AD ADR525ARTZ-REEL7 High precision shunt mode voltage reference Datasheet

High Precision Shunt Mode
Voltage References
ADR520/ADR525/ADR530/ADR540/ADR550
FEATURES
PIN CONFIGURATION
Ultracompact SC70 and SOT-23-3 packages
Temperature coefficient: 40 ppm/°C (maximum)
2× the temperature coefficient improvement over the
LM4040
Pin compatible with the LM4040/LM4050
Initial accuracy: ±0.2%
Low output voltage noise: 14 μV p-p @ 2.5 V output
No external capacitor required
Operating current range: 50 μA to 15 mA
Industrial temperature range: −40°C to +85°C
V+ 1
APPLICATIONS
Portable, battery-powered equipment
Automotive
Power supplies
Data acquisition systems
Instrumentation and process control
Energy measurement
Table 1. Selection Guide
Part
ADR520A
ADR520B
ADR525A
ADR525B
ADR530A
ADR530B
ADR540A
ADR540B
ADR550A
ADR550B
Voltage (V)
2.048
2.048
2.5
2.5
3.0
3.0
4.096
4.096
5.0
5.0
Initial
Accuracy (%)
±0.4
±0.2
±0.4
±0.2
±0.4
±0.2
±0.4
±0.2
±0.4
±0.2
Temperature
Coefficient
(ppm/°C)
70
40
70
40
70
40
70
40
70
40
ADR540/
ADR550
3
TRIM
04501-001
V– 2
ADR520/
ADR525/
ADR530/
Figure 1. 3-Lead SC70 (KS) and 3-Lead SOT-23-3 (RT)
GENERAL DESCRIPTION
Designed for space-critical applications, the ADR520/ADR525/
ADR530/ADR540/ADR550 are high precision shunt voltage
references, housed in ultrasmall SC70 and SOT-23-3 packages.
These references feature low temperature drift of 40 ppm/°C,
an initial accuracy of better than ±0.2%, and ultralow output
noise of 14 μV p-p.
Available in output voltages of 2.048 V, 2.5 V, 3.0 V, 4.096 V,
and 5.0 V, the advanced design of the ADR520/ADR525/
ADR530/ADR540/ADR550 eliminates the need for compensation by an external capacitor, yet the references are stable with
any capacitive load. The minimum operating current increases
from a mere 50 μA to a maximum of 15 mA. This low operating
current and ease of use make these references ideally suited for
handheld, battery-powered applications.
A trim terminal is available on the ADR520/ADR525/ADR530/
ADR540/ADR550 to allow adjustment of the output voltage
over a ±0.5% range, without affecting the temperature coefficient
of the device. This feature provides users with the flexibility to
trim out any system errors.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved.
ADR520/ADR525/ADR530/ADR540/ADR550
TABLE OF CONTENTS
Features .............................................................................................. 1
Absolute Maximum Ratings ............................................................6
Applications ....................................................................................... 1
Thermal Resistance .......................................................................6
Pin Configuration ............................................................................. 1
ESD Caution...................................................................................6
General Description ......................................................................... 1
Parameter Definitions .......................................................................7
Revision History ............................................................................... 2
Temperature Coefficient...............................................................7
Specifications..................................................................................... 3
Thermal Hysteresis .......................................................................7
ADR520 Electrical Characteristics............................................. 3
Typical Performance Characteristics ..............................................8
ADR525 Electrical Characteristics............................................. 3
Theory of Operation ...................................................................... 11
ADR530 Electrical Characteristics............................................. 4
Applications ................................................................................ 11
ADR540 Electrical Characteristics............................................. 4
Outline Dimensions ....................................................................... 13
ADR550 Electrical Characteristics............................................. 5
Ordering Guide .......................................................................... 14
REVISION HISTORY
6/08—Rev. D to Rev. E
