AD ADL5513

DET
V P OS
NC
FUNCTIONAL BLOCK DIAGRAM
CLPF
Wide bandwidth: 1 MHz to 4 GHz
80 dB dynamic range (±3 dB)
Stability over temperature: < ±0.5 dB
Low noise measurement/controller output (VOUT)
Pulse response time: 10 ns
Small footprint package: 3 mm x 3 mm LFCSP
Supply operation: 2.7 to 5.5 V at 30 mA
Fabricated using high speed SiGe process
NC
FEATURES
NC
Preliminary Technical Data
1 MHz to 4 GHz, 80 dB
Logarithmic Detector/Controller
ADL5513
16
15
14
13
DET
DET
I
Σ
IN HI 2
V
I
IN LO 3
AD L5513
APPLICATIONS
V P OS 4
BA N D G AP
RE FE RENC E
SLOPE
CO NT RO L
NC
7
8
NC
6
G AIN
BIAS
NC
5
NC
RF transmitter PA setpoint control and level monitoring
Power monitoring in radiolink transmitters
RSSI measurement in base stations, WLAN, WiMAX, radar
DET
DET
12
VO UT
11
VS ET
10
COMM
9
TADJ
1
V
Figure 1.
GENERAL DESCRIPTION
The ADL5513 is a demodulating logarithmic amplifier, capable
of accurately converting an RF input signal to a corresponding
decibel-scaled output. It employs the progressive compression
technique over a cascaded amplifier chain, each stage of which
is equipped with a detector cell. The device can be used in
either measurement or controller modes. The ADL5513
maintains accurate log conformance for signals greater than 4
GHz. The input dynamic range is typically 80 dB (re: 50 Ω)
with error less than ±3 dB. The ADL5513 has 10 ns response
time which enables RF burst detection to a pulse rate of beyond
50 MHz. The device provides unprecedented logarithmic
intercept stability vs. ambient temperature conditions. A supply
of 2.7 V to 5.5 V is required to power the device. Current
consumption is less than 30 mA, and decreases to TBD μA
when the device is disabled.
The ADL5513 can be configured to provide a control voltage to
a power amplifier or a measurement output from the VOUT
pin. Because the output can be used for controller applications,
special attention has been paid to minimize wideband noise. In
this mode, the setpoint control voltage is applied to the VSET
pin.
The feedback loop through an RF amplifier is closed via VOUT,
the output of which regulates the amplifier’s output to a
magnitude corresponding to VSET. The ADL5513 provides 0 V
to (VPOS − 0.1 V) output capability at the VOUT pin, suitable for
controller applications. As a measurement device, VOUT is
externally connected to VSET to produce an output voltage
VOUT that increases linear-in-dB with RF input signal amplitude.
The logarithmic slope is 20 mV/dB, determined by the VSET
interface. The intercept is -95 dBm (re: 50 Ω, CW input, 900
MHz) using the INHI input. These parameters are very stable
against supply and temperature variations.
Rev. PrA 6/08
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2008 Analog Devices, Inc. All rights reserved.
ADL5513
Preliminary Technical Data
TABLE OF CONTENTS
Features .............................................................................................. 1 ESD Caution...................................................................................6 Applications ....................................................................................... 1 Pin Configuration and Function Descriptions..............................7 Functional Block Diagram .............................................................. 1 Typical Performance Characteristics ..............................................8 General Description ......................................................................... 1 Evaluation Board Configuration Options ................................... 10 Revision History ............................................................................... 2 Outline Dimensions ....................................................................... 12 Specifications..................................................................................... 3 Ordering Guide............................................................................... 12 Absolute Maximum Ratings............................................................ 6 REVISION HISTORY
Rev. PrA | Page 2 of 12
Preliminary Technical Data
ADL5513
SPECIFICATIONS
VS = 5 V, T = 25°C, ZO = 50 Ω, Pins INHI, INLO, ac-coupled , Single-ended drive, VOUT tied to VSET, Error referred to best-fit line (linear
regression), unless otherwise noted.
