PRELIMINARY Am29LV002 2 Megabit (256 K x 8-Bit) CMOS 3.0 Volt-only, Boot Sector Flash Memory DISTINCTIVE CHARACTERISTICS ■ Embedded Algorithms ■ Single power supply operation — Full voltage range: 2.7 to 3.6 volt read and write operations for battery-powered applications — Regulated voltage range: 3.0 to 3.6 volt read and write operations and for compatibility with high performance 3.3 volt microprocessors ■ High performance — Full voltage range: access times as fast as 100 ns — Regulated voltage range: access times as fast as 90 ns ■ Ultra low power consumption (typical values at 5 MHz) — Automatic Sleep Mode: 200 nA — Standby mode: 200 nA — Read mode: 10 mA — Program/erase mode: 20 mA ■ Typical 1,000,000 write cycles per sector (100,000 cycles minimum guaranteed) ■ Package option — 40-pin TSOP ■ Compatibility with JEDEC standards — Pinout and software compatible with singlepower supply Flash — Superior inadvertent write protection ■ Data# Polling and toggle bits — Provides a software method of detecting program or erase operation completion ■ Flexible sector architecture — One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and three 64 Kbyte sectors — Supports control code and data storage on a single device — Sector Protection features: A hardware method of locking a sector to prevent any program or erase operations within that sector Temporary Sector Unprotect feature allows code changes in previously locked sectors ■ Top or bottom boot block configurations available Publication# 21191 Rev: C Amendment/+2 Issue Date: March 1998 — Embedded Erase algorithms automatically preprogram and erase the entire chip or any combination of designated sectors — Embedded Program algorithms automatically write and verify bytes or words at specified addresses . ■ Ready/Busy# pin (RY/BY#) — Provides a hardware method of detecting program or erase cycle completion ■ Erase Suspend/Erase Resume feature — Suspends an erase operation to read data from, or program data to, a sector that is not being erased, then resumes the erase operation ■ Hardware reset pin (RESET#) — Hardware method to reset the device to the read mode 1 P R E L I M I N A R Y GENERAL DESCRIPTION The Am29LV002 is a 2 Mbit, 3.0 Volt-only Flash memory organized as 262,144 bytes. The device is offered in a 40-pin TSOP package. The byte-wide (x8) data appears on DQ7–DQ0. All read, program, and erase operations are accomplished using only a single power supply. The device can also be programmed in standard EPROM programmers. The standard device offers access times of 90, 100, 120, and 150 ns, allowing high speed microprocessors to operate without wait states. To eliminate bus contention the device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls. The device requires only a single 3.0 volt power supply for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. The device is entirely command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices. Device programming occurs by executing the program command sequence. This initiates the Embedded Program algorithm—an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Device erasure occurs by executing the erase command sequence. This initiates the Embedded Erase algorithm—an internal algorithm that automatically preprograms the array (if it is not already programmed) before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin. 2 The host system can detect whether a program or erase operation is complete by observing the RY/BY# pin, or by reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a program or erase cycle has been completed, the device is ready to read array data or accept another command. The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory. Hardware data protection measures include a low V CC detector that automatically inhibits write operations during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of the sectors of memory. This is achieved via programming equipment. The Erase Suspend feature enables the user to put erase on hold for any period of time to read data from, or program data to, any sector that is not selected for erasure. True background erase can thus be achieved. The hardware RESET# pin terminates any operation in progress and resets the internal state machine to reading array data. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the system microprocessor to read the boot-up firmware from the Flash memory. The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters the automatic sleep mode. The system can also place the device into the standby mode. Power consumption is greatly reduced in both these modes. AMD’s Flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effectiveness. The device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data is programmed using hot electron injection. Am29LV002 P R E L I M I N A R Y PRODUCT SELECTOR GUIDE Family Part Number Ordering Part Number: Am29LV002 VCC = 3.0–3.6 V (regulated voltage range) -90R VCC = 2.7–3.6 V (full voltage range) -100 -120 -150 Max access time (ns) 90 100 120 150 CE# access time (ns) 90 100 120 150 OE# access time (ns) 40 40 50 55 BLOCK DIAGRAM RY/BY# Sector Switches DQ0–DQ7 Erase Voltage Generator Input/Output Buffers VCC VSS RESET# WE# State Control Command Register PGM Voltage Generator Chip Enable Output Enable Logic CE OE VCC Detector Timer A0–A17 Address Latch STB STB Data Latch Y-Decoder Y-Gating X-Decoder Cell Matrix 21191C-1 Am29LV002 3 P R E L I M I N A R Y CONNECTION DIAGRAMS A16 A15 A14 A13 A12 A11 A9 A8 WE# RESET# NC RY/BY# NC A7 A6 A5 A4 A3 A2 A1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 A17 VSS NC NC A10 DQ7 DQ6 DQ5 DQ4 VCC VCC NC DQ3 DQ2 DQ1 DQ0 OE# VSS CE# A0 Standard 40-Pin TSOP A17 VSS NC NC A10 DQ7 DQ6 DQ5 DQ4 VCC VCC NC DQ3 DQ2 DQ1 DQ0 OE# VSS CE# A0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 A16 A15 A14 A13 A12 A11 A9 A8 WE# RESET# NC RY/BY# NC A7 A6 A5 A4 A3 A2 A1 Reverse 40-Pin TSOP 21191C-2 4 Am29LV002 P R E L I M I N A R Y PIN CONFIGURATION A0–A17 LOGIC SYMBOL = 18 addresses 18 A0–A17 DQ0–DQ7 = 8 data inputs/outputs 8 DQ0–DQ7 CE# = Chip enable WE# = Write enable OE# = Output enable CE# RESET# = Reset pin OE# RY/BY# = Ready/Busy# pin WE# VCC = 3.0 volt-only