Changes to Table 3 ............................................................................ 3
Changes to Table 4 and Table 5 ....................................................... 4
Changes to Table 6 ............................................................................ 5
Changes to Figure 4 .......................................................................... 8
Changes to Applications Section .................................................. 11
1/06—Rev. A to Rev. B
Updated Formatting ........................................................... Universal
Changes to Features Section ............................................................1
Changes to General Description Section .......................................1
Updated Outline Dimensions ....................................................... 13
Changes to Ordering Guide .......................................................... 14
12/07—Rev. C to Rev. D
Changes to Figure 3 and Figure 5 ................................................... 8
Changes to Figure 15, Figure 16, and Figure 17 Captions ........ 10
Changes to Figure 23 ...................................................................... 12
Updated Outline Dimensions ....................................................... 13
12/03—Data Sheet Changed from Rev. 0 to Rev. A
Updated Outline Dimensions ....................................................... 13
Change to Ordering Guide............................................................ 14
11/03—Revision 0: Initial Version
8/07—Rev. B to Rev. C
Changes to Figure 21 ...................................................................... 11
Updated Outline Dimensions ....................................................... 13
Changes to Ordering Guide .......................................................... 14
Rev. E | Page 2 of 16
ADR520/ADR525/ADR530/ADR540/ADR550
SPECIFICATIONS
ADR520 ELECTRICAL CHARACTERISTICS
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
Output Voltage
Grade A
Grade B
Initial Accuracy
Grade A
Grade B
Temperature Coefficient 1
Grade A
Grade B
Output Voltage Change vs. IIN
Symbol
VOUT
Dynamic Output Impedance
Minimum Operating Current
Voltage Noise
Turn-On Settling Time
Output Voltage Hysteresis
(∆VR/∆IR)
IIN
eN p-p
tR
∆VOUT_HYS
1
Conditions
Min
Typ
Max
Unit
2.040
2.044
2.048
2.048
2.056
2.052
V
V
+8
+4
mV
mV
70
40
1
4
ppm/°C
ppm/°C
mV
mV
2
0.27
mV
Ω
μA
μV p-p
μs
ppm
VOERR
TCVO
±0.4%
±0.2%
−40°C < TA < +85°C
−8
−4
25
15
∆VR
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
IIN = 1 mA to 15 mA
−40°C < TA < +85°C
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
0.1 Hz to 10 Hz
50
14
2
40
IIN = 1 mA
Guaranteed by design; not production tested.
ADR525 ELECTRICAL CHARACTERISTICS
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
Output Voltage
Grade A
Grade B
Initial Accuracy
Grade A
Grade B
Temperature Coefficient 1
Grade A
Grade B
Output Voltage Change vs. IIN
Symbol
VOUT
Dynamic Output Impedance
Minimum Operating Current
Voltage Noise
Turn-On Settling Time
Output Voltage Hysteresis
(∆VR/∆IR)
IIN
eN p-p
tR
∆VOUT_HYS
1
Conditions
Min
Typ
Max
Unit
2.490
2.495
2.500
2.500
2.510
2.505
V
V
+10
+5
mV
mV
70
40
1
4
ppm/°C
ppm/°C
mV
mV
2
0.2
mV
Ω
μA
μV p-p
μs
ppm
VOERR
TCVO
±0.4%
±0.2%
−40°C < TA < +85°C
−10
−5
25
15
∆VR
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
IIN = 1 mA to 15 mA
−40°C < TA < +85°C
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
0.1 Hz to 10 Hz
IIN = 1 mA
Guaranteed by design; not production tested.
Rev. E | Page 3 of 16
50
18
2
40
ADR520/ADR525/ADR530/ADR540/ADR550
ADR530 ELECTRICAL CHARACTERISTICS
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
Output Voltage
Grade A
Grade B
Initial Accuracy
Grade A
Grade B
Temperature Coefficient 1
Grade A
Grade B
Output Voltage Change vs. IIN
Symbol
VOUT
Dynamic Output Impedance
Minimum Operating Current
Voltage Noise
Turn-On Settling Time
Output Voltage Hysteresis
(∆VR/∆IR)
IIN
eN p-p
tR
∆VOUT_HYS
1
Conditions
Min
Typ
Max
Unit
2.988
2.994
3.000
3.000
3.012
3.006
V
V
+12
+6
mV
mV
70
40
1
4
ppm/°C
ppm/°C
mV
mV
2
0.2
mV
Ω
μA
μV p-p
μs
ppm
VOERR
TCVO
±0.4%
±0.2%
−40°C < TA < +85°C
−12
−6
25
15
∆VR
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
IIN = 1 mA to 15 mA
−40°C < TA < +85°C
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
0.1 Hz to 10 Hz
50
22
2
40
IIN = 1 mA
Guaranteed by design; not production tested.
