Anpec APA2603 3w stereo class d audio power amplifier (with dc volume control) Datasheet

APA2603
3W Stereo Class D Audio Power Amplifier (with DC Volume Control)
Features
•
•
•
•
•
•
General Description
Operating Voltage: 3.3V-5.5V
The APA2603 is a stereo, high efficiency, filter-free Class-
High Efficiency 85% at PO=3W, 4Ω Speaker, VDD=5V
D audio amplifier available in SOP-16P and DIP-16
packages.
Filter-Free Class D Amplifier
The APA2603 provides the precise DC volume control,
the gain range is from -80dB (V VOLUME =5V) to +20dB
Low Shutdown Current
- IDD=1µA at VDD=5V
(VVOLUME=0V) with 64 steps precise control. It’s easy to get
the suitable amplifier’s gain with the 64 steps gain setting.
64 Steps Volume Adjustable from -80dB to +20dB
by DC Voltage with Hysteresis
The filter-free architecture eliminates the output filters
compared to the traditional Class-D audio amplifier and
Output Power at THD+N=1%
- 2.6W at VDD=5V ,RL=3Ω
reduces the external component counts and the components high. Besides, it can save the PCB space, system
- 2.4W at VDD=5V, RL=4Ω
cost, and simplify the design and the power loss at filter.
The APA2603 also integrates the de-pop circuitry that re-
- 1.4W at VDD=5V, RL=8Ω
Output Power at THD+N=10%
duces the pops and click noises during power on/off or
shutdown enable process.
- 3.2W at VDD=5V ,RL=3Ω
- 3W at VDD=5V, RL=4Ω
•
•
•
•
•
The APA2603 has build-in, over-current, and thermal protection that prevent the chip being destroyed by short cir-
- 1.75W at VDD=5V, RL=8Ω
Less External Components Required
cuit or over temperature situation.
APA2603 is capable of driving 3W at 5V into 4Ω speaker.
Thermal and Over-Current Protections with AutoRecovery
The efficiency can archive 85% at RL=4Ω when PO=3W at
VDD=5V.
Pin-to-Pin Compatible APA2069 and APA2071
Power Enhanced Packages SOP-16P & DIP-16
Simplified Application Circuit
Lead Free and Green Devices Available
(RoHS Compliant)
Applications
•
•
•
ROUTP
Stereo Input
Signals
LCD TVs
RINN
ROUTN
LINN
Stereo
Speakers
APA2603
DVD Player
Active Speakers
LOUTN
DC Volume
Control
VOLUME
LOUTP
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
1
www.anpec.com.tw
APA2603
Ordering and Marking Information
APA2603
Package Code
KA : SOP-16P J : DIP-16
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
TU : Tube
Assembly Material
G : Halogen and Lead Free Device
Assembly Material
Handling Code
Temperature Range
Package Code
APA2603 KA :
APA2603
XXXXX
XXXXX - Date Code
APA2603 J :
APA2603
XXXXX
XXXXX - Date Code
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Pin Configuration
SD 1
BYPASS
RINN
GND
GND
LINN
VOLUME
MUTE
2
3
4
5
6
7
8
APA2603
16
15
14
13
ROUTP
VDD
ROUTN
GND
12
11
10
9
GND
LOUTN
VDD
LOUTP
SD
BYPASS
RINN
GND
GND
LINN
VOLUME
MUTE
SOP-16P
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
APA2603
ROUTP
VDD
ROUTN
GND
GND
LOUTN
VDD
LOUTP
DIP-16
= Thermal Pad (connected the Thermal Pad to
GND plane for better dissipation
Absolute Maximum Ratings
Symbol
VDD
TJ
(Note 1)
Parameter
Supply Voltage (VDD to GND)
-0.3 to VDD+0.3
Input Voltage (SD, MUTE, VOLUME and BYPASS to GND)
-0.3 to VDD+0.3
Maximum Junction Temperature
Storage Temperature Range
TSDR
Soldering Temperature Range, 10 Seconds
Unit
-0.3 to 6
Input Voltage (LINN, RINN to GND)
TSTG
PD
Rating
V
150
-65 to +150
ο
C
260
Power Dissipation
Internally Limited
W
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
2
www.anpec.com.tw
APA2603
Thermal Characteristics
Parameter
Symbol
θJA
Typical Value
Thermal Resistance -Junction to Ambient
SOP-16P (Note 2)
DIP-16 (Note 3)
Unit
45
ο
C/W
θJC
Thermal Resistance -Junction to Case
(Note 4)
8
SOP-16P
DIP-16 (Note 5)
Note 2: Please refer to “ Layout Recommendation”, the Thermal Pad on the bottom of the IC should soldered directly to the PCB’s
Thermal Pad area that with several thermal vias connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with
2oz copper thickness.
Note 3: Please refer to “ Layout Recommendation”, the Thermal PIN (PIN4.5.12.13) on the central of the IC should connect to the ground
plan, and the PCB is a 2-layer, 5-inch square area with 2oz copper thickness.
