High Precision Shunt Mode Voltage References ADR520/ADR525/ADR530/ADR540/ADR550 FEATURES PIN CONFIGURATION Ultracompact SC70 and SOT-23-3 packages Temperature coefficient: 40 ppm/°C (maximum) 2× the temperature coefficient improvement over the LM4040 Pin compatible with the LM4040/LM4050 Initial accuracy: ±0.2% Low output voltage noise: 14 μV p-p @ 2.5 V output No external capacitor required Operating current range: 50 μA to 15 mA Industrial temperature range: −40°C to +85°C V+ 1 APPLICATIONS Portable, battery-powered equipment Automotive Power supplies Data acquisition systems Instrumentation and process control Energy measurement Table 1. Selection Guide Part ADR520A ADR520B ADR525A ADR525B ADR530A ADR530B ADR540A ADR540B ADR550A ADR550B Voltage (V) 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 Initial Accuracy (%) ±0.4 ±0.2 ±0.4 ±0.2 ±0.4 ±0.2 ±0.4 ±0.2 ±0.4 ±0.2 Temperature Coefficient (ppm/°C) 70 40 70 40 70 40 70 40 70 40 ADR540/ ADR550 3 TRIM 04501-001 V– 2 ADR520/ ADR525/ ADR530/ Figure 1. 3-Lead SC70 (KS) and 3-Lead SOT-23-3 (RT) GENERAL DESCRIPTION Designed for space-critical applications, the ADR520/ADR525/ ADR530/ADR540/ADR550 are high precision shunt voltage references, housed in ultrasmall SC70 and SOT-23-3 packages. These references feature low temperature drift of 40 ppm/°C, an initial accuracy of better than ±0.2%, and ultralow output noise of 14 μV p-p. Available in output voltages of 2.048 V, 2.5 V, 3.0 V, 4.096 V, and 5.0 V, the advanced design of the ADR520/ADR525/ ADR530/ADR540/ADR550 eliminates the need for compensation by an external capacitor, yet the references are stable with any capacitive load. The minimum operating current increases from a mere 50 μA to a maximum of 15 mA. This low operating current and ease of use make these references ideally suited for handheld, battery-powered applications. A trim terminal is available on the ADR520/ADR525/ADR530/ ADR540/ADR550 to allow adjustment of the output voltage over a ±0.5% range, without affecting the temperature coefficient of the device. This feature provides users with the flexibility to trim out any system errors. Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved. ADR520/ADR525/ADR530/ADR540/ADR550 TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ............................................................6 Applications ....................................................................................... 1 Thermal Resistance .......................................................................6 Pin Configuration ............................................................................. 1 ESD Caution...................................................................................6 General Description ......................................................................... 1 Parameter Definitions .......................................................................7 Revision History ............................................................................... 2 Temperature Coefficient...............................................................7 Specifications..................................................................................... 