Table 1.
Parameter
OVERALL FUNCTION
Maximum Input Frequency
100 MHz
Output Voltage: High Power in
Output Voltage: Low Power in
±3.0 dB Dynamic Range
±1.0 dB Dynamic Range
±0.5 dB Dynamic Range
Maximum Input Level, ±1.0 dB
Minimum Input Level, ±1.0 dB
Deviation vs. Temperature
Logarithmic Slope
Logarithmic Intercept
Input Impedance
900 MHz
Output Voltage: High Power in
Output Voltage: Low Power in
±3.0 dB Dynamic Range
±1.0 dB Dynamic Range
±0.5 dB Dynamic Range
Maximum Input Level, ±1.0 dB
Minimum Input Level, ±1.0 dB
Deviation vs. Temperature
Conditions
Min
Typ
0.001
PIN = -10 dBm,
PIN = -60 dBm
CW input, TA = +25°C
CW input, TA = +25°C
CW input, TA = +25°
Deviation from output at 25°C
-40°C < TA < +85°C; PIN = -10 dBm
-40°C < TA < +85°C; PIN = −30 dBm
-40°C < TA < +85°C; PIN = -50 dBm
-40°C < TA < +125°C; PIN = -10 dBm
-40°C < TA < +125°C; PIN = − 30 dBm
-40°C < TA < +125°C; PIN = -50 dBm
PIN = -10 dBm,
PIN = -60 dBm
CW input, TA = +25°C
CW input, TA = +25°C
CW input, TA = +25°
Deviation from output at 25°C
-40°C < TA < +85°C; PIN = -10 dBm
-40°C < TA < +85°C; PIN = −30 dBm
-40°C < TA < +85°C; PIN = -50 dBm
-40°C < TA < +125°C; PIN = -10 dBm
-40°C < TA < +125°C; PIN = − 30 dBm
-40°C < TA < +125°C; PIN = -50 dBm
Logarithmic Slope
Logarithmic Intercept
Input Impedance
Rev. PrA | Page 3 of 12
Max
Unit
4
GHz
1.578
0.589
75
67
58
9
-66
V
V
dB
dB
dB
±0.421
±0.467
±0.496
±0.63
±0.696
±0.0.556
21
-88.18
1500/TBD
dB
dB
dB
dB
dB
dB
mV/dB
dBm
Ω/pF
1.59
0.59
78
71
68
8
-68
V
V
dB
dB
dB
±0.45
±0.40
±0.515
±0.525
±0.62
±0.67
21
-89.07
1500/TBD
dB
dB
dB
dB
dB
dB
mV/dB
dBm
Ω/pF
ADL5513
Parameter
1900 MHz
Output Voltage: High Power in
Output Voltage: Low Power in
±3.0 dB Dynamic Range
±1.0 dB Dynamic Range
±0.5 dB Dynamic Range
Maximum Input Level, ±1.0 dB
Minimum Input Level, ±1.0 dB
Deviation vs. Temperature
Logarithmic Slope
Logarithmic Intercept
Input Impedance
2140 MHz
Output Voltage: High Power in
Output Voltage: Low Power in
±3.0 dB Dynamic Range
±1.0 dB Dynamic Range
±0.5 dB Dynamic Range
Maximum Input Level, ±1.0 dB
Minimum Input Level, ±1.0 dB
Deviation vs. Temperature
Logarithmic Slope
Logarithmic Intercept
Input Impedance
2600 MHz
Output Voltage: High Power in
Output Voltage: Low Power in
±3.0 dB Dynamic Range
±1.0 dB Dynamic Range
±0.5 dB Dynamic Range
Maximum Input Level, ±1.0 dB
Minimum Input Level, ±1.0 dB
Deviation vs. Temperature
