Panasonic AN6553 Dual operational amplifier Datasheet

AN6553
Dual Operational Amplifiers
■ Overview
8
2
7
3
6
4
2.54
9.4±0.3
1
0.5±0.1
1.2±0.25
Unit:mm
The AN6553 is a dual operational amplifier with phase
compensation circuits built-in.
It is suitable for application to various electronic circuits
such as active filters audio pre-amplifiers.
5
0.51min.
6.3±0.3
■ Features
3.8±0.25 (3.45)
• Phase compensation circuit built-in
• High gain, low noise
• Output short-circuit protection
• Slew rate:2.0V/µ s typ.
+ 0.1
3 to 15˚
0.15 – 0.05
7.62±0.25
8-pin DIL Plastic Package (DIP008-P-0300B)
■ Block Diagram
VCC
8
R3
R16
Q10
Q3
Q1
2
Q8
Vin1+
Q15
Q11
Q2
Q28
Q17
Q14
D1
Q29
DZ
R12
R7
R5
R20
R13
C2
Q12
Q5
Q7
R1
C1
R2
R18
C4
Q27
Q6
Q4
D2
Q24
Q9
R8
R9
Q21
Q20
1
VO1
4
VEE (GND)
7
VO2
Q19
Q22
R17
R4
Q16
6
Vin2–
5
Vin2+
Q23
R19
R6
3
Q18
Q26
R21
Vin1–
Q13
Q25
R15
C3
R14
■ Absolute Maximum Ratings (Ta=25˚C)
Parameter
Voltage
Symbol
Rating
Supply voltage
VCC
±18
V
Differential input voltage
VID
±30
V
Common-mode input voltage
VICM
±15
V
PD
500
mW
Operating ambient temperature
Topr
–20 to +75
˚C
Storage temperature
Tstg
–55 to +150
˚C
Power dissipation
Temperature
Unit
■ Electrical Characteristics (VCC=15V, VEE=–15V, Ta=25˚C)
Parameter
Symbol
Input offset voltage
VI (offset)
Input offset current
IIO
Input bias current
IBias
Voltage gain
GV
Maximum output voltage
VO (max.)
Condition
min
RS <
=10kΩ
typ
max
Unit
0.5
6
mV
5
200
nA
500
nA
RL >
= 2kΩ, VO=±10V
RL >
= 10kΩ
86
100
±12
±14
V
RL >
= 2kΩ
±10
±13
V
±14
V
Common-mode input voltage width
VCM
±12
Common-mode rejection ratio
CMR
70
Supply voltage rejection ratio
SVR
dB
90
dB
30
150
170
µV/V
Power consumption
PC
RL=∞
90
Slew rate
SR
RL >
= 2kΩ
2.0
V/µs
Equivalent input noise voltage
Vni
RS=1kΩ, B=10Hz to 30kHz
2.5
µVrms
■ Pin Descriptions
■ Block Diagram
Pin No.
VO1
1
Vin1–
2
Vin1+
3
VEE
4
–
+
–
+
Pin name
1
Ch.1 output
8
VCC
2
Ch.1 inverting input
7
VO2
3
Ch.1 non inverting input
6
Vin2–
4
VEE
5
Ch.2 non inverting input
6
Ch.2 inverting input
7
Ch.2 output
8
VCC
5
Vin2+
mW
■ Characteristics Curve
GV–f
VO (max.) –RL
Voltage Gain GV (dB)
80
60
40
20
0
1
26
22
18
VCC=15V
VEE=–15V
Ta=25˚C
14
10
100
10 100 1k 10k 100k 1M 10M 100M
1k
10k
VO (max.) –f
32
28
24
20
16
12
8
4
100
1k
10k
15
10
5
10
100
100k
Frequency f (Hz)
VO – t
VCC=15V
VEE=–15V
RL=2kΩ
Ta=25˚C
10
15
10
5
0
–5
–10
–15
8
8
2.6
3.5
6
VCC
–
DUT
+
2kΩ
4
VEE
1.7
RL
4
2
–20
0
0
4
8
12
16
20
0 10 20 30 40 50 60 70 80 90 100
Supply Voltage VCC=–VEE (V)
Time t (µs)
■ Application Circuit
2200pF
36kΩ
0.01µF
390kΩ
VCC=8 to 30V
100µF
100kΩ
–
OP. Amp.
2.2kΩ
+
33µF
33µF
100kΩ
10k
12
20
–25
1M
1k
Frequency f (Hz)
Output Voltage VO (V)
Maximum Output Voltage VO (max.) (V)
VCC=15V
VEE=–15V
Ta=25˚C
10
20
100k
25
1
VCC=15V VEE=–15V
RS=1kΩ, GV=40dB, Ta=25˚C
VO (max.) –VCC, VEE
40
36
25
Load Resistance RL (Ω)
Frequency f (Hz)
Maximum Output Voltage VO (max.) (V)
Equivalent Input Noise Voltage Vni (nV/Hz)
VCC=15V
VEE=–15V
Ta=25˚C
100
0
Vni – f
30
Maximum Output Voltage VO (max.) (V)
120
47µF
1kΩ
RIAA Pre-amp. (Single voltage operation)
10kΩ
Similar pages