3 Thermal Hysteresis .......................................................................7 ADR520 Electrical Characteristics............................................. 3 Typical Performance Characteristics ..............................................8 ADR525 Electrical Characteristics............................................. 3 Theory of Operation ...................................................................... 11 ADR530 Electrical Characteristics............................................. 4 Applications ................................................................................ 11 ADR540 Electrical Characteristics............................................. 4 Outline Dimensions ....................................................................... 13 ADR550 Electrical Characteristics............................................. 5 Ordering Guide .......................................................................... 14 REVISION HISTORY 6/08—Rev. D to Rev. E Changes to Table 3 ............................................................................ 3 Changes to Table 4 and Table 5 ....................................................... 4 Changes to Table 6 ............................................................................ 5 Changes to Figure 4 .......................................................................... 8 Changes to Applications Section .................................................. 11 1/06—Rev. A to Rev. B Updated Formatting ........................................................... Universal Changes to Features Section ............................................................1 Changes to General Description Section .......................................1 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 14 12/07—Rev. C to Rev. D Changes to Figure 3 and Figure 5 ................................................... 8 Changes to Figure 15, Figure 16, and Figure 17 Captions ........ 10 Changes to Figure 23 ...................................................................... 12 Updated Outline Dimensions ....................................................... 13 12/03—Data Sheet Changed from Rev. 0 to Rev. A Updated Outline Dimensions ....................................................... 13 Change to Ordering Guide............................................................ 14 11/03—Revision 0: Initial Version 8/07—Rev. B to Rev. C Changes to Figure 21 ...................................................................... 11 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 14 Rev. E | Page 2 of 16 ADR520/ADR525/ADR530/ADR540/ADR550 SPECIFICATIONS ADR520 ELECTRICAL CHARACTERISTICS IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted. Table 2. Parameter Output Voltage Grade A Grade B Initial Accuracy Grade A Grade B Temperature Coefficient 1 Grade A Grade B Output Voltage Change vs. IIN Symbol VOUT Dynamic Output Impedance Minimum Operating Current Voltage Noise Turn-On Settling Time Output Voltage Hysteresis (∆VR/∆IR) IIN eN p-p tR ∆VOUT_HYS 1 Conditions Min Typ Max Unit 2.040 2.044 2.048 2.048 2.056 2.052 V V +8 +4 mV mV 70 40 1 4 ppm/°C ppm/°C mV mV 2 0.27 mV Ω μA μV p-p μs ppm VOERR TCVO ±0.4% ±0.2% −40°C < TA < +85°C −8 −4 25 15 ∆VR IIN = 0.1 mA to 15 mA −40°C < TA < +85°C IIN = 1 mA to 15 mA −40°C < TA < +85°C