Note 4: The case temperature is measured at the center of the Thermal Pad on the underside of the SOP-16P package.
Note 5: The case temperature is measured at the center of the Thermal PIN of the DIP-16 package.
Recommended Operating Conditions
Symbol
Parameter
Range
VDD
Supply Voltage
VIH
High Level Threshold Voltage
SD, MUTE
2 ~VDD
VIL
Low Level Threshold Voltage
SD, MUTE
0~0.8
VICM
Common Mode Input Voltage
1~VDD-1
TA
Ambient Temperature Range
-40~85
TJ
Junction Temperature Range
-40~125
RL
Speaker Resistance
Unit
3.3~5.5
V
ο
C
Ω
2~
Electrical Characteristics
VDD=5V, GND=0V, TA= 25oC (unless otherwise noted)
Symbol
Parameter
APA2603
Test Conditions
Unit
Min.
Typ.
Max.
Supply Current
VMUTE=0V, VSD=5V, No Load
-
8
20
IMUTE
Supply Current (Mute Mode)
VMUTE=5V, VSD=5V, No Load
-
4
10
ISD
Supply Current (Mute Mode)
VMUTE=0V, VSD=0V, No Load
-
1
10
Input Current
SD, MUTE, VOLUME
-
-
1
FOSC
Oscillator Frequency
(VDD=3.3~5.5V, TA= -40~85οC)
400
500
600
kHz
Ri(min)
Minimum Input Resistance
AV=20dB
36
43
50
kΩ
-
360
-
-
250
-
-
370
-
-
260
-
-
400
-
-
270
-
IDD
Ii
P-channel Power
MOSFET
N-channel Power
MOSFET
P-channel Power
MOSFET
N-channel Power
MOSFET
P-channel Power
MOSFET
N-channel Power
MOSFET
VDD=5.5V,
IL=0.8A
RDS(ON)
Static Drain-Source On-State
Resistance
VDD=4.5V,
IL=0.6A
VDD=3.6V,
IL=0.4A
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
3
mA
µA
mΩ
www.anpec.com.tw
APA2603
Electrical Characteristics (Cont.)
VDD=5V, GND=0V, TA= 25oC (unless otherwise noted)
Symbol
TSTART-UP
Parameter
Start-Up Time from Shutdown
APA2603
Test Conditions
Unit
Min.
Typ.
Max.
-
1.2
2
RL=3Ω
2.3
2.6
-
RL=4Ω
2.1
2.4
-
RL=8Ω
1
1.4
-
RL=3Ω
2.9
3.2
-
RL=4Ω
2.5
3.0
-
RL=8Ω
1.3
1.75
-
80
85
-
RL=3Ω, PO=1.9W
-
0.2
0.4
RL=4Ω, PO=1.7W
-
0.1
0.3
RL=8Ω, PO=1W
-
0.08
0.2
-
-100
-60
Bypass Capacitor, C1=2.2µF
s
VDD=5V, TA=25°
C
THD+N=1%
fin=1kHz
PO
Output Power
THD+N=10%
fin=1kHz
η
THD+N
Crosstalk
PSRR
Efficiency
Total Harmonic Distortion Plus
Noise
RL=4Ω, PO=3W
fin=1kHz
Channel Separation
PO=0.24W, RL=4Ω, fin=1kHz
Power Supply Rejection Ratio
RL=4Ω, Input
AC-Ground
fin=100Hz
-
-50
-45
fin=1kHz
-
-55
-50
85
90
-
%
dB
SNR
Signal to Noise Ratio
With A-weighting Filter
PO = 0.96W, RL = 8Ω
AttMute
Mute Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-85
-70
Attshutdown
W
Shutdown Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-110
-100
Vn
Output Noise
With A-weighting Filter (AV=20dB)
-
75
100
µVrms
VOS
Output Offset Voltage
RL=4Ω, AV=20dB
-
20
30
mV
RL=3Ω
-
1.3
-
RL=4Ω
-
1.2
-
RL=8Ω
0.5
0.7
-
RL=3Ω
-
1.6
-
RL=4Ω
-
1.5
-
VDD=3.6V,TA=25°
C
THD+N=1%
fin=1kHz
PO
Output Power
THD+N=10%
fin=1kHz
-
0.9
-
78
83
-
RL=3Ω, PO=1W
-
0.3
0.5
RL=4Ω, PO=0.8W
-
0.2
0.4
RL=8Ω, PO=0.5W
-
0.1
0.3
-
-60
RL=8Ω
η
THD+N
Crosstalk
PSRR
SNR
Efficiency
Total Harmonic Distortion Plus
Noise
RL=4Ω, PO=1.5W
fin=1kHz
Channel Separation
PO=0.12W, RL=4Ω, fin=1kHz
Power Supply Rejection Ratio
RL=4Ω, Input
AC-Ground
Signal to Noise Ratio
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
fin=100Hz
-
-50
-45
fin=1kHz
-
-55
-50
80
85
-
With A-weighting Filter
PO=0.5W, RL=8Ω
4
W
%
dB
www.anpec.com.tw
APA2603
Electrical Characteristics (Cont.)