Preliminary Technical Data
Conditions
Min
PIN = -10 dBm
PIN = -60 dBm
CW input, TA = +25°C
CW input, TA = +25°C
CW input, TA = +25°
Deviation from output at 25°C
-40°C < TA < +85°C; PIN = -10 dBm
-40°C < TA < +85°C; PIN = −30 dBm
-40°C < TA < +85°C; PIN = -50 dBm
-40°C < TA < +125°C; PIN = -10 dBm
-40°C < TA < +125°C; PIN = − 30 dBm
-40°C < TA < +125°C; PIN = -50 dBm
PIN = -10 dBm,
PIN = -60 dBm
CW input, TA = +25°C
CW input, TA = +25°C
CW input, TA = +25°
Deviation from output at 25°C
-40°C < TA < +85°C; PIN = -10 dBm
-40°C < TA < +85°C; PIN = −30 dBm
-40°C < TA < +85°C; PIN = -50 dBm
-40°C < TA < +125°C; PIN = -10 dBm
-40°C < TA < +125°C; PIN = − 30 dBm
-40°C < TA < +125°C; PIN = -50 dBm
PIN = -10 dBm,
PIN = -60 dBm
CW input, TA = +25°C
CW input, TA = +25°C
CW input, TA = +25°
Deviation from output at 25°C
-40°C < TA < +85°C; PIN = -10 dBm
-40°C < TA < +85°C; PIN = −30 dBm
-40°C < TA < +85°C; PIN = -50 dBm
-40°C < TA < +125°C; PIN = -10 dBm
-40°C < TA < +125°C; PIN = − 30 dBm
-40°C < TA < +125°C; PIN = -50 dBm
Logarithmic Slope
Logarithmic Intercept
Input Impedance
Rev. PrA | Page 4 of 12
Typ
Max
Unit
1.61
0.6
78
71
68
7
-64
V
V
dB
dB
dB
±0.46
±0.515
±0.66
±0.41
±0.73
±0.785
21
-89.87
1500/TBD
dB
dB
dB
dB
dB
dB
mV/dB
dBm
Ω/pF
1.61
0.61
78
70
66
7
-63
V
V
dB
dB
dB
±0.43
±0.497
±0.598
±0.635
±0.727
±0.676
21
-90.01
1500/TBD
dB
dB
dB
dB
dB
dB
mV/dB
dBm
Ω/pF
1.62
0.61
80
74
72
7
-60
V
V
dB
dB
dB
±0.47
±0.605
±0.715
±0.575
±0.8
±0.853
21
-90.56
1500/TBD
dB
dB
dB
dB
dB
dB
mV/dB
dBm
Ω/pF
Preliminary Technical Data
Parameter
3.6 GHz
Output Voltage: High Power in
Output Voltage: Low Power in
±3.0 dB Dynamic Range
±1.0 dB Dynamic Range
±0.5 dB Dynamic Range
Maximum Input Level, ±1.0 dB
Minimum Input Level, ±1.0 dB
Deviation vs. Temperature
ADL5513
Conditions
Min
PIN = -10 dBm,
PIN = -60 dBm
CW input, TA = +25°C
CW input, TA = +25°C
CW input, TA = +25°
Deviation from output at 25°C
-40°C < TA < +85°C; PIN = -10 dBm
-40°C < TA < +85°C; PIN = −30 dBm
-40°C < TA < +85°C; PIN = -50 dBm
-40°C < TA < +125°C; PIN = -10 dBm
-40°C < TA < +125°C; PIN = − 30 dBm
-40°C < TA < +125°C; PIN = -50 dBm
Logarithmic Slope
Logarithmic Intercept
Input Impedance
SETPOINT INPUT
Voltage Range
Current Limit Source/Sink
OUTPUT INTERFACE
Rise Time
Fall Time
POWER SUPPLY INTERFACE
Supply Voltage
Quiescent Current
Supply Current
POWER-DOWN INTERFACE