ADR540 ELECTRICAL CHARACTERISTICS
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.
Table 5.
Parameter
Output Voltage
Grade A
Grade B
Initial Accuracy
Grade A
Grade B
Temperature Coefficient 1
Grade A
Grade B
Output Voltage Change vs. IIN
Symbol
VOUT
Dynamic Output Impedance
Minimum Operating Current
Voltage Noise
Turn-On Settling Time
Output Voltage Hysteresis
(∆VR/∆IR)
IIN
eN p-p
tR
∆VOUT_HYS
1
Conditions
Min
Typ
Max
Unit
4.080
4.088
4.096
4.096
4.112
4.104
V
V
+16
+8
mV
mV
70
40
1
5
ppm/°C
ppm/°C
mV
mV
2
0.2
mV
Ω
μA
μV p-p
μs
ppm
VOERR
TCVO
±0.4%
±0.2%
−40°C < TA < +85°C
−16
−8
25
15
∆VR
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
IIN = 1 mA to 15 mA
−40°C < TA < +85°C
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
0.1 Hz to 10 Hz
IIN = 1 mA
Guaranteed by design; not production tested.
Rev. E | Page 4 of 16
50
30
2
40
ADR520/ADR525/ADR530/ADR540/ADR550
ADR550 ELECTRICAL CHARACTERISTICS
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.
Table 6.
Parameter
Output Voltage
Grade A
Grade B
Initial Accuracy
Grade A
Grade B
Temperature Coefficient1
Grade A
Grade B
Output Voltage Change vs. IIN
Symbol
VOUT
Dynamic Output Impedance
Minimum Operating Current
Voltage Noise
Turn-On Settling Time
Output Voltage Hysteresis
(∆VR/∆IR)
IIN
eN p-p
tR
∆VOUT_HYS
1
Conditions
Min
Typ
Max
Unit
4.980
4.990
5.000
5.000
5.020
5.010
V
V
+20
+10
mV
mV
70
40
1
5
ppm/°C
ppm/°C
mV
mV
2
0.2
mV
Ω
μA
μV p-p
μs
ppm
VOERR
TCVO
±0.4%
±0.2%
−40°C < TA < +85°C
−20
−10
25
15
∆VR
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
IIN = 1 mA to 15 mA
−40°C < TA < +85°C
IIN = 0.1 mA to 15 mA
−40°C < TA < +85°C
0.1 Hz to 10 Hz
IIN = 1 mA
Guaranteed by design; not production tested.
Rev. E | Page 5 of 16
50
38
2
40
ADR520/ADR525/ADR530/ADR540/ADR550
ABSOLUTE MAXIMUM RATINGS
Ratings apply at 25°C, unless otherwise noted.
THERMAL RESISTANCE
Table 7.
Table 8.
Parameter
Reverse Current
Forward Current
Storage Temperature Range
Industrial Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
25 mA
20 mA
−65°C to +150°C
−40°C to +85°C
−65°C to +150°C
300°C
Package Type
3-Lead SC70 (KS)
θJA1
580.5
θJC
177.4
Unit
°C/W
3-Lead SOT-23-3 (RT)
270
102
°C/W
1
θJA is specified for worst-case conditions, such as for devices soldered on
circuit boards for surface-mount packages.