VDD=5V, GND=0V, TA= 25oC (unless otherwise noted)
Symbol
Parameter
APA2603
Test Conditions
Unit
Min.
Typ.
Max.
VDD=3.6V,TA=25°
C (CONT.)
AttMute
Mute Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-85
-70
Shutdown Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-110
-90
Vn
Output Noise
With A-weighting Filter (AV=20dB)
-
75
100
µVrms
VOS
Output Offset Voltage
RL=4Ω, AV=20dB
-
20
30
mV
Attshutdown
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
5
dB
www.anpec.com.tw
APA2603
Typical Operating Characteristics
Efficiency vs. Output Power (8Ω)
100
80
90
70
80
60
Efficiency (%)
Efficiency (%)
Efficiency vs. Output Power (4Ω)
90
50
40
VDD=5V
RL=4Ω+33µH
fin=1kHz
THD+N≦10%
AV=20dB
AUX-0025
AES-17(20kHz)
30
20
10
0
0
0.5
1.0
1.5
2.0
Output Power (W)
2.5
70
60
50
VDD=5V
RL=8Ω+33µH
fin=1kHz
THD+N≦10%
AV=20dB
AUX-0025
AES-17(20kHz)
40
30
20
10
0
3.0
0
0.5
1.0
1.5
Output Power (W)
THD+N vs. Output Power
THD+N vs. Output Power
20
1
VDD=3.6V
VDD=3.3V
AV=12dB
VDD=5V
60m 100m
500m 1
AV=6dB
VDD=5.5V
2
0.01
60m
5
THD+N vs. Output Power
1
fin=1kHz
RL=4Ω
AV=20dB
AUX-0025
AES-17(20kHz)
SOP-16P
1
VDD=3.3V
VDD=3.6V
0.1
VDD=5V
0.01
0.1
500m
1
2
5
THD+N vs. Output Power
10
THD+N (%)
10
200m
Output Power (W)
Output Power (W)
THD+N (%)
AV=20dB
0.1
0.1
0.01
fin=1kHz
RL=3Ω
AUX-0025
AES-17(20kHz)
SOP-16P
1
THD+N (%)
THD+N (%)
20
fin=1kHz
RL=3Ω
AV=20dB
AUX-0025
AES-17(20kHz)
SOP-16P
2.0
VDD=5V
fin=1kHz
RL=4Ω
AUX-0025
AES-17(20kHz)
SOP-16P
AV=20dB
0.1
AV=12dB
AV=6dB
VDD=5.5V
0.5
1
Output Power (W)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
2
0.01
6m 10m
3 4
6
100m
Output Power (W)
1
2
4
www.anpec.com.tw
APA2603
Typical Operating Characteristics (Cont.)
THD+N vs. Output Power
THD+N vs. Output Power
10
10
fin=1kHz
RL=8Ω
AV=20dB
AUX-0025
AES-17(20kHz)
SOP-16P
1
THD+N (%)
THD+N (%)
1
VDD=3.3V
VDD=3.6V
0.1
VDD=5V
0.01
0.1
VDD=5V
fin=1kHz
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-16P
AV=12dB
VDD=5.5V
0.5
1
Output Power (W)
0.01
6m 10m
2
THD+N vs. Frequency
VDD=3.3/3.6/5.0/5.5V
PO=0.85/1/2/2.45W
RL=3Ω
AUX-0025
AES-17(20kHz)
SOP-16P
THD+N (%)
1
VDD=3.3V
,PO=0.85W
VDD=3.6V
,PO=1W
0.01
0.001
20
100
VDD=5.0V
,PO=2W
1k
Frequency (Hz)
AV=20dB
,R-ch
0.01
0.001
10k 20k
20
VDD=3.6V
PO=0.9W
RL=4Ω
AUX-0025
AES-17(20kHz)
SOP-16P
THD+N (%)
THD+N (%)
1
AV=20dB,R-ch AV=20dB,L-ch
0.1
0.01
0.006
20
100
0.1
AV=10dB,R-ch
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
AV=10dB
,L-ch
100
AV=10dB
,R-ch
1k
Frequency (Hz)
VDD=5.0V
PO=1.8W
RL=4Ω
AUX-0025
AES-17(20kHz)
SOP-16P
0.01
AV=10dB,L-ch
2
10k 20k
THD+N vs. Frequency
10
1
1
0.1
THD+N vs. Frequency
10
100m
Output Power (W)
VDD=5.0V
PO=2W
RL=3Ω
AUX-0025
AES-17(20kHz) AV=20dB
,L-ch
SOP-16P
1
0.1
VDD=5.5V
,PO=2.45W
AV=6dB
THD+N vs. Frequency
10
THD+N (%)
10
AV=20dB
0.1
0.001
20
10k 20k
7
AV=20dB,L-ch
AV=20dB,R-ch
AV=10dB,R-ch AV=10dB,L-ch
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2603
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
THD+N (%)
1
THD+N vs. Frequency
10
VDD=3.6V
PO=0.5W