single power supply (see Product Selector Guide for speed options and voltage supply tolerances) RESET# VSS = Device ground NC = Pin not connected internally RY/BY# 21191C-3 Am29LV002 5 P R E L I M I N A R Y ORDERING INFORMATION Standard Products AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below. AM29LV002 T -90R E C OPTIONAL PROCESSING Blank = Standard Processing B = Burn-in (Contact an AMD representative for more information) TEMPERATURE RANGE C = Commercial (0°C to +70°C) I = Industrial (–40°C to +85°C) E = Extended (–55°C to +125°C) PACKAGE TYPE E = 40-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 040) F = 40-Pin Thin Small Outline Package (TSOP) Reverse Pinout (TSR040) SPEED OPTION See Product Selector Guide and Valid Combinations BOOT CODE SECTOR ARCHITECTURE T = Top Sector B = Bottom Sector DEVICE NUMBER/DESCRIPTION Am29LV002 2 Megabit (256 K x 8-Bit) CMOS Flash Memory 3.0 Volt-only Program and Erase Valid Combinations AM29LV002T-90R, AM29LV002B-90R VCC = 3.0–3.6 V EC, EI, FC, FI Valid Combinations Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations. AM29LV002T-100, AM29LV002B-100 AM29LV002T-120, AM29LV002B-120 AM29LV002T-150, AM29LV002B-150 6 EC, EI, EE, FC, FI, FE Am29LV002 P R E L I M I N A R Y DEVICE BUS OPERATIONS register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail. This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is composed of latches that store the commands, along with the address and data information needed to execute the command. The contents of the Table 1. Am29LV002 Device Bus Operations Operation Read Write CE# OE# WE# RESET# Addresses DQ0–DQ7 L L H H AIN DOUT L H L H AIN DIN X High-Z VCC ± 0.3 V X X VCC ± 0.3 V Output Disable L H H H X High-Z Reset X X X L X High-Z Temporary Sector Unprotect X X X VID AIN DIN Standby Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, AIN = Address In, DIN = Data In, DOUT = Data Out Requirements for Reading Array Data To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the device. OE# is the output control and gates array data to the output pins. WE# should remain at VIH. The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered. See “Reading Array Data” for more information. Refer to the AC Read Operations table for timing specifications and to Figure 12 for the timing waveforms. ICC1 in the DC Characteristics table represents the active current specification for reading array data. Writing Commands/Command Sequences To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to VIL, and OE# to VIH. An erase operation can erase one sector, multiple sectors, or the entire device. Tables 2 and 3 indicate the address space that each sector occupies. A “sector address” consists of the address bits required to uniquely select a sector. See the “Command Definitions” section for details on erasing a sector or the entire chip, or suspending/resuming the erase operation. After the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. Refer to the “Autoselect Mode” and “Autoselect Command Sequence” sections for more information. ICC2 in the DC Characteristics table represents the active current specification for the write mode. The AC Characteristics section contains timing specification tables and timing diagrams for write operations. Program and Erase Operation Status During an erase or program operation, the system may check the status of the operation by reading the status bits on DQ7–DQ0. Standard read cycle timings and ICC read specifications apply. Refer to “Write Operation Status” for more information, and to “AC Characteristics” for timing diagrams. Am29LV002 7 P R E L I M I N A R Y Standby Mode When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input. The device enters the CMOS standby mode when the CE# and RESET# pins are both held at VCC ± 0.3 V. (Note that this is a more restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within VCC ± 0.3 V, the device will be in the standby mode, but the standby current will be greater. The device requires standard access time (tCE) for read access when the device is in either of these standby modes, before it is ready to read data. If the device is deselected during erasure or programming, the device draws active current until the operation is completed. In the DC Characteristics table, ICC3 and ICC4 represents the standby current specifications. Automatic Sleep Mode The automatic sleep mode minimizes Flash device energy consumption. The device automatic ally enables this mode when addresses remain stable for tACC + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. I CC5 in the DC Characteristics table repre se nts the automa ti c sl eep mo de cur rent specification. RESET#: Hardware Reset Pin The RESET# pin provides a hardware method of resetting the device to reading array data. When the system 8 drives the RESET# pin to V IL for at least a period of tRP, the device immediately terminates any operation in progress, tristates all data output pins, and ignores all read/write attempts for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity. Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held at VIL but not within VSS±0.3 V, the standby current will be greater. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory. If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a “0” (busy) until the internal reset operation is complete, which requires a time of t READY (during Embedded Algorithms). The system can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin is “1”), the reset operation is completed within a time of t READY (not during Embedded Algorithms). The system can read data t RH after the RESET# pin returns to V IH. Refer to the AC Characteristics tables for RESET# parameters and to Figure 13 for the timing diagram. Output Disable Mode When the OE# input is at V IH, output from the device is disabled. The output pins are placed in the high impedance state. Am29LV002 P R E L I M I N A R Y Table 2. Sector Address Tables (Am29LV002T) Sector A17 A16 A15 A14 A13 Sector Size Address Range SA0 0 0 X X X 64 Kbytes 00000h–0FFFFh SA1 0 1 X X X 64 Kbytes 10000h–1FFFFh SA2 1 0 X X X 64 Kbytes 20000h–2FFFFh SA3 1 1 0 X X 32 Kbytes 30000h–37FFFh