PerkinElmer AME50461WCH Emi filter hybrid / high reliability Datasheet

PD-94596A
AME270461 SERIES
EMI FILTER
HYBRID / HIGH RELIABILITY
Description
The AME Series of EMI filters have been designed to
provide full compliance with the input line reflected
ripple current requirement specified by CE03 of MILSTD-461C over the full military temperature range while
operating in conjunction with the corresponding AFL
series of DC/DC converters. These filters are offered as
part of a complete family of conversion products
providing single and dual output voltages while
operating from nominal +270 input line voltage. Other
converters operating with a similar switching frequency
will also benefit by use of this device.
AME
Features
n
n
n
n
n
n
These EMI filters are hermetically packaged in two
enclosure variations, utilizing copper-core pins to
minimize resistive DC losses. Three lead styles are
available, each fabricated with Advanced Analog’s
rugged ceramic lead-to-package seal assuring long
term hermetic seal integrity in harsh environments.
Up to 1.5 Ampere Output Current
Attenuation > 35dB @ 200 KHz
Low Profile (0.38”) Seam Welded Package
Ceramic Feedthru Copper-Core Pins
Operation Over Full Military Temp. Range
Standard Military Drawings Available
Both grades are tested to meet the complete
group “A” test specification over the full military
temperature range with no derating. Two grades
with more limited screening are also available
for use in less demanding applications. Variations
in electrical, mechanical and screen requirements
can be accommodated. Contact IR Sant Clara
for special requirements.
Manufactured in a facility fully qualified to MIL-PRF38534, these converters are available in four screening
grades to satisfy a wide range of applications. The CH
grade is fully compliant to the requirements of MILPRF-38534 for class H. The HB grade is fully processed
and screened to the class H requirement, but does not
include element evaluation to the class H requirement.
Typical Connection Diagram
+Vout
+Vin
System
Bus
+Vin
AME270461
EMI Filter
Input Return
Output Return
Note: Filter and Converter
Cases Should be
Electrically Connected
AFL270XX
or Other
DC/DC Converter
Input Return
+Vin
RL
Output Return
AFL270XX
or Other
DC/DC Converter
Input Return
+Vout
+Vout
RL
Output Return
To Additional Converters up to Total
of Filter Rated Output Current
www.irf.com
1
08/13/04
AME270461 Series
Specifications
ABSOLUTE MAXIMUM RATINGS Note 1
Input Voltage
Input Current
-720V to +720V
3.0 A
Lead Soldering Temperature
Case Temperature
300°C for 10 seconds
Operating
-55°C to +125°C
Storage
-65°C to +135°C
Note 2
Electrical Characteristics -55°C ≤ TCASE ≤ +125°C, -270 ≤ VIN ≤ +270 unless otherwise specified
Group A
Subgroups
Parameter
INPUT VOLTAGE
OUTPUT VOLTAGE
Test Conditions
Min
Nom
Max
Steady State
-400
+400
Transient
-720
+720
Note 2
1, 2, 3
Unit
VDC
VOUT = VIN - IIN x RDC
VDC
1.5
ADC
TC = 25°C
TC = 125°C
400
700
mΩ
POWER DISSIPATION
Maximum Load Current
TC = 25°C
TC = 125°C
0.9
1.58
NOISE REDUCTION
200 KHz - 500 KHz
500 KHz -1 MHz
1 MHz - 50 MHz
35
60
65
dB
Any Pin to Case
Tested @ 500VDC
100
MΩ
OUTPUT CURRENT
Note 3
DC RESISTANCE (RDC)
ISOLATION
Note 4
1
1
W
CAPACITANCE
Measured Between Any Pin and Case
40
nF
DEVICE WEIGHT
Slight Variations with Case Style
95
g
Notes to Specifications
1.
Operation above maximum ratings may cause permanent damage to the device. Operation at maximum ratings may degrade
performance and affect reliability.
Device can tolerate ± 720 Volt transient whose duration is ≤ 100 ms when RS ≥ 0.5 Ω.
Derate Output Current linearly from 100% at 125°C to 0 at 135°C.
DC resistance is the total resistance of the device and includes the sum of the input to output resistance and the return in to return
out resistance paths.
2.
3.
4.