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-16P
AV=20dB,L-ch
0.1
0.01
0.001
20
AV=20dB,R-ch
AV=10dB,L-ch
100
VDD=5.0V
PO=0.9W
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-16P
1
THD+N (%)
10
AV=20dB,L-ch
AV=20dB,R-ch
0.1
0.01
AV=10dB,R-ch
AV=10dB,R-ch
1k
Frequency (Hz)
0.001
20
10k 20k
100
+0
VDD=3.6V
-10 P =0.9W
O
-20 RL=4Ω
AUX-0025
-30 AES-17(20kHz)
-40 SOP-16P
-50
-60 AV=20dB,R-ch to L-ch
AV=6dB,R-ch to L-ch
-70
A =20dB,L-ch to R-ch
V
-80
-90
-100
-110
-120
20
AV=6dB,L-ch to R-ch
100
1k
Frequency (Hz)
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
AV=20dB,L-ch to R-ch
AV=6dB,L-ch to R-ch
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
10k 20k
T T
T
T T
VDD=5.0V
PO=1.8W
RL=4Ω
AUX-0025
AES-17(20kHz)
SOP-16P
AV=20dB,R-ch to L-ch
AV=6dB,R-ch to L-ch
AV=20dB,L-ch to R-ch
AV=6dB,L-ch to R-ch
100
1k
Frequency (Hz)
10k 20k
Crosstalk vs. Frequency
Crosstalk (dB)
Crosstalk (dB)
Crosstalk vs. Frequency
-120
20
T
-120
20
10k 20k
+0
V =3.6V
-10 PDD=0.5W
O
-20 RL=8Ω
AUX-0025
-30
AES-17(20kHz)
-40 SOP-16P
-50
-60
AV=20dB,R-ch to L-ch
-70
AV=6dB,R-ch to L-ch
-80
-90
-100
-110
1k
Frequency (Hz)
Crosstalk vs. Frequency
Crosstalk (dB)
Crosstalk (dB)
Crosstalk vs. Frequency
AV=10dB,L-ch
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
20
10k 20k
8
VDD=5.0V
PO=1W
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-16P
AV=20dB,R-ch to L-ch
AV=6dB,R-ch to L-ch
AV=20dB,L-ch to R-ch
AV=6dB,L-ch to R-ch
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2603
Typical Operating Characteristics (Cont.)
Output Noise Voltage vs. Frequency
AV=20dB
Output Noise Voltage (Vrms)
Output Noise Voltage (Vrms)
Output Noise Voltage vs. Frequency
100µ
90µ
80µ
70µ
60µ
50µ
AV=14dB
AV=6dB
40µ
30µ
VDD=3.6V
20µ RL=8Ω
Input AC Ground
AUX-0025
AES-17(20kHz)
SOP-16P
10µ
20
100
1k
Frequency (Hz)
100µ
90µ
80µ
70µ
60µ
50µ
AV=14dB
AV=6dB
40µ
30µ
VDD=5.0V
20µ R =8Ω
L
Input AC Ground
AUX-0025
AES-17(20kHz)
SOP-16P
10µ
10k 20k
AV=20dB
20
Frequency Response
+22
+300
VDD=3.6V
RL=8Ω
Po=70mW
AUX-0025
SOP-16P
+4
10
100
Gain (dB)
Gain (dB)
Phase, AV=12dB
+6
+4
+2
-20
Gain (dB)
-30
-40
VDD=5.0V
RL=4Ω
AV=20dB
VO=1Vrms
AUX-0025
AES-17(20kHz)
SOP-16P
-50
-60
Right Channel
-90
Left Channel
-100
20
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
10
100
1k
10k
Frequency (Hz)
+0
100k
-20
-30
-40
-50
-60
-70
VDD=5.0V
RL=4Ω
AV=20dB
VO=1Vrms
AUX-0025
AES-17(20kHz)
SOP-16P
-80
-90
-100
-110
-70
-80
+100
VDD=5.0V
RL=8Ω
Po=150mW
AUX-0025
SOP-16P
Shutdown Attenuation vs. Frequency
+0
-10
Gain (dB)
+0
Phase, AV=12dB
+10
Mute Attenuation vs. Frequency
-10
+200
+12
+6
+0
100k
Phase, AV=20dB Amplitude,AV=12dB
+14
+8
+100
1k
10k
Frequency (Hz)
+300
Phase (Deg)
+200
+12
+8
+360
Amplitude,AV=20dB
+16
Phase (Deg)
Phase, AV=20dB
+10
10k 20k
+18
Amplitude,AV=12dB
+14
+2
+22
+20
+18
+16
1k
Frequency (Hz)
Frequency Response
+360
Amplitude,AV=20dB
+20
100
-120
20
10k 20k
9
Right Channel
Left Channel
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2603
Typical Operating Characteristics (Cont.)