SA4 1 1 1 0 0 8 Kbytes 38000h–39FFFh SA5 1 1 1 0 1 8 Kbytes 3A000h–3BFFFh SA6 1 1 1 1 X 16 Kbytes 3C000h–3FFFFh Table 3. Sector Address Tables (Am29LV002B) Sector A17 A16 A15 A14 A13 Sector Size Address Range SA0 0 0 0 0 X 16 Kbytes 00000h–03FFFh SA1 0 0 0 1 0 8 Kbytes 04000h–05FFFh SA2 0 0 0 1 1 8 Kbytes 06000h–07FFFh SA3 0 0 1 X X 32 Kbytes 08000h–0FFFFh SA4 0 1 X X X 64 Kbytes 10000h–1FFFFh SA5 1 0 X X X 64 Kbytes 20000h–2FFFFh SA6 1 1 X X X 64 Kbytes 30000h–3FFFFh Autoselect Mode The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register. When using programming equipment, the autoselect mode requires V ID (11.5 V to 12.5 V) on address pin A9. Address pins A6, A1, and A0 must be as shown in Table 4. In addition, when verifying sector protection, the sector address must appear on the appropriate highest order address bits (see Tables 2 and 3). Table 4 shows the remaining address bits that are don’t care. When all necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on DQ7–DQ0. To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in Table 5. This method does not require VID. See “Command Definitions” for details on using the autoselect mode. Am29LV002 9 P R E L I M I N A R Y Table 4. Am29LV002 Autoselect Codes (High Voltage Method) CE# OE# WE# A17 to A13 Manufacturer ID: AMD L L H X X VID X L X L L 01h Device ID: Am29LV002T (Top Boot Block) L L H X X VID X L X L H 40h Device ID: Am29LV002B (Bottom Boot Block) L L H X X VID X L X L H C2h Description A12 to A10 A9 A8 to A7 A6 A5 to A2 A1 A0 DQ7 to DQ0 01h (protected) Sector Protection Verification L L H SA X VID X L X H L 00h (unprotected) L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care. Sector Protection/Unprotection The hardware sector protection feature disables both program and erase operations in any sector. The hardware sector unprotection feature re-enables both program and erase operations in previously protected sectors. START RESET# = VID (Note 1) Sector protection/unprotection must be implemented using programming equipment. The procedure requires a high voltage (VID) on address pin A9 and OE#. Details on this method are provided in a supplement, publication number 21224. Contact an AMD representative to request a copy. Perform Erase or Program Operations RESET# = VIH The device is shipped with all sectors unprotected. AMD offers the option of programming and protecting sectors at its factory prior to shipping the device through AMD’s ExpressFlash™ Service. Contact an AMD representative for details. Temporary Sector Unprotect Completed (Note 2) It is possible to determine whether a sector is protected or unprotected. See “Autoselect Mode” for details. Temporary Sector Unprotect This feature allows temporary unprotection of previously protected sectors to change data in-system. The Sector Unprotect mode is activated by setting the RESET# pin to VID. During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once VID is removed from the RESET# pin, all the previously protected sectors are protected again. Figure 1 shows the algorithm, and Figure 19 shows the timing waveforms, for this feature. 10 21191C-4 Notes: 1. All protected sectors unprotected. 2. All previously protected sectors are protected once again. Figure 1. Am29LV002 Temporary Sector Unprotect Operation P R E L I M I N A R Y Hardware Data Protection The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes (refer to Table 5 for command definitions). In addition, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals during V CC power-up and power-down transitions, or from system noise. Low V CC Write Inhibit When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets. Subsequent writes are ignored until V CC is greater than V LKO. The system must provide the proper signals to the control pins to prevent unintentional writes when V CC is greater than VLKO. Write Pulse “Glitch” Protection Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle. Logical Inhibit Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one. Power-Up Write Inhibit If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept commands on the rising edge of WE#. The internal state machine is automatically reset to reading array data on power-up. COMMAND DEFINITIONS Writing specific address and data commands or sequences into the command register initiates device operations. Table 5 defines the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence resets the device to reading array data. All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE# or CE#, whichever happens first. Refer to the appropriate timing diagrams in the “AC Characteristics” section. Reading Array Data The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is also ready to read array data after completing an Embedded Program or Embedded Erase algorithm. After the device accepts an Erase Suspend command, the device enters the Erase Suspend mode. The system can read array data using the standard read timings, except that if it reads at an address within erasesuspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See “Erase Suspend/ Erase Resume Commands” for more information on this mode. The system must issue the reset command to re-enable the device for reading array data if DQ5 goes high, or while in the autoselect mode. See the “Reset Command” section, next. See also “Requirements for Reading Array Data” in the “Device Bus Operations” section for more information. The Read Operations table provides the read parameters, and Figure 12 shows the timing diagram. Reset Command Writing the reset command to the device resets the device to reading array data. Address bits are don’t care for this command. The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to reading array data. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to reading array data (also applies to programming in Erase Suspend mode). Once programming begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to reading array data (also applies to autoselect during Erase Suspend). If DQ5 goes high during a program or erase operation, writing the reset command returns the device to reading array data (also applies during Erase Suspend). See “AC Characteristics” for parameters, and to Figure 13 for the timing diagram. Am29LV002 11 P R E L I M I N A R Y Autoselect Command Sequence The autoselect command sequence allows the host system to access the manufacturer and devices codes, and determine whether or not a sector is protected. Table 5 shows the address and data requirements. This method is an alternative to that shown in Table 4, which is intended for PROM programmers and requires VID on address bit A9. The autoselect command sequence is initiated by writing two unlock cycles, followed by the autoselect command. The device then enters the autoselect mode, and the system may read at any address any number of times, without initiating another command sequence. Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from a “0” back to a “1”. Attempting to do so may halt the operation and set DQ5 to “1,” or cause the Data# Polling algorithm to indicate the operation was successful. However, a succeeding read will show that the data is still “0”. Only erase operations can convert a “0” to a “1”. Figure 2 illustrates the algorithm for the program operation. See the Erase and Program Operations table in “AC Characteristics” for parameters, and to Figure 14 for timing diagrams A read cycle at address XX00h retrieves the manufacturer code. A read cycle at address XX01h returns the device code. A read cycle containing a sector address (SA) and the address 02h returns 01h if that sector is protected, or 00h if it is unprotected. Refer to Tables 2 and 3 for valid sector addresses. START The system must write the reset command to exit the autoselect mode and return to reading array data. Write Program Command Sequence Byte Program Command Sequence Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated program pulses and verify the programmed cell margin. Table 5 shows the address and data requirements for the byte program command sequence. When the Embedded Program algorithm is complete, the device then returns to reading array data and addresses are no longer latched. The system can determine the status of the program operation by using DQ7, DQ6, or RY/BY#. See “Write Operation Status” for information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a hardware reset immediately terminates the programming operation. The Byte Program command sequence should be reinitiated once the device has reset to reading array data, to ensure data integrity. 12 Data Poll from System Embedded Program algorithm in progress Verify Data? Yes Increment Address No Last Address? Yes Programming Completed Note: See Table 5 for program command sequence. Am29LV002 Figure 2. Program Operation No P R E L I M I N A R Y Chip Erase Command Sequence Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. Table 5 shows the address and data requirements for the chip erase command sequence. Any commands written to the chip during the Embedded Erase algorithm are ignored. Note that a hardware reset during the chip erase operation immediately terminates the operation. The Chip Erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. See “Write Operation Status” for information on these status bits. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. Figure 3 illustrates the algorithm for the erase operation. See the Read Operations tables in “AC Characteristics” for parameters, and to Figure 15 for timing diagrams. ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. If the time between additional sector erase commands can be assumed to be less than 50 µs, the system need not monitor DQ3. Any command other than Sector Erase or Erase Suspend during the time-out period resets the device to reading array data. The system must rewrite the command sequence and any additional sector addresses and commands. The system can monitor DQ3 to determine if the sector erase timer has timed out. (See the “DQ3: Sector Erase Timer” section.) The time-out begins from the rising edge of the final WE# pulse in the command sequence. Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. Note that a hardware reset during the sector erase operation immediately terminates the operation. The Sector Erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. (Refer to “Write Operation Status” for information on these status bits.) Figure 3 illustrates the algorithm for the erase operation. Refer to the Read Operations tables in the “AC Characteristics” section for parameters, and to Figure 15 for timing diagrams. Sector Erase Command Sequence Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the address of the sector to be erased, and the sector erase command. Table 5 shows the address and data requirements for the sector erase command sequence. The device does not require the system to preprogram the memory prior to erase. The Embedded Erase algorithm automatically programs and verifies the sector for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. After the command sequence is written, a sector erase time-out of 50 µs begins. During the time-out period, additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50 µs, otherwise the last address and command might not be accepted, and erasure may begin. It is recommended that processor interrupts be disabled during this time to Erase Suspend/Erase Resume Commands The Erase Suspend command allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the time-out period 50 µs during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm. Writing the Erase Suspend command during the Sector Erase time-out immediately terminates the time-out period and suspends the erase operation. Addresses are “don’t-cares” when writing the Erase Suspend command. When the Erase Suspend command is written during a sector erase operation, the device requires a maximum of 20 µs to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. After the erase operation has been suspended, the system can read array data from or program data to Am29LV002 13 P R E L I M I N A R Y any sector not selected for erasure. (The device “erase suspends” all sectors selected for erasure.) Normal read and write timings and command definitions apply. Reading at any address within erase-suspended sectors produces status data on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. See “Write Operation Status” for information on these status bits. START Write Erase Command Sequence After an erase-suspended program operation is complete, the system can once again read array data within non-suspended sectors. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See “Write Operation Status” for more information. Data Poll from System The system may also write the autoselect command sequence when the device is in the Erase Suspend mode. The device allows reading autoselect codes even at addresses within erasing sectors, since the codes are not stored in the memory array. When the device exits the autoselect mode, the device reverts to the Erase Suspend mode, and is ready for another valid operation. See “Autoselect Command Sequence” for more information. The system must write the Erase Resume command (address bits are “don’t care”) to exit the erase suspend mode and continue the sector erase operation. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the device has resumed erasing. 14 No Embedded Erase algorithm in progress Data = FFh? Yes Erasure Completed 21191C-5 Notes: 1. See Table 5 for erase command sequence. 2. See “DQ3: Sector Erase Timer” for more information. Am29LV002 Figure 3. Erase Operation P R E L I M I N A R Y Command Sequence (Note 1) Cycles Table 5. Am29LV002 Command Definitions Bus Cycles (Notes 2–4) First Second Addr Data Third Fourth Addr Data Addr Data Addr Data 01 1 RA RD Reset (Note 6) 1 XXX F0 4 555 AA 2AA 55 555 90 X00 4 555 AA 2AA 55 555 90 X01 Autoselect (Note 7) Read (Note 5) Manufacturer ID Device ID, Top Boot Block Device ID, Bottom Boot Block Fifth Sixth Addr Data Addr Data 40 C2 4 555 AA 2AA 55 555 90 SA X02 00 Byte Program 4 555 AA 2AA 55 555 A0 PA PD Chip Erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10 Sector Erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 SA 30 Erase Suspend (Note 9) 1 XXX B0 Erase Resume (Note 10) 1 XXX 30 Sector Protect Verify (Note 8) 01 Legend: X = Don’t care PD = Data to be programmed at location PA. Data is latched on the rising edge of WE# or CE# pulse. RA = Address of the memory location to be read. RD = Data read from location RA during read operation. PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of the WE# or CE# pulse. Notes: 1. See Table 1 for descriptions of bus operations. SA = Address of the sector to be erased or verified. Address bits A17–A13 uniquely select any sector. 8. The data is 00h for an unprotected sector and 01h for a protected sector. 2. All values are in hexadecimal. 3. Except when reading array or autoselect data, all bus cycles are write operations. 4. Address bits A17–A11 are don’t care for unlock and command cycles, except when PA or SA is required. 5. No unlock or command cycles required when device is in read mode. 9. The system may read and program functions in nonerasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation. 10. The Erase Resume command is valid only during the Erase Suspend mode. 6. The Reset command is required to return to the read mode when the device is in the autoselect mode or if DQ5 goes high. 7. The fourth cycle of the autoselect command sequence is a read cycle. Am29LV002 15 P R E L I M I N A R Y WRITE OPERATION STATUS The device provides several bits to determine the status of a write operation: DQ2, DQ3, DQ5, DQ6, DQ7, and RY/BY#. Table 6 and the following subsections describe the functions of these bits. DQ7, RY/BY#, and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. These three bits are discussed first. Table 6 shows the outputs for Data# Polling on DQ7. Figure 4 shows the Data# Polling algorithm. START DQ7: Data# Polling The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Algorithm is in progress or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the program or erase command sequence. Read DQ7–DQ0 Addr = VA DQ7 = Data? During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to prog r a m m i n g d u ri n g E ra s e S u s p e n d . W h e n t h e Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then the device returns to reading array data. No No When the system detects DQ7 has changed from the complement to true data, it can read valid data at DQ7– DQ0 on the following read cycles. This is because DQ7 may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is asserted low. Figure 16, Data# Polling Timings (During Embedded Algorithms), in the “AC Characteristics” section illustrates this. 16 DQ5 = 1? Yes Read DQ7–DQ0 Addr = VA During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling produces a “1” on DQ7. This is analogous to the complement/true datum output described for the Embedded Program algorithm: the erase function changes all the bits in a sector to “1”; prior to this, the device outputs the “complement,” or “0.” The system must provide an address within any of the sectors selected for erasure to read valid status information on DQ7. After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the device returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. Yes DQ7 = Data? Yes No FAIL PASS Notes: 1. VA = Valid address for programming. During a sector erase operation, a valid address is an address within any sector selected for erasure. During chip erase, a valid address is any non-protected sector address. 