2
www.irf.com
AME270461 Series
AME270461 Block Diagram
Input
1
12
2
Output
11
20 nF
3
10
2.24 µF
1.12 µF
Case
4
9
20 nF
Input
Return
5
8
6
7
Output
Return
Refer to last page for Pin Designation
Circuit Operation and Application Information
The AME series of filters employ three stages of
filtering in a low pass configuration designed to
attenuate the higher frequency components of ripple
currents generated by high frequency switching DC/
DC converters. The Block Diagram describes the
general arrangement of the principal elements which
have been connected to provide both differential and
normal mode buffering between the input and output
terminals.
Employing only passive elements, AME filter
operation is initiated simply by insertion into the input
power path between one or more DC/DC converters
and their input DC voltage bus. In this connection,
output pins of the filter will be connected to input
pins of the converters. When a single AME filter is
used in conjunction with multiple DC/DC converters,
the use will be limited to the maximum output current
capability specified in the AME electrical table.1 A
typical connection utilizing one filter to drive two
converters is illustrated on page 1.
1
To calculate the input current (i in ) requirement of any one converter, first determine the maximum output power by
multiplying output voltage by maximum load current, divide this power by the efficiency to obtain input power and then divide
input power by inputvoltage to obtain the input current (i in ). Note that to obtain worst case input current, you must use
maximum load current, minimum efficiency and minimum line voltage in this calculation.
www.irf.com
3
AME270461 Series
Available Screening Levels and Process Variations for AME270461 Series
Requirement
MIL-STD-883
Method
Temperature Range
No
Suffix
ES
Suffix
HB
Suffix
CH
Suffix
-20 to +85°C
-55°C to +125°C
-55°C to +125°C
-55°C to +125°C
Element Evaluation
*
MIL-PRF-38534
Internal Visual
2017
Temperature Cycle
‘
Yes
Yes
Yes
1010
Cond B
Cond C
Cond C
Constant Acceleration
2001
500g
Cond A
Cond A
Burn-in
1015
48hrs@ 85°C
48hrs@ 125°C
160hrs @ 125°C
160hrs @ 125°C
Final Electrical
MIL-PRF-38534
25°C
25°C
-55, +25, +125°C
-55, +25, +125°C
(Group A)
& Specification
Seal, Fine & Gross
1014
Cond A
Cond A, C
Cond A, C
Cond A, C
External Visual
2009
‘
Yes
Yes
Yes
Per Commercial Standards
Available Standard Military Drawing (SMD) Cross Reference
Standard
Military Drawing
PIN
Vendor
CAGE
Code
Vendor
Similar
PIN
98026-01HUA
52467
AME270461W/CH
98026-01HUC
52467
AME270461W/CH
98026-01HXA
52467
AME270461X/CH
98026-01HXC
52467
AME270461X/CH
98026-01HYA
52467
AME270461Y/CH
98026-01HYC
52467
AME270461Y/CH
98026-01HZA
52467
AME270461Z/CH
98026-01HZC
52467
AME270461Z/CH
4
www.irf.com
AME270461 Series
AME270461 Case Style Outlines
Case X
Case W
Pin Variation of Case Y
3.000
ø 0.128
2.760
0.050
0.050
1
12
0.250
1.000
Ref
0.200 Typ
Non-cum
6
7
1.260 1.500
0.250
1.000
Pin
ø 0.040
0.220
2.500
0.220
Pin
ø 0.040
2.800
2.975 max
0.525
0.238 max
0.42
0.380
Max
0.380
Max
Case Y
Case Z
Pin Variation of Case Y
1.150
0.300
ø 0.140
0.25 typ
0.050
1
12
0.250
1.000
Ref
0.250
1.000
Ref
0.200 Typ
Non-cum
6
7
1.500 1.750 2.00
1.750
0.050
Pin
ø 0.040
0.375
0.220
2.500
0.36
2.975 max
2.800
0.238 max
0.525
0.380
Max
Tolerances, unless otherwise specified:
www.irf.com
Pin
ø 0.040
0.220
0.380
Max
.XX
.XXX
=
=
±0.010
±0.005
5
AME270461 Series
Pin Designation
Pin No.
Designation
1
Positive Input
2
Positive Input
3
Positive Input
4
Input Return
5
Input Return
6
Input Return
7
Output Return
8
Output Return
9
Output Return
10
Positive Output
11
Positive Output
12
Positive Output
Part Numbering
AME 270 461 X / CH
Model
Screening
—
Input Voltage
28 = 28V
50 = 50V
270 = 270V
, ES, HB, CH
Case Style
W, X, Y, Z
Applicable
Military Test
Standard
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105
IR SANTA CLARA: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 08/2004
6
www.irf.com
Similar pages