PSRR vs. Frequency
Gain vs. Volume Voltage
20
+0
VDD=5.0V
RL=8Ω
AV=20dB
Vrr=0.2Vrms
Input floating
AUX-0025
AES-17(20kHz)
SOP-16P
PSRR (dB)
-20
-30
Gain Down
0
Gain (dB)
-10
-40
Gain Up
-20
-40
-50
VDD=5.0V
No Load
AUX-0025
AES-17(20kHz)
-60
-60
-70
20
100
1k
Frequency (Hz)
-80
10k 20k
0
Supply Current vs. Voltage
0.8
No Load
No Load
0.7
Shutdown Current (µA)
5.0
Supply Current (mA)
5.0
Shutdown Current vs. Voltage
6.0
4.0
3.0
2.0
1.0
0
1.0
2.0
3.0
4.0
DC Volume Voltage (V)
0.6
0.5
0.4
0.3
0.2
0.1
0
1.0
2.0
3.0
4.0
Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
5.0
0
6.0
10
0
1.0
2.0
3.0
4.0
Voltage (V)
5.0
6.0
www.anpec.com.tw
APA2603
Pin Description
PIN
I/O/P
FUNCTION
NO.
NAME
1
SD
I
Shutdown Mode Control Input, Place entire IC in shutdown mode when held low.
2
BYPASS
P
Bias Voltage for Power Amplifiers.
3
RINN
I
Negative Input of Right Channel Power Amplifier.
4,5,12,13
GND
P
Ground Connection.
6
LINN
I
Negative Input of Left Channel Power Amplifier.
7
VOLUME
I
To Set The Amplifier’s Gain by Using The DC Voltage.
8
MUTE
I
Mute control signal input, hold low for normal operation, hold high to mute.
9
LOUTP
O
Positive Output of Left Channel Power Amplifier.
10,15
VDD
P
Power Supply.
11
LOUTN
O
Negative Output of Left Channel Power Amplifier.
14
ROUTN
O
Negative Output of Right Channel Power Amplifier.
16
ROUTP
O
Positive Output of Right Channel Power Amplifier.
Typical Application Circuit
Shutdown Control
Right Channel
Input Signal
1µF
Ci1
0.1µF
2 BYPASS
Ci2
0.1µF
V DD
R1
VDD 15
3 RINN
ROUTN 14
4 GND
GND 13
5 GND
Left Channel
Input Signal
ROUTP 16
1 SD
CB
APA2603
(Top View)
6 LINN
CS2
CS1
GND 12
CS3
LOUTN 11
0.1µF
4Ω
V DD
10µF
0.1µF
VDD 10
7 VOLUME
LOUTP 9
8 MUTE
50kΩ
4Ω
Mute Control
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
11
www.anpec.com.tw
APA2603
Block Diagram
Gate
Drive
RINN
ROUTP
VDD
Gate
Drive
MUTE
ROUTN
Mute Control
BYPASS
BYPASS
VOLUME
Volume
Control
SD
Protection
Function
Biases &
Reference
GND
Oscillator
Shutdown
Control
Gate
Drive
LINN
LOUTP
VDD
Gate
Drive
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
12
LOUTN
www.anpec.com.tw
APA2603
Volume Control Table
Step
Gain
Low (%)
High (%)
Recom (%)
Low (5V)
High(5V)
Recom (5V)
1
20
0.00
2.50
0.00
0.000
0.125
0.00
2
19.6
2.00
3.98
2.99
0.100
0.199
0.15
3
19.2
3.48
5.46
4.47
0.174
0.273
0.22
4
18.8
4.96
6.94
5.95
0.248
0.347
0.30
5
18.4
6.44
8.42
7.43
0.322
0.421
0.37
6
18
7.92
9.90
8.91
0.396
0.495
0.45
7
17.6
9.40
11.38
10.39
0.470
0.569
0.52
8
17.2
10.88
12.86
11.87
0.544
0.643
0.59
9
16.8
12.36
14.34
13.35
0.618
0.717
0.67
10
16.4
13.84
15.82
14.83
0.692
0.791
0.74
11
16
15.32
17.30
16.31
0.766
0.865
0.82
12
15.6
16.80
18.78
17.79
0.840
0.939
0.89
13
15.2
18.28
20.26
19.27
0.914
1.013
0.96
14
14.8
19.76
21.74
20.75
0.988
1.087
1.04
15
14.4
21.24
23.22
22.23
1.062
1.161
1.11
16
14
22.72
24.70
23.71
1.136
1.235
1.19
17
13.6
24.20
26.18
25.19
1.210
1.309
1.26
18
13.2
25.68
27.66
26.67
1.284
1.383
1.33
19
12.8
27.16
29.14
28.15
1.358
1.457
1.41
20
12.4
28.64
30.62
29.63
1.432
1.531
1.48
21
12
30.12
32.10
31.11
1.506
1.605
1.56
22
11.6
31.60
33.58
32.59
1.580
1.679
1.63
23
11.2
33.08
35.06
34.07
1.654
1.753
1.70
24
10.8
34.56
36.54
35.55
1.728
1.827
1.78
25
10.4
36.04
38.02
37.03
1.802
1.901
1.85
26
10
37.52
39.50
38.51
1.876
1.975
1.93
27
9.6
39.00
40.98
39.99
1.950
2.049
2.00
28
9.2
40.48
42.46
41.47
2.024
2.123
2.07
29
8.8
41.96
43.94
42.95
2.098
2.197
2.15
30
8.4
43.44
45.42
44.43
2.172
2.271
2.22
31
8
44.92
46.90
45.91
2.246
2.345
2.30
32
7.6
46.40
48.38
47.39
2.320
2.419
2.37
33
7.2
47.88
49.86
48.87
2.394
2.493
2.44
34
6.8
49.36
51.34
50.35
2.468
2.567
2.52
35
6.4
50.84
52.82
51.83
2.542
2.641
2.59
36
6
52.32
54.30
53.31
2.616
2.715
2.67
37
5.6
53.80
55.78
54.79
2.690
2.789
2.74
38
5.2
55.28
57.26
56.27
2.764
2.863
2.81
39
4.8
56.76
58.74
57.75
2.838
2.937
2.89
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
13
www.anpec.com.tw
APA2603
Volume Control Table (Cont.)