IIN = 0.1 mA to 15 mA −40°C < TA < +85°C 0.1 Hz to 10 Hz 50 14 2 40 IIN = 1 mA Guaranteed by design; not production tested. ADR525 ELECTRICAL CHARACTERISTICS IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted. Table 3. Parameter Output Voltage Grade A Grade B Initial Accuracy Grade A Grade B Temperature Coefficient 1 Grade A Grade B Output Voltage Change vs. IIN Symbol VOUT Dynamic Output Impedance Minimum Operating Current Voltage Noise Turn-On Settling Time Output Voltage Hysteresis (∆VR/∆IR) IIN eN p-p tR ∆VOUT_HYS 1 Conditions Min Typ Max Unit 2.490 2.495 2.500 2.500 2.510 2.505 V V +10 +5 mV mV 70 40 1 4 ppm/°C ppm/°C mV mV 2 0.2 mV Ω μA μV p-p μs ppm VOERR TCVO ±0.4% ±0.2% −40°C < TA < +85°C −10 −5 25 15 ∆VR IIN = 0.1 mA to 15 mA −40°C < TA < +85°C IIN = 1 mA to 15 mA −40°C < TA < +85°C IIN = 0.1 mA to 15 mA −40°C < TA < +85°C 0.1 Hz to 10 Hz IIN = 1 mA Guaranteed by design; not production tested. Rev. E | Page 3 of 16 50 18 2 40 ADR520/ADR525/ADR530/ADR540/ADR550 ADR530 ELECTRICAL CHARACTERISTICS IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted. Table 4. Parameter Output Voltage Grade A Grade B Initial Accuracy Grade A Grade B Temperature Coefficient 1 Grade A Grade B Output Voltage Change vs. IIN Symbol VOUT Dynamic Output Impedance Minimum Operating Current Voltage Noise Turn-On Settling Time Output Voltage Hysteresis (∆VR/∆IR) IIN eN p-p tR ∆VOUT_HYS 1 Conditions Min Typ Max Unit 2.988 2.994 3.000 3.000 3.012 3.006 V V +12 +6 mV mV 70 40 1 4 ppm/°C ppm/°C mV mV 2 0.2 mV Ω μA μV p-p μs ppm VOERR TCVO ±0.4% ±0.2% −40°C < TA < +85°C −12 −6 25 15 ∆VR IIN = 0.1 mA to 15 mA −40°C < TA < +85°C IIN = 1 mA to 15 mA −40°C < TA < +85°C IIN = 0.1 mA to 15 mA −40°C < TA < +85°C 0.1 Hz to 10 Hz 50 22 2 40 IIN = 1 mA Guaranteed by design; not production tested. ADR540 ELECTRICAL CHARACTERISTICS IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted. Table 5. Parameter Output Voltage Grade A Grade B Initial Accuracy Grade A Grade B Temperature Coefficient 1 Grade A Grade B Output Voltage Change vs. IIN Symbol VOUT Dynamic Output Impedance Minimum Operating Current Voltage Noise Turn-On Settling Time Output Voltage Hysteresis (∆VR/∆IR) IIN eN p-p tR ∆VOUT_HYS 1 Conditions Min Typ Max Unit 4.080 4.088 4.096 4.096 4.112 4.104 V V +16 +8 mV mV 70 40 1 5 ppm/°C ppm/°C mV mV 2 0.2 mV Ω μA μV p-p μs ppm VOERR TCVO ±0.4% ±0.2% −40°C < TA < +85°C −16 −8 25 15 ∆VR IIN = 0.1 mA to 15 mA −40°C < TA < +85°C IIN = 1 mA to 15 mA −40°C < TA < +85°C IIN = 0.1 mA to 15 mA −40°C < TA < +85°C 0.1 Hz to 10 Hz IIN = 1 mA Guaranteed by design; not production tested. Rev. E | Page 4 of 16 50 30 2 40 ADR520/ADR525/ADR530/ADR540/ADR550 ADR550 ELECTRICAL CHARACTERISTICS IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted. Table 6. Parameter Output Voltage Grade A Grade B Initial Accuracy Grade A Grade B Temperature Coefficient1 Grade A Grade B Output Voltage Change vs. IIN Symbol VOUT Dynamic Output Impedance Minimum Operating Current Voltage Noise Turn-On Settling Time Output Voltage Hysteresis (∆VR/∆IR) IIN eN p-p tR ∆VOUT_HYS 1 Conditions Min Typ Max Unit 4.980 4.990 5.000 5.000 5.020 5.010 V V +20 +10 mV mV 70 40 1 5 ppm/°C ppm/°C mV mV 2 0.2 mV Ω μA μV p-p μs ppm VOERR TCVO ±0.4% ±0.2% −40°C < TA < +85°C −20 −10 25 15 ∆VR