Logic Level Threshold
Enable Time
Disable Time
Pin VSET
Log conformance error ≤1 dB Min
Log conformance error ≤1 dB Max
1% change
Input level = no signal to −10dBm, 10% to 90% CLPF = 10 pF
Input level = no signal to −10dBm, 10% to 90% CLPF = 10 pF
Pin VPOS
2.7
25C RF in =-55 dBm
When disabled
Pin PWDN
Logic LO enables Logic HI disables
PWDN LO to OUT at 100% final value,
CLPF = 10pF, RF in = −10 dBm
PWDN HI to OUT at 10% final value,
CLPF = 10pF, RF in = −10 dBm
Rev. PrA | Page 5 of 12
Typ
Max
Unit
1.6
0.6
78
71
66
5
-66
V
V
dB
dB
dB
±0.64
±0.64
±0.62
±0.856
±0.926
±0.937
21
-90.57
TBD
dB
dB
dB
dB
dB
dB
mV/dB
dBm
Ω/pF
TBD
TBD
TBD
V
10
20
nS
nS
5
30
TBD
VPOS − 0.7 V
mA
5.5
V
mA
μA
143
V
ns
100
ns
ADL5513
Preliminary Technical Data
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage: VPOS
VSET Voltage
Input Power (Single-Ended, Re: 50 Ω)
Internal Power Dissipation
θJA
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering 60 sec)
Rating
5.5V
0 V to VPOS
TBD dBm
TBD W
TBD°C/W
TBD°C
−40°C to +125°C
−65°C to +150°C
260°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the
human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. PrA | Page 6 of 12
Preliminary Technical Data
ADL5513
14 CLPF
ADL5513
12 VOUT
11 VSET
10 COMM
9 TADJ
7
NC
NC
NC
NC
8
TOP VIEW
(Not to Scale)
5
VPOS 4
13 NC
16 NC
INLO 3
PIN 1
INDICATOR
6
VPOS 1
INHI 2
15 NC
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 2.
Table 3. Pin Function Descriptions
Pin No.
1, 4
2
3
10
9
Mnemonic
VPOS
INHI
INLO
COMM
TADJ
11
12
5, 6, 7, 8, 13,
15, 16
14
VSET
VOUT
NC
CLPF
Exposed
Paddle
Description
Positive supply Voltage (VPOS), 2.7 V to 5.5 V
RF input. AC –coupled RF input.
RF common for INHI. AC- coupled RF common.
Device Common.
Temperature Compensation Adjustment. Frequency Dependant Temperature Compensation is set by
connecting a ground referenced resistor to this pin.
Setpoint Input for Operation in Controller Mode. To operate in RSSI mode short VSET to VOUT.
Logarithmic/ Error Output.
No Connect. These pins may be left open or soldered to a low impedance ground plane.
Loop Filter Capacitor. In measurement mode, this capacitor sets the pulse response time and video
bandwidth.
In controller mode, the capacitance on this node sets the response time of the error amplifier/integrator.
Internally connected to COMM; solder to a low impedance ground plane.