Step
Gain
Low (%)
High (%)
Recom (%)
Low (5V)
High(5V)
Recom (5V)
40
4.4
58.24
60.22
59.23
2.912
3.011
2.96
41
4
59.72
61.70
60.71
2.986
3.085
3.04
42
3.6
61.20
63.18
62.19
3.060
3.159
3.11
43
3.2
62.68
64.66
63.67
3.134
3.233
3.18
44
2.8
64.16
66.14
65.15
3.208
3.307
3.26
45
2.4
65.64
67.62
66.63
3.282
3.381
3.33
46
2
67.12
69.10
68.11
3.356
3.455
3.41
47
1.6
68.60
70.58
69.59
3.430
3.529
3.48
48
1.2
70.08
72.06
71.07
3.504
3.603
3.55
49
0.8
71.56
73.54
72.55
3.578
3.677
3.63
50
0.4
73.04
75.02
74.03
3.652
3.751
3.70
51
0
74.52
76.50
75.51
3.726
3.825
3.78
52
-1
76.00
77.98
76.99
3.800
3.899
3.85
53
-2
77.48
79.46
78.47
3.874
3.973
3.92
54
-3
78.96
80.94
79.95
3.948
4.047
4.00
55
-5
80.44
82.42
81.43
4.022
4.121
4.07
56
-7
81.92
83.90
82.91
4.096
4.195
4.15
57
-9
83.40
85.38
84.39
4.170
4.269
4.22
58
-11
84.88
86.86
85.87
4.244
4.343
4.29
59
-17
86.36
88.34
87.35
4.318
4.417
4.37
60
-23
87.84
89.82
88.83
4.392
4.491
4.44
61
-29
89.32
91.30
90.31
4.466
4.565
4.52
62
-35
90.80
92.78
91.79
4.540
4.639
4.59
63
-41
92.28
94.26
93.27
4.614
4.713
4.66
64
-80
93.76
100
100.00
4.688
5.000
5.00
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
14
www.anpec.com.tw
APA2603
Function Description
Class D Operation
Bypass Voltage
Output = 0V
The bypass voltage is equal to VDD/2, this voltage is for
bias the internal preamplifier stages. The external ca-
VOUTP
pacitor for this reference (CB) is a critical component and
serves several important functions.
VOUTN
VOUT
(VOUTP-VOUTN)
DC Volume Control Function
The APA2603 has an internal stereo volume control that
setting is the function of the DC voltage applied to the
IOUT
Output > 0V
VOUTP
VOLUME input pin. The APA2603 volume control consists
of 64 steps that are individually selected by a variable DC
VOUTN
voltage level on the VOLUME control pin. The range of the
steps controlled by the DC voltage are from +20dB to
VOUT
(VOUTP-VOUTN)
-80dB. Each gain step corresponds to a specific input
voltage range, as shown in the table. To minimize the
effect of noise on the volume control pin, which can affect
the selected gain level, hysteresis and clock delay are
IOUT
Output < 0V
implemented. The amount of hysteresis corresponds to
half of the step width, as shown in the “DC Volume Con-
VOUTP
VOUTN
trol Graph”.
For the highest accuracy, the voltage shown in the ‘recommended voltage’column of the table is used to select
VOUT
(VOUTP-VOUTN)
a desired gain. This recommended voltage is exactly
halfway between the two nearest transitions. The gains’
IOUT
level are 0.4dB/step from 20dB to 0dB; 1dB/step from
0dB to -3dB; 2dB/step from -3dB to -11dB and 6dB/step
Figure 1. The APA2603 Output Waveform (Voltage&
from -11dB to -41dB and the last step at -80dB as mute
mode.