IIN = 0.1 mA to 15 mA −40°C < TA < +85°C IIN = 1 mA to 15 mA −40°C < TA < +85°C IIN = 0.1 mA to 15 mA −40°C < TA < +85°C 0.1 Hz to 10 Hz IIN = 1 mA Guaranteed by design; not production tested. Rev. E | Page 5 of 16 50 38 2 40 ADR520/ADR525/ADR530/ADR540/ADR550 ABSOLUTE MAXIMUM RATINGS Ratings apply at 25°C, unless otherwise noted. THERMAL RESISTANCE Table 7. Table 8. Parameter Reverse Current Forward Current Storage Temperature Range Industrial Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 25 mA 20 mA −65°C to +150°C −40°C to +85°C −65°C to +150°C 300°C Package Type 3-Lead SC70 (KS) θJA1 580.5 θJC 177.4 Unit °C/W 3-Lead SOT-23-3 (RT) 270 102 °C/W 1 θJA is specified for worst-case conditions, such as for devices soldered on circuit boards for surface-mount packages. ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. E | Page 6 of 16 ADR520/ADR525/ADR530/ADR540/ADR550 PARAMETER DEFINITIONS TEMPERATURE COEFFICIENT THERMAL HYSTERESIS Temperature coefficient is defined as the change in output voltage with respect to operating temperature changes and is normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and is determined by the following equation: Thermal hysteresis is defined as the change in output voltage after the device is cycled through temperatures ranging from +25°C to −40°C, then to +85°C, and back to +25°C. The following equation expresses a typical value from a sample of parts put through such a cycle: V (T2 ) − VOUT (T1 ) ppm ⎤ = OUT × 10 6 TCVO ⎡⎢ ⎥ ⎣ ° C ⎦ VOUT (25° C) × (T2 − T1 ) where: VOUT(T2) = VOUT at Temperature 2. VOUT(T1) = VOUT at Temperature 1. VOUT(25°C) = VOUT at 25°C. VOUT _ HYS = VOUT (25° C) − VOUT _ END (1) VOUT _ HYS [ppm] = VOUT (25° C) − VOUT _ END VOUT (25° C) × 10 6 (2) where: VOUT(25°C) = VOUT at 25°C. VOUT_END = VOUT at 25°C after a temperature cycle from +25°C to −40°C, then to +85°C, and back to +25°C. Rev. E | Page 7 of 16 ADR520/ADR525/ADR530/ADR540/ADR550 TYPICAL PERFORMANCE CHARACTERISTICS 8 5.5 ADR550 5.0 ADR540 4.0 3.5 ADR530 3.0 ADR525 2.5 ADR520 2.0 1.5 TA = 25°C 1.0 5 4 3 TA = +85°C TA = +25°C 2 TA = –40°C 1 0.5 0 25 50 75 100 MINIMUM OPERATING CURRENT (µA) 0 04501-006 0 6 0 3 6 9 12 15 IIN (mA) Figure 2. Reverse Characteristics and Minimum Operating Current Figure 5. ADR550 Reverse Voltage vs. Operating Current 8 VIN = 2V/DIV TA = +25°C 6 5 TA = +85°C 4 VOUT = 1V/DIV TA = –40°C 3 2 1 0 3 9 6 12 15 IIN (mA) 04501-007 0 4µs/DIV IIN = 10mA 04501-010 REVERSE VOLTAGE CHANGE (mV) 7 TIME (µs) Figure 6. ADR525 Turn-On Response Figure 3. ADR520 Reverse Voltage vs. Operating Current VIN = 2V/DIV 6 4 TA = –40°C VOUT = 1V/DIV 2 TA = +25°C 0 0 3 9 6 12 IIN (mA) 15 TIME (µs) Figure 7. ADR525 Turn-On Response Figure 4. ADR525 Reverse Voltage vs. Operating Current Rev. E | Page 8 of 16 04501-011 –2 4µs/DIV IIN = 100µA TA = +85°C 04501-008 REVERSE VOLTAGE CHANGE (mV) 8 04501-009 REVERSE VOLTAGE (V) REVERSE VOLTAGE CHANGE (mV) 7 4.5 ADR520/ADR525/ADR530/ADR540/ADR550 VIN = 2V/DIV VIN = 2V/DIV VOUT = 1V/DIV VOUT = 2V/DIV 4µs/DIV 20µs/DIV TIME (µs) 04501-015 IIN = 100µA 04501-012 IIN = 10mA TIME (µs) Figure 8. ADR520 Turn-On Response Figure 11. ADR550 Turn-On Response PEAK-TO-PEAK 13.5µV VIN = 2V/DIV RMS 2.14µV VOUT = 1V/DIV 10µs/DIV TIME (µs) Figure 9. ADR520 Turn-On Response Figure 