Rev. PrA | Page 7 of 12
ADL5513
Preliminary Technical Data
TYPICAL PERFORMANCE CHARACTERISTICS
3.0
2.4
2.5
2.2
2.0
2.2
2.0
2
1.5
2
1.5
1.8
1.0
1.8
1.0
1.6
0.5
1.6
0.5
1.4
0.0
1.4
0.0
1.2
-0.5
1.2
-0.5
1
-1.0
1
-1.0
0.8
-1.5
0.8
-1.5
0.6
-2.0
0.6
-2.0
0.4
-2.5
0.4
-2.5
0.2
-3.0
0.2
10
-3.0
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
10
Figure 3 VOUT and Log Conformance vs. Input Amplitude at 100 MHz,
Multiple Devices, VTADJ = 1.0 V
Figure 6 VOUT and Log Conformance vs. Input Amplitude at 100 MHz,
VTADJ = 1.0 V
2.6
3.0
2.6
3.0
2.4
2.5
2.4
2.5
2.2
2.0
2.2
2.0
2
1.5
2
1.5
1.8
1.0
1.8
1.0
1.6
0.5
1.6
0.5
1.4
0.0
1.4
0.0
1.2
-0.5
1.2
-0.5
1
-1.0
1
-1.0
0.8
-1.5
0.8
-1.5
0.6
-2.0
0.6
-2.0
0.4
-2.5
0.4
-2.5
0.2
-3.0
0.2
-5
0
5
VOUT (V)
Pin (dBm)
10
-3.0
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
10
Pin (dBm)
Figure 4 VOUT and Log Conformance vs. Input Amplitude at 900 MHz,
Multiple Devices, VTADJ = 0.975 V
Figure 7 VOUT and Log Conformance vs. Input Amplitude at 900 MHz,
VTADJ = 0.975 V
2.6
3.0
2.6
3.0
2.4
2.5
2.4
2.5
2.2
2.0
2.2
2.0
2
1.5
2
1.5
1.8
1.0
1.8
1.0
1.6
0.5
1.6
0.5
1.4
0.0
1.4
0.0
1.2
-0.5
1.2
-0.5
1
-1.0
1
-1.0
0.8
-1.5
0.8
-1.5
0.6
-2.0
0.6
-2.0
0.4
-2.5
0.4
-2.5
0.2
-3.0
0.2
-5
0
5
VOUT (V)
Pin (dBm)
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
10
-3.0
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
10
Pin (dBm)
Pin (dBm)
Figure 5 VOUT and Log Conformance vs. Input Amplitude at 1900 MHz,
Multiple Devices, VTADJ = 0.925 V
Figure 8. VOUT and Log Conformance vs. Input Amplitude at 1900 MHz,
VTADJ = 0.925 V
Rev. PrA | Page 8 of 12
Error (dB)
5
Error (dB)
0
Pin (dBm)
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
VOUT (V)
-5
Error (dB)
VOUT (V)
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
Error (dB)
2.6
2.5
VOUT (V)
3.0
2.4
Error (dB)
2.6
Error (dB)
VOUT (V)
VPOS = 5 V; TA = +25°C, −40°C, +85°C; +125°C, unless otherwise noted. Black: +25°C, Blue: −40°C; Red: +85°C, Orange: +125°C. Error is
calculated by using the best-fit line between PIN = −40 dBm and PIN = −10 dBm at the specified input frequency, unless otherwise noted.
3.0
2.6
3.0
2.4
2.5
2.4
2.5
2.2
2.0
2.2
2.0
2
1.5
2
1.5
1.8
1.0
1.8
1.0
1.6
0.5
1.6
0.5
1.4
0.0
1.4
0.0
1.2
-0.5
1.2
-0.5
1
-1.0
1
-1.0
0.8
-1.5
0.8
-1.5
0.6
-2.0
0.6
-2.0
0.4
-2.5
0.4
-2.5
0.2
-3.0
0.2
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
VOUT (V)
2.6
10
Error (dB)
ADL5513
Error (dB)
VOUT (V)
Preliminary Technical Data
-3.0
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
10
Figure 9. VOUT and Log Conformance vs. Input Amplitude at 2140 MHz,
Multiple Devices, VTADJ = 0.925 V
Figure 12. VOUT and Log Conformance vs. Input Amplitude at 2140 MHz,
VTADJ = 0.925 V
2.6
3.0
2.5
2.4
2.5
2.2
2.0
2.2
2.0
2
1.5
2
1.5
1.8
1.0
1.8
1.0
1.6
0.5
1.6
0.5
1.4
0.0
1.4
0.0
1.2
-0.5
1.2
-0.5
1
-1.0
1
-1.0
0.8
-1.5
0.8
-1.5
0.6
-2.0
0.6
-2.0
0.4
-2.5
0.4
-2.5
0.2
-3.0
0.2
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
VOUT (V)
3.0
2.4
Error (dB)
2.6
10
Error (dB)
Pin (dBm)
VOUT (V)
Pin (dBm)
-3.0
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
10