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. E | Page 6 of 16
ADR520/ADR525/ADR530/ADR540/ADR550
PARAMETER DEFINITIONS
TEMPERATURE COEFFICIENT
THERMAL HYSTERESIS
Temperature coefficient is defined as the change in output
voltage with respect to operating temperature changes and is
normalized by the output voltage at 25°C. This parameter is
expressed in ppm/°C and is determined by the following
equation:
Thermal hysteresis is defined as the change in output voltage
after the device is cycled through temperatures ranging from
+25°C to −40°C, then to +85°C, and back to +25°C. The
following equation expresses a typical value from a sample of
parts put through such a cycle:
V (T2 ) − VOUT (T1 )
ppm ⎤
= OUT
× 10 6
TCVO ⎡⎢
⎥
⎣ ° C ⎦ VOUT (25° C) × (T2 − T1 )
where:
VOUT(T2) = VOUT at Temperature 2.
VOUT(T1) = VOUT at Temperature 1.
VOUT(25°C) = VOUT at 25°C.
VOUT _ HYS = VOUT (25° C) − VOUT _ END
(1)
VOUT _ HYS [ppm] =
VOUT (25° C) − VOUT _ END
VOUT (25° C)
× 10 6
(2)
where:
VOUT(25°C) = VOUT at 25°C.
VOUT_END = VOUT at 25°C after a temperature cycle from +25°C to
−40°C, then to +85°C, and back to +25°C.
Rev. E | Page 7 of 16
ADR520/ADR525/ADR530/ADR540/ADR550
TYPICAL PERFORMANCE CHARACTERISTICS
8
5.5
ADR550
5.0
ADR540
4.0
3.5
ADR530
3.0
ADR525
2.5
ADR520
2.0
1.5
TA = 25°C
1.0
5
4
3
TA = +85°C
TA = +25°C
2
TA = –40°C
1
0.5
0
25
50
75
100
MINIMUM OPERATING CURRENT (µA)
0
04501-006
0
6
0
3
6
9
12
15
IIN (mA)
Figure 2. Reverse Characteristics and Minimum Operating Current
Figure 5. ADR550 Reverse Voltage vs. Operating Current
8
VIN = 2V/DIV
TA = +25°C
6
5
TA = +85°C
4
VOUT = 1V/DIV
TA = –40°C
3
2
1
0
3
9
6
12
15
IIN (mA)
04501-007
0
4µs/DIV
IIN = 10mA
04501-010
REVERSE VOLTAGE CHANGE (mV)
7
TIME (µs)
Figure 6. ADR525 Turn-On Response
Figure 3. ADR520 Reverse Voltage vs. Operating Current
VIN = 2V/DIV
6
4
TA = –40°C
VOUT = 1V/DIV
2
TA = +25°C
0
0
3
9
6
12
IIN (mA)
15
TIME (µs)
Figure 7. ADR525 Turn-On Response
Figure 4. ADR525 Reverse Voltage vs. Operating Current
Rev. E | Page 8 of 16
04501-011
–2
4µs/DIV
IIN = 100µA
TA = +85°C
04501-008
REVERSE VOLTAGE CHANGE (mV)
8
04501-009
REVERSE VOLTAGE (V)
REVERSE VOLTAGE CHANGE (mV)
7
4.5
ADR520/ADR525/ADR530/ADR540/ADR550
VIN = 2V/DIV
VIN = 2V/DIV
VOUT = 1V/DIV
VOUT = 2V/DIV
4µs/DIV
20µs/DIV
TIME (µs)
04501-015
IIN = 100µA
04501-012
IIN = 10mA
TIME (µs)
Figure 8. ADR520 Turn-On Response
Figure 11. ADR550 Turn-On Response
PEAK-TO-PEAK
13.5µV
VIN = 2V/DIV
RMS
2.14µV
VOUT = 1V/DIV
10µs/DIV
TIME (µs)
Figure 9. ADR520 Turn-On Response
Figure 12. ADR520 Voltage Noise 0.1 Hz to 10 Hz
V GEN = 2V/DIV
IIN = 1mA
VIN = 2V/DIV
VOUT = 2V/DIV
VOUT = 50mV/DIV
4µs/DIV
TIME (µs)
10µs/DIV
04501-014
IIN = 10mA
TIME (µs)
Figure 10. ADR550 Turn-On Response
Figure 13. ADR525 Load Transient Response
Rev. E | Page 9 of 16
04501-016
TIME (µs)
04501-021
5µs/DIV
04501-013
IIN = 100µA
ADR520/ADR525/ADR530/ADR540/ADR550
3.0055
3.0050
V GEN = 2V/DIV
IIN = 10mA
3.0045
3.0040
VOUT (V)
3.0035
VOUT = 50mV/DIV
3.0030
3.0025
3.0020
3.0015
3.0010
10µs/DIV
3.0000
–40
–15
10
35
60
85
TEMPERATURE (°C)
Figure 16. Data for Five Parts of ADR530 VOUT over Temperature
5.008
2.5025
5.006
2.5020
5.004
2.5015