12. ADR520 Voltage Noise 0.1 Hz to 10 Hz V GEN = 2V/DIV IIN = 1mA VIN = 2V/DIV VOUT = 2V/DIV VOUT = 50mV/DIV 4µs/DIV TIME (µs) 10µs/DIV 04501-014 IIN = 10mA TIME (µs) Figure 10. ADR550 Turn-On Response Figure 13. ADR525 Load Transient Response Rev. E | Page 9 of 16 04501-016 TIME (µs) 04501-021 5µs/DIV 04501-013 IIN = 100µA ADR520/ADR525/ADR530/ADR540/ADR550 3.0055 3.0050 V GEN = 2V/DIV IIN = 10mA 3.0045 3.0040 VOUT (V) 3.0035 VOUT = 50mV/DIV 3.0030 3.0025 3.0020 3.0015 3.0010 10µs/DIV 3.0000 –40 –15 10 35 60 85 TEMPERATURE (°C) Figure 16. Data for Five Parts of ADR530 VOUT over Temperature 5.008 2.5025 5.006 2.5020 5.004 2.5015 5.002 2.5010 5.000 VOUT (V) 2.5030 2.5005 2.5000 4.998 4.996 2.4995 4.994 2.4990 4.992 2.4985 4.990 2.4980 –40 –15 10 35 60 85 TEMPERATURE (°C) 04501-018 VOUT (V) Figure 14. ADR550 Load Transient Response Figure 15. Data for Five Parts of ADR525 VOUT over Temperature 4.988 –40 –15 10 35 60 85 TEMPERATURE (°C) Figure 17. Data for Five Parts of ADR550 VOUT over Temperature Rev. E | Page 10 of 16 04501-020 TIME (µs) 04501-019 04501-017 3.0005 ADR520/ADR525/ADR530/ADR540/ADR550 THEORY OF OPERATION V+ + VS R IIN + IL VOUT IIN IL 04501-003 The ADR520/ADR525/ADR530/ADR540/ADR550 use the band gap concept to produce a stable, low temperature coefficient voltage reference suitable for high accuracy data acquisition components and systems. The devices use the physical nature of a silicon transistor base-emitter voltage (VBE) in the forward-biased operating region. All such transistors have approximately a −2 mV/°C temperature coefficient (TC), making them unsuitable for direct use as low temperature coefficient references. Extrapolation of the temperature characteristics of any one of these devices to absolute zero (with the collector current proportional to the absolute temperature), however, reveals that its VBE approaches approximately the silicon band gap voltage. Thus, if a voltage develops with an opposing temperature coefficient to sum the VBE, a zero temperature coefficient reference results. The ADR520/ADR525/ADR530/ADR540/ADR550 circuit shown in Figure 18 provides such a compensating voltage (V1) by driving two transistors at different current densities and amplifying the resultant VBE difference (ΔVBE, which has a positive temperature coefficient). The sum of VBE and V1 provides a stable voltage reference over temperature. ADR550 Figure 19. Shunt Reference Given these conditions, RBIAS is determined by the supply voltage (VS), the load and operating currents (IL and IIN) of the ADR520/ADR525/ADR530/ADR540/ADR550, and the output voltage (VOUT) of the ADR520/ADR525/ADR530/ ADR540/ADR550. R BIAS = VS − VOUT (3) I L + I IN Precision Negative Voltage Reference The ADR520/ADR525/ADR530/ADR540/ADR550 are suitable for applications where a precise negative voltage is desired. Figure 20 shows the ADR525 configured to provide a negative output. ADR525 V1 –2.5V – + VS ΔVBE Figure 20. Negative Precision Reference Configuration V– Output Voltage Trim Figure 18. Circuit Schematic APPLICATIONS The ADR520/ADR525/ADR530/ADR540/ADR550 are a series of precision shunt voltage references. They are designed to operate without an external capacitor between the positive and negative terminals. If a bypass capacitor is used