Figure 10. VOUT and Log Conformance vs. Input Amplitude at 2600 MHz,
Multiple Devices, VTADJ = 0.9 V
Figure 13. VOUT and Log Conformance vs. Input Amplitude at 2600 MHz,
VTADJ = 0.9 V
2.6
3.0
2.5
2.4
2.5
2.2
2.0
2.2
2.0
2
1.5
2
1.5
1.8
1.0
1.8
1.0
1.6
0.5
1.6
0.5
1.4
0.0
1.4
0.0
1.2
-0.5
1.2
-0.5
1
-1.0
1
-1.0
0.8
-1.5
0.8
-1.5
0.6
-2.0
0.6
-2.0
0.4
-2.5
0.4
-2.5
0.2
-3.0
0.2
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
-5
0
5
VOUT (V)
3.0
2.4
Error (dB)
2.6
-3.0
-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
10
Error (dB)
Pin (dBm)
VOUT (V)
Pin (dBm)
-5
0
5
10
Pin (dBm)
Pin (dBm)
Figure 11. VOUT and Log Conformance vs. Input Amplitude at 3600 MHz,
Multiple Devices, VTADJ = 0.9 V
Figure 14. VOUT and Log Conformance vs. Input Amplitude at 3600 MHz,
VTADJ = 0.9 V
Rev. PrA | Page 9 of 12
ADL5513
Preliminary Technical Data
EVALUATION BOARD CONFIGURATION OPTIONS
Table 4. Evaluation Board Configuration Options
Component
C1, C2, R1
C3, C4, C5, C6,
R11, R12
C7
R2, R3 R4, R5, R10,
RL, CL
R4, R5, R10
R6, R7, R8, R9
VPOS, GND
Function
Input Interface.
The 52.3 Ω resistor in Position R1 combines with the internal input impedance of the
ADL5513 to give a broadband input impedance of about 50 Ω. C1 and C2 are dcblocking capacitors. A reactive impedance match can be implemented by replacing
R1 with an inductor and C1 and C2 with appropriately valued capacitors.
Power Supply Decoupling
The nominal supply decoupling consists of a 100 pF filter capacitor placed physically
close to the ADL5513 and a 0.1 μF capacitor placed nearer to the power supply input
pin. If additional isolation from the power supply is required, a small resistance maybe
installed in between the power supply and the ADL5513. (R11, R12)
Filter Capacitor
The low-pass corner frequency of the circuit that drives the VOUT pin can be lowered
by placing a capacitor between CLPF and ground. Increasing this capacitor increases
the overall rise/fall time of the ADL5513 for pulsed input signals.
Output Interface—Measurement Mode.
In measurement mode, a portion of the output voltage is fed back to the VSET pin via R4.
The magnitude of the slope of the VOUT output voltage response can be increased by
reducing the portion of VOUT that is fed back to VSET. R3 can be used as a backterminating resistor or as part of a single-pole, low-pass filter.
Output Interface—Controller Mode.
In this mode, R4 must be open. In controller mode, the ADL5513 can control the gain of
an external component. A setpoint voltage is applied to Pin VSET, the value of which
corresponds to the desired RF input signal level applied to the ADL5513 RF input. A
sample of the RF output signal from this variable gain component is selected, typically
via a directional coupler, and applied to ADL5513 RF input. The voltage at the VOUT
pin is applied to the gain control of the variable gain element. A control voltage is
applied to the VSET pin. The magnitude of the control voltage can optionally be
attenuated via the voltage divider comprising R4 and R5, or a capacitor can be
installed in Position R5 to form a low-pass filter along with R4.
Temperature Compensation Interface.