Current)
The APA2603 power amplifier modulation scheme is
Mute Operation
shown in figure 1; the outputs VOUTP and VOUTN are in phase
with each other when no input signals. When output > 0V,
When place the logic high on MUTE pin, the APA2603’s
outputs runs at a constant 50% duty cycle, and the APA2603
the duty cycle of VOUTP is greater than 50% and VOUTN is
less than 50%; when output <0V, the duty cycle of VOUTP is
is at mute state. Place the logic low on MUTE pin enables
the outputs, and the output changes the duty cycle with
less than 50% and VOUTN is greater than 50%. This method
reduces the switching current across the load and re-
the input signal. This pin could be used as a quick disable/enable of outputs when changing channels on a tele-
2
duces the I R losses in the load that improves the
amplifier’s efficiency.
This modulation scheme has very short pulses across
vision or transitioning between different audio sources.
The MUTE pin should never be left floating. When MUTE
the load, this making the small ripple current and very
little loss on the load, and the LC filter can be eliminated
pin hold high to mute.
in most applications. Added the LC filter can increase the
efficiency by filter the ripple current.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
15
www.anpec.com.tw
APA2603
Function Description (Cont.)
Shutdown Operation
In order to reduce power consumption while not in use,
the APA2603 contains a shutdown function to externally
turn off the amplifier bias circuitry. This shutdown feature
turns the amplifier off when logic low is placed on the SD
pin for APA2603. The trigger point between a logic high
and logic low level is typically 0.65V. It is the best to switch
between the ground and the supply voltage VDD to provide
maximum device performance. By switching the SD pin
to a low level, the amplifier enters a low-consumptioncurrent state, IDD for APA2603 is in shutdown mode. On
normal operating, APA2603’s SD pin should pull to a high
level to keep the IC out of the shutdown mode. The SD pin
should be tied to a definite voltage to avoid unwanted
state change.
Over-Current Protection
The APA2603 monitors the output current. When the current exceeds the current-limit threshold, the APA2603 turnoff the output stage to prevent the output device from damaging in over-current or short-circuit condition. The IC will
turn-on the output buffer after 1ms. However, if the overcurrent or short-circuits condition still remains, it enters
the Over-Current protection again. The situation will circulate until the over-current or short-circuits has being
removed.
Thermal Protection
The over-temperature circuit limits the junction temperature of the APA2603. When the junction temperature exceeds TJ = +150oC, a thermal sensor turns off the output
buffer, allowing the devices to cool. The thermal sensor
allows the amplifier to start-up after the junction temperature down about 125 oC. The thermal protection is designed with a 25 oC hysteresis to lower the average TJ
during continuous thermal overload conditions, increasing lifetime of the IC.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
16
www.anpec.com.tw
APA2603
Application Information
Square Wave into the Speaker
The value of Ci must be considered carefully because it
directly affects the low frequency performance of the circuit.
Apply the square wave into the speaker may cause the
voice coil of speaker jumping out the air gap and defacing
Where Ri is 36kΩ (minimum) and the specification calls
for a flat bass response down to 50Hz. The equation is
the voice coil. However, this depends on the amplitude of
square wave is high enough and the bandwidth of speaker
reconfigured as below:
Ci =
is higher than the square wave’s frequency. For 500kHz
switching frequency, this is not issued for the speaker
1
2πRifc
(2)
because the frequency is beyond the audio band and
can’t significantly move the voice coil, as cone movement
When the input resistance variation is considered, the Ci
is 0.08µF, so a value in the range of 0.01µF to 0.022µF
is proportional to 1/f2 for frequency out of audio band.
would be chosen. A further consideration for this capacitor is the leakage path from the input source through the
Input Resistor, Ri
input network (Ri + Rf, Ci) to the load. This leakage current
creates a DC offset voltage at the input to the amplifier
Gain vs. Input Resistance
200
that reduces useful headroom, especially in high gain
applications. For this reason, a low-leakage tantalum or
Input Resistance (kΩ)
180
ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should
160
140
face the amplifiers’ input in most applications because
the DC level of the amplifiers’ inputs are held at VDD/2.
120
100
Please note that it is important to confirm the capacitor
polarity in the application.
80
60
Effective Bypass Capacitor, CB
40
20
-40 -35 -30 -25 -20 -15 -10 -5
Gain (dB)
0
5
As with any power amplifier, proper supply bypassing is
critical for low noise performance and high power supply
10 15 20
rejection.