2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5. Am29LV002 21191C-6 Figure 4. Data# Polling Algorithm P R E L I M I N A R Y RY/BY#: Ready/Busy# The RY/BY# is a dedicated, open-drain output pin that indicates whether an Embedded Algorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC. (The RY/BY# pin is not available on the 44-pin SO package.) If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is ready to read array data (including during the Erase Suspend mode), or is in the standby mode. Table 6 shows the outputs for RY/BY#. Figures 12, 13, 14 and 15 shows RY/BY# for read, reset, program, and erase operations, respectively. DQ6: Toggle Bit I Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out. During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle (The system may use either OE# or CE# to control the read cycles). When the operation is complete, DQ6 stops toggling. After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 µs, then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erasesuspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use DQ7 (see the subsection on “DQ7: Data# Polling”). If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program command sequence is written, then returns to reading array data. DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete. Table 6 shows the outputs for Toggle Bit I on DQ6. Figure 5 shows the toggle bit algorithm in flowchart form, and the section “Reading Toggle Bits DQ6/DQ2” explains the algorithm. Figure 17 in the “AC Characteristics” section shows the toggle bit timing diagrams. Figure 18 shows the differences between DQ2 and DQ6 in graphical form. See also the subsection on “DQ2: Toggle Bit II”. DQ2: Toggle Bit II The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command sequence. DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 6 to compare outputs for DQ2 and DQ6. Figure 5 shows the toggle bit algorithm in flowchart form, and the section “Reading Toggle Bits DQ6/DQ2” explains the algorithm. See also the “DQ6: Toggle Bit I” subsection. Figure 17 shows the toggle bit timing diagram. Figure 18 shows the differences between DQ2 and DQ6 in graphical form. Reading Toggle Bits DQ6/DQ2 Refer to Figure 5 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on the following read cycle. However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully, and the system Am29LV002 17 P R E L I M I N A R Y must write the reset command to return to reading array data. START The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Figure 5). Read DQ7–DQ0 (Note 1) Read DQ7–DQ0 Table 6 shows the outputs for Toggle Bit I on DQ6. Figure 5 shows the toggle bit algorithm. Figure 17 in the “AC Characteristics” section shows the toggle bit timing diagrams. Figure 18 shows the differences between DQ2 and DQ6 in graphical form. See also the subsection on “DQ2: Toggle Bit II”. Toggle Bit = Toggle? Yes DQ5: Exceeded Timing Limits No DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a “1.” This is a failure condition that indicates the program or erase cycle was not successfully completed. Under both these conditions, the system must issue the reset command to return the device to reading array data. 18 Read DQ7–DQ0 Twice (Notes 1, 2) Toggle Bit = Toggle? No Yes Program/Erase Operation Not Complete, Write Reset Command DQ3: Sector Erase Timer After the sector erase command sequence is written, the system should read the status on DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure the device has accepted the command sequence, and then read DQ3. If DQ3 is “1”, the internally controlled erase cycle has begun; all further commands (other than Erase Suspend) DQ5 = 1? Yes The DQ5 failure condition may appear if the system tries to program a “1” to a location that is previously programmed to “0.” Only an erase operation can change a “0” back to a “1.” Under this condition, the device halts the operation, and when the operation has exceeded the timing limits, DQ5 produces a “1.” After writing a sector erase command sequence, the system may read DQ3 to determine whether or not an erase operation has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire timeout also applies after each additional sector erase command. When the time-out is complete, DQ3 switches from “0” to “1.” The system may ignore DQ3 if the system can guarantee that the time between additional sector erase commands will always be less than 50 µs. See also the “Sector Erase Command Sequence” section. No Program/Erase Operation Complete Notes: 1. Read toggle bit twice to determine whether or not it is toggling. See text. 2. Recheck toggle bit because it may stop toggling as DQ5 changes to “1”. See text. 21191C-7 Figure 5. Toggle Bit Algorithm are ignored until the erase operation is complete. If DQ3 is “0”, the device will accept additional sector erase commands. To ensure the command has been accepted, the system software should check the status of DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not have been accepted. Table 6 shows the outputs for DQ3. Am29LV002 P R E L I M I N A R Y Table 6. Write Operation Status Operation Standard Mode Erase Suspend Mode Embedded Program Algorithm DQ7 (Note 2) DQ6 DQ5 (Note 1) DQ3 DQ2 (Note 2) RY/BY# DQ7# Toggle 0 N/A No toggle 0 Embedded Erase Algorithm 0 Toggle 0 1 Toggle 0 Reading within Erase Suspended Sector 1 No toggle 0 N/A Toggle 1 Reading within Non-Erase Suspended Sector Data Data Data Data Data 1 Erase-Suspend-Program DQ7# Toggle 0 N/A N/A 0 Notes: 1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. See “DQ5: Exceeded Timing Limits” for more information. 2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details. Am29LV002 19 P R E L I M I N A R Y ABSOLUTE MAXIMUM RATINGS Storage Temperature Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C Ambient Temperature with Power Applied . . . . . . . . . . . . . –55°C to +125°C Voltage with Respect to Ground VCC (Note 1) . . . . . . . . . . . . . . . .–0.5 V to +4.0 V A9, OE#, and RESET# (Note 2). . . . . . . . . . . .–0.5 V to +13.0 V 20 ns 20 ns +0.8 V –0.5 V –2.0 V 20 ns All other pins (Note 1) . . . . . –0.5 V to VCC+0.5 V Output Short Circuit Current (Note 3) . . . . . . 200 mA Notes: 1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may undershoot VSS to –2.0 V for periods of up to 20 ns. See Figure 6. Maximum DC voltage on input or I/O pins is VCC +0.5 V. During voltage transitions, input or I/O pins may overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 7. 2. Minimum DC input voltage on pins A9, OE#, and RESET# is –0.5 V. During voltage transitions, A9, OE#, and RESET# may undershoot VSS to –2.0 V for periods of up to 20 ns. See Figure 6. Maximum DC input voltage on pin A9 is +12.5 V which may overshoot to 14.0 V for periods up to 20 ns. 3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second. 21191C-8 Figure 6. 20 ns VCC +2.0 V VCC +0.5 V 2.0 V Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability. OPERATING RANGES Commercial (C) Devices Ambient Temperature (TA) . . . . . . . . . . . 