5.002
2.5010
5.000
VOUT (V)
2.5030
2.5005
2.5000
4.998
4.996
2.4995
4.994
2.4990
4.992
2.4985
4.990
2.4980
–40
–15
10
35
60
85
TEMPERATURE (°C)
04501-018
VOUT (V)
Figure 14. ADR550 Load Transient Response
Figure 15. Data for Five Parts of ADR525 VOUT over Temperature
4.988
–40
–15
10
35
60
85
TEMPERATURE (°C)
Figure 17. Data for Five Parts of ADR550 VOUT over Temperature
Rev. E | Page 10 of 16
04501-020
TIME (µs)
04501-019
04501-017
3.0005
ADR520/ADR525/ADR530/ADR540/ADR550
THEORY OF OPERATION
V+
+
VS
R
IIN + IL
VOUT
IIN
IL
04501-003
The ADR520/ADR525/ADR530/ADR540/ADR550 use the
band gap concept to produce a stable, low temperature coefficient
voltage reference suitable for high accuracy data acquisition
components and systems. The devices use the physical nature of a
silicon transistor base-emitter voltage (VBE) in the forward-biased
operating region. All such transistors have approximately a
−2 mV/°C temperature coefficient (TC), making them unsuitable
for direct use as low temperature coefficient references. Extrapolation of the temperature characteristics of any one of these
devices to absolute zero (with the collector current proportional
to the absolute temperature), however, reveals that its VBE
approaches approximately the silicon band gap voltage. Thus,
if a voltage develops with an opposing temperature coefficient
to sum the VBE, a zero temperature coefficient reference results.
The ADR520/ADR525/ADR530/ADR540/ADR550 circuit
shown in Figure 18 provides such a compensating voltage (V1)
by driving two transistors at different current densities and
amplifying the resultant VBE difference (ΔVBE, which has a
positive temperature coefficient). The sum of VBE and V1
provides a stable voltage reference over temperature.
ADR550
Figure 19. Shunt Reference
Given these conditions, RBIAS is determined by the supply
voltage (VS), the load and operating currents (IL and IIN) of
the ADR520/ADR525/ADR530/ADR540/ADR550, and the
output voltage (VOUT) of the ADR520/ADR525/ADR530/
ADR540/ADR550.
R BIAS =
VS − VOUT
(3)
I L + I IN
Precision Negative Voltage Reference
The ADR520/ADR525/ADR530/ADR540/ADR550 are suitable for applications where a precise negative voltage is desired.
Figure 20 shows the ADR525 configured to provide a negative
output.
ADR525
V1
–2.5V
–
+
VS
ΔVBE
Figure 20. Negative Precision Reference Configuration
V–
Output Voltage Trim
Figure 18. Circuit Schematic
APPLICATIONS
The ADR520/ADR525/ADR530/ADR540/ADR550 are a
series of precision shunt voltage references. They are designed
to operate without an external capacitor between the positive
and negative terminals. If a bypass capacitor is used to filter the
supply, the references remain stable.
The trim terminal of the ADR520/ADR525/ADR530/ADR540/
ADR550 can be used to adjust the output voltage over a range
of ±0.5%. This allows systems designers to trim system errors
by setting the reference to a voltage other than the preset output
voltage. An external mechanical or electrical potentiometer can
be used for this adjustment. Figure 21 illustrates how the output
voltage can be trimmed using the AD5273, an Analog Devices,
Inc., 10 kΩ potentiometer.