to filter the supply, the references remain stable. The trim terminal of the ADR520/ADR525/ADR530/ADR540/ ADR550 can be used to adjust the output voltage over a range of ±0.5%. This allows systems designers to trim system errors by setting the reference to a voltage other than the preset output voltage. An external mechanical or electrical potentiometer can be used for this adjustment. Figure 21 illustrates how the output voltage can be trimmed using the AD5273, an Analog Devices, Inc., 10 kΩ potentiometer. All shunt voltage references require an external bias resistor (RBIAS) between the supply voltage and the reference (see Figure 19). RBIAS sets the current that flows through the load (IL) and the reference (IIN). Because the load and the supply voltage can vary, RBIAS needs to be chosen based on the following considerations: • • RBIAS must be small enough to supply the minimum IIN current to the ADR520/ADR525/ADR530/ADR540/ ADR550, even when the supply voltage is at its minimum value and the load current is at its maximum value. RBIAS must be large enough so that IIN does not exceed 15 mA when the supply voltage is at its maximum value and the load current is at its minimum value. Rev. E | Page 11 of 16 VS R VOUT ADR530 R1 470kΩ AD5273 POTENTIOMETER 10kΩ Figure 21. Output Voltage Trim 04501-005 – 04501-002 + VBE – 04501-004 R ADR520/ADR525/ADR530/ADR540/ADR550 Stacking the ADR520/ADR525/ADR530/ADR540/ADR550 for User-Definable Outputs Multiple ADR520/ADR525/ADR530/ADR540/ADR550 parts can be stacked to allow the user to obtain a desired higher voltage. Figure 22 shows three ADR550s configured to give 15 V. The bias resistor, RBIAS, is chosen using Equation 3; note that the same bias current flows through all the shunt references in series. Figure 23 shows three ADR550s stacked to give −15 V. RBIAS is calculated in the same manner as before. Parts of different voltages can also be added together. For example, an ADR525 and an ADR550 can be added together to give an output of +7.5 V or −7.5 V, as desired. Note, however, that the initial accuracy error is now the sum of the errors of all the stacked parts, as are the temperature coefficients and output voltage change vs. input current. Adjustable Precision Voltage Source The ADR520/ADR525/ADR530/ADR540/ADR550, combined with a precision low input bias op amp, such as the AD8610, can be used to output a precise adjustable voltage. Figure 24 illustrates the implementation of this application using the ADR520/ADR525/ADR530/ADR540/ADR550. The output of the op amp, VOUT, is determined by the gain of the circuit, which is completely dependent on the resistors, R1 and R2. VOUT = VREF (1 + R2/R1) An additional capacitor, C1, in parallel with R2, can be added to filter out high frequency noise. The value of C1 is dependent on the value of R2. +VDD VS R VREF R AD8610 +15V ADR550 ADR550 ADR550 ADR5xx R2 GND Figure 22. +15 V Output with Stacked ADR550s C1 (OPTIONAL) Figure 24. Adjustable Voltage Source ADR550 ADR550 ADR550 GND –15V –VDD 04501-024 R Figure 23. −15 V Output with Stacked ADR550s Rev. E | Page 12 of 16 04501-023 R1 04501-022 GND VOUT = VREF (1+R2/R1) ADR520/ADR525/ADR530/ADR540/ADR550 OUTLINE DIMENSIONS 2.20 2.00 1.80 2.40 2.10 1.80 3 1 2 PIN 1 0.65 BSC 0.40 0.10 1.10 0.80 1.00 0.80 0.40 0.25 0.10 MAX SEATING PLANE 0.10 COPLANARITY 0.30 0.20 0.10 0.26 0.10 111505-0 1.35 1.25 1.15 ALL DIMENSIONS COMPLIANT WITH EIAJ SC70 Figure 25. 