0°C to +70°C Industrial (I) Devices Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C Extended (E) Devices Ambient Temperature (TA) . . . . . . . . –55°C to +125°C VCC Supply Voltages VCC for regulated voltage range. . . . . . +3.0 V to 3.6 V VCC for full voltage range . . . . . . . . . . . +2.7 V to 3.6 V Operating ranges define those limits between which the functionality of the device is guaranteed. 20 Maximum Negative Overshoot Waveform Am29LV002 20 ns 20 ns 21191C-9 Figure 7. Maximum Positive Overshoot Waveform P R E L I M I N A R Y DC CHARACTERISTICS CMOS Compatible Parameter Parameter Description Test Conditions Min ILI Input Load Current VIN = VSS to VCC, VCC = VCC max ILIT A9 Input Load Current VCC = VCC max; A9 = 12.5 V ILO Output Leakage Current VOUT = VSS to VCC, VCC = VCC max ICC1 VCC Active Read Current (Note 1) VCC = VCC max; CE# = VIL, OE# = VIH ICC2 VCC Active Write Current (Notes 2, 4) ICC3 Typ Max Unit ±1.0 µA 35 µA ±1.0 µA 5 MHz 10 16 mA 1 MHz 2 4 mA VCC = VCC max; CE# = VIL, OE# = VIH 20 30 mA VCC Standby Current VCC = VCC max; CE#, RESET# = VCC±0.3 V 0.2 5 µA ICC4 VCC Standby Current During Reset VCC = VCC max; RESET# = VSS ± 0.3 V 0.2 5 µA ICC5 Automatic Sleep Mode (Note 3) VCC = VCC max; VIH = VCC ± 0.3 V; VIL = VSS ± 0.3 V 0.2 5 µA VIL Input Low Voltage –0.5 0.8 V VIH Input High Voltage 0.7 x VCC VCC + 0.3 V VID Voltage for Autoselect and Temporary Sector Unprotect VCC = 3.3 V 11.5 12.5 V VOL Output Low Voltage IOL = 4.0 mA, VCC = VCC min 0.45 V VOH1 Output High Voltage VOH2 VLKO IOH = –2.0 mA, VCC = VCC min 0.85 VCC IOH = –100 µA, VCC = VCC min VCC–0.4 Low VCC Lock-Out Voltage (Note 4) 2.3 V 2.5 V Notes: 1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH. Typical VCC is 3.0 V. 2. ICC active while Embedded Erase or Embedded Program is in progress. 3. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. 4. Not 100% tested. Am29LV002 21 P R E L I M I N A R Y DC CHARACTERISTICS (Continued) Zero-Power Flash Supply Current in mA 25 20 15 10 5 0 0 500 1000 1500 2000 2500 3000 3500 4000 Time in ns Note: Addresses are switching at 1 MHz 21191C-10 Figure 8. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents) Supply Current in mA 15 10 3.6 V 2.7 V 5 0 1 2 3 4 5 Frequency in MHz Note: T = 25 °C 21191C-11 Figure 9. 22 Typical ICC1 vs. Frequency Am29LV002 P R E L I M I N A R Y TEST CONDITIONS Table 7. Test Specifications 3.3 V -90R, -100 Test Condition 2.7 kΩ Device Under Test CL Output Load -120, -150 Unit 1 TTL gate Output Load Capacitance, CL (including jig capacitance) 30 100 pF 6.2 kΩ Input Rise and Fall Times 5 ns 0.0–3.0 V Input timing measurement reference levels 1.5 V Output timing measurement reference levels 1.5 V Input Pulse Levels Note: Diodes are IN3064 or equivalent 21191C-12 Figure 10. Test Setup KEY TO SWITCHING WAVEFORMS WAVEFORM INPUTS OUTPUTS Steady Changing from H to L Changing from L to H Don’t Care, Any Change Permitted Changing, State Unknown Does Not Apply Center Line is High Impedance State (High Z) KS000010-PAL 3.0 V Input 1.5 V Measurement Level 1.5 V Output 0.0 V 21191C-13 Figure 11. Input Waveforms and Measurement Levels Am29LV002 23 P R E L I M I N A R Y AC CHARACTERISTICS Read Operations Parameter Speed Option JEDEC Std tAVAV tRC Read Cycle Time (Note 1) tAVQV tACC Address to Output Delay tELQV tCE Chip Enable to Output Delay tGLQV tOE tEHQZ tGHQZ tAXQX Description Test Setup -90R -100 -120 -150 Unit Min 90 100 120 150 ns CE# = VIL OE# = VIL Max 90 100 120 150 ns OE# = VIL Max 90 100 120 150 ns Output Enable to Output Delay Max 40 40 50 55 ns tDF Chip Enable to Output High Z (Note 1) Max 30 30 30 40 ns tDF Output Enable to Output High Z (Note 1) Max 30 30 30 40 ns Read Min 0 ns Toggle and Data# Polling Min 10 ns Min 0 ns tOEH Output Enable Hold Time (Note 1) tOH Output Hold Time From Addresses, CE# or OE#, Whichever Occurs First (Note 1) Notes: 1. Not 100% tested. 2. See Figure 10 and Table 7 for test specifications. tRC Addresses Stable Addresses tACC CE# tDF tOE OE# tOEH WE# tCE tOH HIGH Z HIGH Z Output Valid Outputs RESET# RY/BY# 0V 21191C-14 Figure 12. Read Operations Timings 24 Am29LV002 P R E L I M I N A R Y AC CHARACTERISTICS Hardware Reset (RESET#) Parameter JEDEC Std. Description Test Setup All Speed Options Unit tREADY RESET# Pin Low (During Embedded Algorithms) to Read or Write (See Note) Max 20 µs tREADY RESET# Pin Low (NOT During Embedded Algorithms) to Read or Write (See Note) Max 500 ns tRP RESET# Pulse Width Min 500 ns tRH RESET# High Time Before Read (See Note) Min 50 ns tRB RY/BY# Recovery Time Min 0 ns Note: Not 100% tested. RY/BY# CE#, OE# tRH RESET# tRP tReady Reset Timings NOT during Embedded Algorithms Reset Timings during Embedded Algorithms tReady RY/BY# tRB CE#, OE# RESET# tRP 21191C-15 Figure 13. RESET# Timings Am29LV002 25 P R E L I M I N A R Y AC CHARACTERISTICS Erase and Program Operations Parameter JEDEC Std Description tAVAV tWC Write Cycle Time (Note 1) Min tAVWL tAS Address Setup Time Min tWLAX tAH Address Hold Time Min 50 50 50 65 ns tDVWH tDS Data Setup Time Min 50 50 50 65 ns tWHDX tDH Data Hold Time Min 0 ns tOES Output Enable Setup Time (Note 1) Min 0 ns tGHWL tGHWL Read Recovery Time Before Write (OE# High to WE# Low) Min 0 ns tELWL tCS CE# Setup Time Min 0 ns tWHEH tCH CE# Hold Time Min 0 ns tWLWH tWP Write Pulse Width Min 50 50 50 65 ns tWHWL tWPH Write Pulse Width High Min 30 30 30 35 ns tWHWH1 tWHWH1 Programming Operation (Note 2) Typ 9 µs tWHWH2 tWHWH2 Sector Erase Operation (Note 2) Typ 1 sec -100 -120 -150 Unit 90 100 120 150 ns 0 ns tVCS VCC Setup Time (Note 1) Min 50 µs tRB Recovery Time from RY/BY# Min 0 ns Program/Erase Valid to RY/BY# Delay Min 90 ns tBUSY Notes: 1. Not 100% tested. 2. See the Erase and Programming Performance table for more information. 