All shunt voltage references require an external bias resistor (RBIAS)
between the supply voltage and the reference (see Figure 19).
RBIAS sets the current that flows through the load (IL) and the
reference (IIN). Because the load and the supply voltage can vary,
RBIAS needs to be chosen based on the following considerations:
•
•
RBIAS must be small enough to supply the minimum IIN
current to the ADR520/ADR525/ADR530/ADR540/
ADR550, even when the supply voltage is at its minimum
value and the load current is at its maximum value.
RBIAS must be large enough so that IIN does not exceed
15 mA when the supply voltage is at its maximum value
and the load current is at its minimum value.
Rev. E | Page 11 of 16
VS
R
VOUT
ADR530
R1
470kΩ
AD5273
POTENTIOMETER
10kΩ
Figure 21. Output Voltage Trim
04501-005
–
04501-002
+
VBE
–
04501-004
R
ADR520/ADR525/ADR530/ADR540/ADR550
Stacking the ADR520/ADR525/ADR530/ADR540/ADR550
for User-Definable Outputs
Multiple ADR520/ADR525/ADR530/ADR540/ADR550 parts
can be stacked to allow the user to obtain a desired higher voltage.
Figure 22 shows three ADR550s configured to give 15 V. The bias
resistor, RBIAS, is chosen using Equation 3; note that the same
bias current flows through all the shunt references in series.
Figure 23 shows three ADR550s stacked to give −15 V. RBIAS
is calculated in the same manner as before. Parts of different
voltages can also be added together. For example, an ADR525
and an ADR550 can be added together to give an output of
+7.5 V or −7.5 V, as desired. Note, however, that the initial
accuracy error is now the sum of the errors of all the stacked
parts, as are the temperature coefficients and output voltage
change vs. input current.
Adjustable Precision Voltage Source
The ADR520/ADR525/ADR530/ADR540/ADR550, combined
with a precision low input bias op amp, such as the AD8610,
can be used to output a precise adjustable voltage. Figure 24
illustrates the implementation of this application using the
ADR520/ADR525/ADR530/ADR540/ADR550. The output
of the op amp, VOUT, is determined by the gain of the circuit,
which is completely dependent on the resistors, R1 and R2.
VOUT = VREF (1 + R2/R1)
An additional capacitor, C1, in parallel with R2, can be added to
filter out high frequency noise. The value of C1 is dependent on
the value of R2.
+VDD
VS
R
VREF
R
AD8610
+15V
ADR550
ADR550
ADR550
ADR5xx
R2
GND
Figure 22. +15 V Output with Stacked ADR550s
C1
(OPTIONAL)
Figure 24. Adjustable Voltage Source
ADR550
ADR550
ADR550
GND
–15V
–VDD
04501-024
R
Figure 23. −15 V Output with Stacked ADR550s
Rev. E | Page 12 of 16
04501-023
R1
04501-022
GND
VOUT = VREF (1+R2/R1)
ADR520/ADR525/ADR530/ADR540/ADR550
OUTLINE DIMENSIONS
2.20
2.00
1.80
2.40
2.10
1.80
3
1
2
PIN 1
0.65 BSC
0.40
0.10
1.10
0.80
1.00
0.80
0.40
0.25
0.10 MAX
SEATING
PLANE
0.10 COPLANARITY
0.30
0.20
0.10
0.26
0.10
111505-0
1.35
1.25
1.15
ALL DIMENSIONS COMPLIANT WITH EIAJ SC70
Figure 25. 3-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-3)
Dimensions shown in millimeters
3.04
2.80
1.40
1.20
2.64
2.10
3
1
2
0.60
0.45