A voltage source can be used to optimize the temperature performance for various
input frequencies. The pads for R8/R9 can be used for a voltage divider from the VPOS
node to set the TADJ voltage at different frequencies. The ADL5513 may be disabled by
by applying a voltage of VPOS −0.7 V to this node.
Supply and Ground Connections
Default Value
R1 = 52.3 Ω (Size 0402)
C1 = 47 nF (Size 0402)
C2 = 47 nF (Size 0402)
C3 = 0.1 μF (Size 0402)
C4 = 100 pF (Size 0402)
C5 = 100 pF (Size 0402)
C6 = 0.1 μF (Size 0402)
R11 = 0 Ω (Size 0402)
R12 = 0 Ω (Size 0402)
C7= 1000 pF (Size 0402)
R2 = open (Size 0402)
R3 = 1 kΩ (Size 0402)
R4 = 0 Ω (Size 0402)
R5 = open (Size 0402)
R10 = open (Size 0402)
RL = CL = open (Size 0402)
R4 = open (Size 0402)
R5 = open (Size 0402)
R10 = 0 Ω (Size 0402)
R6 = open (Size 0402)
R7= 0 Ω (Size 0402)
R8 = open (Size 0402)
R9 = open Ω (Size 0402)
Not Applicable
Rev. PrA | Page 10 of 12
Preliminary Technical Data
ADL5513
VPOS
GND
VPOS
C3
0.1 uF
VOUT_ALT
R11
0 ohms
C2
47nF
4
NC
VPOS
5
R1
52.3 ohms
3 INLO
VSET
11
CLPF14
NC 13
2 INHI
12
ADL5513
R2
open
R3
1k
VOUT
R4
0 ohms
9
TADJ
R5
open
VSET
TADJ
R6
open
R12
0 ohms
R7
0 ohms
VPOS
R10
0 ohms
RL
open
VPOS
Z1
C5
100 pF
VOUT
CL
open
COMM`10
7 NC
8 NC
1
NC 16
VPOS
NC 15
RFIN
100 pF
C1
47nF
C7
1000 pF
6 NC
C4
R8
open
TADJ
R9
open
C6
0.1 uF
EXT_ PWDN - TADJ
Figure 15. Evaluation Board Schematic
Figure 17. Component Side Silkscreen
Figure 16.Component Side Layout
Rev. PrA | Page 11 of 12
ADL5513
Preliminary Technical Data
OUTLINE DIMENSIONS
a
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ ]
3 x 3 mm Body, Very Thin Quad
(CP-16-3)
Dimensions shown in millimeters
3.00
BSC SQ
0.60 MAX
13
12
0.45
PIN 1
INDICATOR
TOP
VIEW
2.75
BSC SQ
0.80 MAX
0.65 TYP
12° MAX
SEATING
PLANE
16
PIN 1
INDICATOR
*1.65
1
1.50 SQ
1.35
EXPOSED
PAD
0.50
BSC
0.90
0.85
0.80
0.50
0.40
0.30
9 (BOTTOM VIEW) 4
8
5
0.25 MIN
1.50 REF
0.05 MAX
0.02 NOM
0.30
0.23
0.18
0.20 REF
*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2
EXCEPT FOR EXPOSED PAD DIMENSION.
Figure 18. -Lead Lead Frame Chip Scale Package [LFCSP_VQ]
3 mm × 3 mm Body, Very Thin, Dual Lead
(CP-16-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADL5513-ACPZ-R7 1
ADL5513-ACPZ-R21
ADL5513-ACPZ-WP12
ADL5513-EVALZ1
1
2
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
16-Lead LFCSP_VQ, Reel
16-Lead LFCSP_VQ, Reel
16-Lead LFCSP_VQ, Waffle Pack
Evaluation Board
Z = RoHS Compliant Part.
WP = waffle pack
© 2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
PR07514-0-6/08(PrA)
Rev. PrA | Page 12 of 12
Package Option
CP-16-3
CP-16-3
CP-16-3
Branding
TBD
TBD
TBD