26 -90R Am29LV002 P R E L I M I N A R Y AC CHARACTERISTICS Program Command Sequence (last two cycles) tAS tWC Addresses 555h Read Status Data (last two cycles) PA PA PA tAH CE# tCH tGHWL OE# tWHWH1 tWP WE# tWPH tCS tDS tDH PD A0h Data Status DOUT tBUSY tRB RY/BY# tVCS VCC 21191C-16 Notes: 1. PA = program address, PD = program data, DOUT is the true data at the program address. Figure 14. Program Operation Timings Erase Command Sequence (last two cycles) tAS tWC 2AAh Addresses Read Status Data VA SA VA 555h for chip erase tAH CE# tGHWL tCH OE# tWP WE# tWPH tCS tWHWH2 tDS tDH Data 55h In Progress 30h Complete 10 for Chip Erase tBUSY tRB RY/BY# tVCS VCC 21191C-17 Notes: 1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”). Figure 15. Chip/Sector Erase Operation Timings Am29LV002 27 P R E L I M I N A R Y AC CHARACTERISTICS tRC Addresses VA VA VA tACC tCE CE# tCH tOE OE# tOEH tDF WE# tOH High Z DQ7 Complement Complement DQ0–DQ6 Status Data Status Data Valid Data True High Z Valid Data True tBUSY RY/BY# Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle. 21191C-18 Figure 16. Data# Polling Timings (During Embedded Algorithms) tRC Addresses VA VA VA VA tACC tCE CE# tCH tOE OE# tOEH tDF WE# tOH High Z DQ6/DQ2 tBUSY Valid Status Valid Status (first read) (second read) Valid Status Valid Data (stops toggling) RY/BY# Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle. 21191C-19 Figure 17. 28 Toggle Bit Timings (During Embedded Algorithms) Am29LV002 P R E L I M I N A R Y AC CHARACTERISTICS Enter Embedded Erasing Erase Suspend Erase WE# Enter Erase Suspend Program Erase Resume Erase Suspend Program Erase Suspend Read Erase Complete Erase Erase Suspend Read DQ6 DQ2 Note: The system can use OE# or CE# to toggle DQ2/DQ6. DQ2 toggles only when read at an address within an erase-suspended sector. 21191C-20 Figure 18. DQ2 vs. DQ6 Temporary Sector Unprotect Parameter JEDEC Std. Description tVIDR VID Rise and Fall Time (See Note) tRSP RESET# Setup Time for Temporary Sector Unprotect All Speed Options Unit Min 500 ns Min 4 µs Note: Not 100% tested. 12 V RESET# 0 or 3 V 0 or 3 V tVIDR tVIDR Program or Erase Command Sequence CE# WE# tRSP RY/BY# 21191C-21 Figure 19. Temporary Sector Unprotect Timing Diagram Am29LV002 29 P R E L I M I N A R Y AC CHARACTERISTICS Erase and Program Operations Alternate CE# Controlled Writes Parameter JEDEC Std Description tAVAV tWC Write Cycle Time (Note 1) Min tAVEL tAS Address Setup Time Min tELAX tAH Address Hold Time Min 50 50 50 65 ns tDVEH tDS Data Setup Time Min 50 50 50 65 ns tEHDX tDH Data Hold Time Min 0 ns tOES Output Enable Setup Time Min 0 ns tGHEL tGHEL Read Recovery Time Before Write (OE# High to WE# Low) Min 0 ns tWLEL tWS WE# Setup Time Min 0 ns tEHWH tWH WE# Hold Time Min 0 ns tELEH tCP CE# Pulse Width Min 50 50 50 65 ns tEHEL tCPH CE# Pulse Width High Min 30 30 30 35 ns tWHWH1 tWHWH1 Programming Operation (Note 2) Typ 9 µs tWHWH2 tWHWH2 Sector Erase Operation (Note 2) Typ 1 sec Notes: 1. Not 100% tested. 2. See the Erase and Programming Performance table for more information. 30 Am29LV002 -90R -100 -120 -150 Unit 90 100 120 150 ns 0 ns P R E L I M I N A R Y AC CHARACTERISTICS 555 for program 2AA for erase PA for program SA for sector erase 555 for chip erase Data# Polling Addresses PA tWC tAS tAH tWH WE# tGHEL OE# tWHWH1 or 2 tCP CE# tWS tCPH tBUSY tDS tDH DQ7# Data tRH A0 for program 55 for erase DOUT PD for program 30 for sector erase 10 for chip erase RESET# RY/BY# Note: PA = program address, PD = program data, DQ7# = complement of the data written to the device, DOUT = data written to the device. Figure indicates the last two bus cycles of the command sequence 21191C-22 Figure 20. Alternate CE# Controlled Write Operation Timings Am29LV002 31 P R E L I M I N A R Y ERASE AND PROGRAMMING PERFORMANCE Parameter Typ (Note 1) Max (Note 2) Unit Sector Erase Time 0.7 15 s Chip Erase Time 2.8 Byte Programming Time Chip Programming Time (Note 3) s 9 300 µs 2.3 6.8 s Comments Excludes 00h programming prior to erasure (Note 4) Excludes system level overhead (Note 5) Notes: 1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 1,000,000 cycles. Additionally, programming typicals assume checkerboard pattern. 2. Under worst case conditions of 90°C, VCC = 2.7 V, 100,000 cycles. 3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes program faster than the maximum program times listed. 4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure. 5. System-level overhead is the time required to execute the four-bus-cycle sequence for the program command. See Table 5 for further information on command definitions. 6. The device has a typical erase and program cycle endurance of 100,000 cycles per sector. 100,000 cycles are guaranteed. LATCHUP CHARACTERISTICS Min Max Input voltage with respect to VSS on all pins except I/O pins (including A9, OE#, and RESET#) –1.0 V 13.0 V Input voltage with respect to VSS on all I/O pins –1.0 V VCC + 1.0 V –100 mA +100 mA VCC Current Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time. TSOP PIN CAPACITANCE Parameter Symbol Parameter Description Test Setup Typ Max Unit CIN Input Capacitance VIN = 0 6 7.5 pF COUT Output Capacitance VOUT = 0 8.5 12 pF CIN2 Control Pin Capacitance VIN = 0 7.5 9 pF Notes: 1. Sampled, not 100% tested. 2. Test conditions TA = 25°C, f = 1.0 MHz. 32 Am29LV002 P R E L I M I N A R Y PHYSICAL DIMENSIONS* TS 040—40-Pin (measured in millimeters) 0.95 1.05 Pin 1 I.D. 1 40 9.90 10.10 0.50 BSC 21 20 0.05 0.15 18.30 18.50 19.80 20.20 0.08 0.20 0.10 0.21 1.20 MAX 0 5 0.50 0.70 16-038-TSOP-1_AE TS 040 2-27-97 lv * For reference only. BSC is an ANSI standard for Basic Space Centering. TSR040—40-Pin (measured in millimeters) 0.95 1.05 Pin 1 I.D. 1 40 9.90 10.10 0.50 BSC 21 20 0.05 0.15 18.30 18.50 19.80 20.20 0.08 0.20 0.10 0.21 1.20 MAX 0 5 0.50 0.70 Am29LV002 16-038-TSOP-1_AE TSR040 2-27-97 lv 33 P R E L I M I N A R Y REVISION SUMMARY FOR AM29LV002 Revision C+1 Revision C+2 Global AC Characteristics Revised formatting to be consistent with other current 3.0 volt-only data sheets. Erase/Program Operations; Erase and Program Operations Alternate CE# Controlled Writes: Corrected the notes reference for tWHWH1 and tWHWH2. These parameters are 100% tested. Corrected the note reference for tVCS. This parameter is not 100% tested. Absolute Maximum Ratings The voltage with respect to ground for VCC should be +4.0 V. Temporary Sector Unprotect Table Added note reference for tVIDR. This parameter is not 100% tested. Trademarks Copyright © 1998 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. ExpressFlash is a trademark of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. 34 Am29LV002