2.05
1.78
1.03
0.89
1.12
0.89
0.100
0.013
0.51
0.37
0.55
REF
COMPLIANT TO JEDEC STANDARDS TO-236-AB
Figure 26. 3-Lead Small Outline Transistor Package [SOT-23-3]
(RT-3)
Dimensions shown in millimeters
Rev. E | Page 13 of 16
092707-A
SEATING
PLANE
0.180
0.085
ADR520/ADR525/ADR530/ADR540/ADR550
ORDERING GUIDE
Model
ADR520ART-R2
ADR520ART-REEL7
ADR520ARTZ-REEL7 1
ADR520BKS-R2
ADR520BKS-REEL7
ADR520BKSZ-REEL71
ADR520BRT-R2
ADR520BRT-REEL7
ADR520BRTZ-REEL71
ADR525ART-R2
ADR525ART-REEL7
ADR525ARTZ-R21
ADR525ARTZ-REEL71
ADR525BKS-R2
ADR525BKS-REEL7
ADR525BKSZ-REEL71
ADR525BRT-R2
ADR525BRT-REEL7
ADR525BRTZ-REEL71
ADR530ART-R2
ADR530ART-REEL7
ADR530ARTZ-REEL71
ADR530BKS-R2
ADR530BKS-REEL7
ADR530BKSZ-REEL71
ADR530BRT-R2
ADR530BRT-REEL7
ADR530BRTZ-REEL71
ADR540ART-R2
ADR540ART-REEL7
ADR540ARTZ-REEL71
ADR540BKS-R2
ADR540BKS-REEL7
ADR540BKSZ-REEL71
ADR540BRT-R2
ADR540BRT-REEL7
ADR540BRTZ-REEL71
ADR550ART-R2
ADR550ART-REEL7
ADR550ARTZ-REEL71
ADR550BKS-R2
ADR550BKS-REEL7
ADR550BKSZ-REEL71
ADR550BRT-R2
ADR550BRT-REEL7
ADR550BRTZ-REEL71
1
Output
Voltage (V)
2.048
2.048
2.048
2.048
2.048
2.048
2.048
2.048
2.048
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
4.096
4.096
4.096
4.096
4.096
4.096
4.096
4.096
4.096
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Initial
Accuracy
(mV)
8
8
8
4
4
4
4
4
4
10
10
10
10
5
5
5
5
5
5
12
12
12
6
6
6
6
6
6
16
16
16
8
8
8
8
8
8
20
20
20
10
10
10
10
10
10
Tempco
Industrial
(ppm/°C)
70
70
70
40
40
40
40
40
40
70
70
70
70
40
40
40
40
40
40
70
70
70
40
40
40
40
40
40
70
70
70
40
40
40
40
40
40
70
70
70
40
40
40
40
40
40
Package
Description
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SC70
3-Lead SC70
3-Lead SC70
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SC70
3-Lead SC70
3-Lead SC70
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SC70
3-Lead SC70
3-Lead SC70
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SC70
3-Lead SC70
3-Lead SC70
3-Lead SOT-23-3
3-Lead SOT-23-3
3 Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SC70
3-Lead SC70
3-Lead SC70
3-Lead SOT-23-3
3-Lead SOT-23-3
3-Lead SOT-23-3
Z = RoHS Compliant Part.
Rev. E | Page 14 of 16
Package
Option
RT-3
RT-3
RT-3
KS-3
KS-3
KS-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
KS-3
KS-3
KS-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
KS-3
KS-3
KS-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
KS-3
KS-3
KS-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
KS-3
KS-3
KS-3
RT-3
RT-3
RT-3
Branding
RQA
RQA
R1S
RQB
RQB
R1T
RQB
RQB
R1T
RRA
RRA
R1W
R1W
RRB
RRB
R1N
RRB
RRB
R1N
RSA
RSA
R1X
RSB
RSB
R1Y
RSB
RSB
R1Y
RTA
RTA
R1U
RTB
RTB
R1V
RTB
RTB
R1V
RVA
RVA
R1Q
RVB
RVB
R1P
RVB
RVB
R1P
Number
of Parts
per Reel
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
250
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
Temperature
Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
ADR520/ADR525/ADR530/ADR540/ADR550
NOTES
Rev. E | Page 15 of 16
ADR520/ADR525/ADR530/ADR540/ADR550
NOTES
©2003–2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04501-0-6/08(E)
Rev. E | Page 16 of 16
Similar pages