 PROPAGATION DELAY (µs) 20 1 CH1 = VIN tPLH 15 10 tPHL 5 CH2 = VOUT 10 20 30 40 50 60 70 80 90 INPUT OVERDRIVE (mV) 100 110 120 130 CH1 100mV/DIV 05112-014 0 Figure 16. Propagation Delay vs. Input Overdrive (Vcc = 3.3, PUSH-PULL Only) Rev. 0 | Page 8 of 12 CH2 1.00V/DIV TIMEBASE: 10µs/DIV Figure 18. Propagation Delay Timing, 100 mV Overdrive 05112-016 2 ADCMP350/ADCMP352/ADCMP354/ADCMP356 APPLICATIONS ADDING HYSTERESIS VOLTAGE DETECTOR To prevent oscillations at the output caused by noise or slowly moving signals passing the switching threshold, positive feedback can be used to add hysteresis to the noninverting parts (ADCMP354 and ADCMP356). The ADCMP35x parts can be used to monitor voltages, such as battery monitoring or threshold detectors. Using a resistor divider at the input to select the appropriate trip voltage, the comparator can be configured to give a logic output when the input passes that threshold. Figure 20 shows the typical configuration of the ADCMP354 for monitoring a supply to indicate that the voltage is above a certain level. For the noninverting configuration shown in Figure 19, two resistors are used to create different switching thresholds, depending on whether the input signal is increasing or decreasing in magnitude. When the input voltage is increasing, the threshold is above VREF, and when it’s decreasing, the threshold is below VREF. VCC = 5V ADM331 ADCMP354 The upper input threshold level is given by VIN V IN_HI = VREF (R1 + R2 ) − VCC R1 VREF = 0.6V R1 R2 RPULLUP OUT VIN R1 05112-018 where VREF = 0.6 V. The lower input threshold level is given by V IN_LO = Figure 20. Voltage Detector Application VREF (R1 + R2 ) R2 The hysteresis is the difference between these voltage levels and is given by ∆V IN = VCC R1 R2 VCC = 5V ADM331 ADCMP354 VREF = 0.6V OUT VIN RLOAD R1 05112-017 VIN RPULLUP R2 Figure 19. Noninverting Comparator Configuration with Hysteresis Rev. 0 | Page 9 of 12 ADCMP350/ADCMP352/ADCMP354/ADCMP356 OUTLINE DIMENSIONS 2.20 1.80 1.35 1.15 3 4 1 2.40 1.80 2 PIN 1 0.65 BSC *0.50 BSC 1.10 0.80 1.00 0.80 0.18 0.10 0.10 MAX 0.30 0.15 SEATING 0.70 PLANE 0.50 0.30 0.10 0.10 COPLANARITY *PACKAGE OUTLINE CORRESPONDS IN FULL TO EIAJ SC82 EXCEPT FOR WIDTH OF PIN-2 AS SHOWN Figure 21. 4-Lead Thin Shrink Small Outline Transistor Package [SC70] (EIAJ SC82 body) (KS-4) Dimensions shown in millimeters ORDERING GUIDE Model ADCMP350YKS-REEL7 ADCMP352YKS-REEL7 ADCMP354YKS-REEL7 ADCMP356YKS-REEL7 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Package Description 4-Lead SC70 4-Lead SC70 4-Lead SC70 4-Lead SC70 Rev. 0 | Page 10 of 12 Branding M0Z M11 M13 M15 Package Option KS-4 KS-4 KS-4 KS-4 ADCMP350/ADCMP352/ADCMP354/ADCMP356 NOTES Rev. 0 | Page 11 of 12 ADCMP350/ADCMP352/ADCMP354/ADCMP356 NOTES © 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05112-0-10/04(0) Rev. 0 | Page 12 of 12