3-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-3) Dimensions shown in millimeters 3.04 2.80 1.40 1.20 2.64 2.10 3 1 2 0.60 0.45 2.05 1.78 1.03 0.89 1.12 0.89 0.100 0.013 0.51 0.37 0.55 REF COMPLIANT TO JEDEC STANDARDS TO-236-AB Figure 26. 3-Lead Small Outline Transistor Package [SOT-23-3] (RT-3) Dimensions shown in millimeters Rev. E | Page 13 of 16 092707-A SEATING PLANE 0.180 0.085 ADR520/ADR525/ADR530/ADR540/ADR550 ORDERING GUIDE Model ADR520ART-R2 ADR520ART-REEL7 ADR520ARTZ-REEL7 1 ADR520BKS-R2 ADR520BKS-REEL7 ADR520BKSZ-REEL71 ADR520BRT-R2 ADR520BRT-REEL7 ADR520BRTZ-REEL71 ADR525ART-R2 ADR525ART-REEL7 ADR525ARTZ-R21 ADR525ARTZ-REEL71 ADR525BKS-R2 ADR525BKS-REEL7 ADR525BKSZ-REEL71 ADR525BRT-R2 ADR525BRT-REEL7 ADR525BRTZ-REEL71 ADR530ART-R2 ADR530ART-REEL7 ADR530ARTZ-REEL71 ADR530BKS-R2 ADR530BKS-REEL7 ADR530BKSZ-REEL71 ADR530BRT-R2 ADR530BRT-REEL7 ADR530BRTZ-REEL71 ADR540ART-R2 ADR540ART-REEL7 ADR540ARTZ-REEL71 ADR540BKS-R2 ADR540BKS-REEL7 ADR540BKSZ-REEL71 ADR540BRT-R2 ADR540BRT-REEL7 ADR540BRTZ-REEL71 ADR550ART-R2 ADR550ART-REEL7 ADR550ARTZ-REEL71 ADR550BKS-R2 ADR550BKS-REEL7 ADR550BKSZ-REEL71 ADR550BRT-R2 ADR550BRT-REEL7 ADR550BRTZ-REEL71 1 Output Voltage (V) 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.096 4.096 4.096 4.096 4.096 4.096 4.096 4.096 4.096 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Initial Accuracy (mV) 8 8 8 4 4 4 4 4 4 10 10 10 10 5 5 5 5 5 5 12 12 12 6 6 6 6 6 6 16 16 16 8 8 8 8 8 8 20 20 20 10 10 10 10 10 10 Tempco Industrial (ppm/°C) 70 70 70 40 40 40 40 40 40 70 70 70 70 40 40 40 40 40 40 70 70 70 40 40 40 40 40 40 70 70 70 40 40 40 40 40 40 70 70 70 40 40 40 40 40 40 Package Description 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SC70 3-Lead SC70 3-Lead SC70 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SC70 3-Lead SC70 3-Lead SC70 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SC70 3-Lead SC70 3-Lead SC70 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SC70 3-Lead SC70 3-Lead SC70 3-Lead SOT-23-3 3-Lead SOT-23-3 3 Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SC70 3-Lead SC70 3-Lead SC70 3-Lead SOT-23-3 3-Lead SOT-23-3 3-Lead SOT-23-3 Z = RoHS Compliant Part. Rev. E | Page 14 of 16 Package Option RT-3 RT-3 RT-3 KS-3 KS-3 KS-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 KS-3 KS-3 KS-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 KS-3 KS-3 KS-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 KS-3 KS-3 KS-3 RT-3 RT-3 RT-3 RT-3 RT-3 RT-3 KS-3 KS-3 KS-3 RT-3 RT-3 RT-3 Branding RQA RQA R1S RQB RQB R1T RQB RQB R1T RRA RRA R1W R1W RRB RRB R1N RRB RRB R1N RSA RSA R1X RSB RSB R1Y RSB RSB R1Y RTA RTA R1U RTB RTB R1V RTB RTB R1V RVA RVA R1Q RVB RVB R1P RVB RVB R1P Number of Parts per Reel 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 250 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 250 3,000 3,000 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C ADR520/ADR525/ADR530/ADR540/ADR550 NOTES Rev. E | Page 15 of 16 ADR520/ADR525/ADR530/ADR540/ADR550 NOTES ©2003–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04501-0-6/08(E) Rev. E | Page 16 of 16