The bypass capacitance sffects the startiup time. It is
For achieving the 64 steps gain setting, it varies the input
determined in the following wquation:
resistance network (R i & R f ) of amplifier. The input
resistor’s range form smallest to maximum is about 6
TSTART-UP=0.5(sec/µF) x CB + 0.2(sec)
times. Therefore, the input high-pass filter’s low cutoff
frequency will change six times from low to high. The
(3)
The capacitor location on the bypass pin should be as
cutoff frequency can be calculated by equation 1.
close to the device as possible. The effect of a larger half
bypass capacitor is improved PSRR due to increased
Input Capacitor, Ci
In the typical application, an input capacitor, Ci, is required
half-supply stability. The selection of bypass capacitors,
especially CB, is thus dependent upon desired PSRR
to allow the amplifier to bias the input signal to the proper
DC level for optimum operation. In this case, Ci and the
requirements, click and pop performance.To avoid the
start-up pop noise occurred, choose Ci which is not larger
input impedance Ri form a high-pass filter with the corner
frequency determined in the following equation:
than CB.
f C(highpass ) =
1
2πRiCi
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
(1)
17
www.anpec.com.tw
APA2603
Application Information (Cont.)
Ferrite Bead Selection
If the traces form APA2603 to speaker are short, the ferrite
bead filters can reduce the high frequency radiated to
meet the FCC & CE required.
OUTP 36µH
A ferrite that has very low impedance at low frequencies
and high impedance at high frequencies (above 1 MHz)
1µF
is recommended.
OUTN
Output Low-Pass Filter
36µH
8Ω
1µF
If the traces form APA2603 to speaker are short, it doesn’t
require output filter for FCC & CE standard.
A ferrite bead may be needed if it’s failing the test for FCC
Figure 3. LC output filter for 8Ω speaker
or CE tested without the LC filter. The figure 2 is the sample
for added ferrite bead; the ferrite shows choosing high
impedance in high frequency.
OUTP 18µH
2.2µF
VON
Ferrite
Bead
OUTN
18µH
4Ω
2.2µF
1nF
Ferrite
Bead
VOP
4Ω
Figure 4. LC output filter for 4Ω speaker
1nF
Figure 3 and 4’s low pass filter cut-off frequency are 25kHz
(FC).
fC(lowpass) =
Figure 2. Ferrite bead output filter
1
(5)
2π LC
Power-Supply Decoupling Capacitor, CS
Figure 3 and 4 are examples for added the LC filter
The APA2603 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to
(Butterworth), it’s recommended for the situation that the
trace form amplifier to speaker is too long and needs to
ensure the output total harmonic distortion (THD) is as
low as possible. Power supply decoupling also prevents
eliminate the radiated emission or EMI.
the oscillations being caused by long lead length between the amplifier and the speaker.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
18
www.anpec.com.tw
APA2603
Application Information (Cont.)
Power-Supply Decoupling Capacitor, CS (Cont.)
2.0
mm
The optimum decoupling is achieved by using two different types of capacitors that target on different types of
4.0mm
1.27mm
noise on the power supply leads. For higher frequency
transients, spikes, or digital hash on the line, a good low
equivalent-series-resistance (ESR) ceramic capacitor,
typically 0.1µF placed as close as possible to the device
2.54mm
VDD pin for works best. For filtering lower frequency noise
signals, a large aluminum electrolytic capacitor of 10µF
or greater placed near the audio power amplifier is
recommended.
Layout Recommendation
1.5mm
3.0mm
2.5mm
Via Diameter
= 0.3mm X 32
0.7mm
1.27mm
7.62mm
Figure 6. DIP-16 Land Pattern Recommendation
4.0 mm
Via
Diameter =
0.3mm X 6
1. All components should be placed close to the APA2603.
For example, the input capacitor (Ci) should be close to
APA2603’s input pins to avoid causing noise coupling
to APA2603’s high impedance inputs; the decoupling
Ground
Plane for
ThermalPAD
Via
Diameter =
0.5mm X 8
capacitor (Cs) should be placed by the APA2603’s power
pin to decouple the power rail noise.
2. The output traces should be short, wide ( >50mil) and
symmetric.
5.0mm
3. The input trace should be short and symmetric.
4. The power trace width should greater than 50mil.
Figure 5. SOP-16P Land Pattern Recommendation
5. The SOP-16P Thermal PAD should be soldered on
PCB, and the ground plane needs soldered mask (to
avoid short circuit) except the Thermal PAD area. And
the DIP-16’s pin 4,5,12, and 13 should be connected to
the ground plane for thermal transformer.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
19
www.anpec.com.tw
APA2603
Package Information
SOP-16P
D
SEE VIEW A
h X 45o
E
E2
EXPOSED
PAD
E1
D1
b
c
A1
0.25
A
A2
e
NX
aaa c
GAUGE PLANE
SEATING PLANE
0
L
VIEW A
S
Y
M
B
O
L
SOP-16P
INCHES
MILLIMETERS
MIN.
MAX.
A
MAX.
MIN.
0.069
1.75
0.006
0.000
0.15
A1
0.00
A2
1.25
b
0.31
0.51
0.012
0.020
c
0.17
0.25
0.007
0.010
D
9.80
10.00
0.386
0.394
3.50
4.50
0.138
0.177
D1
0.049
E
5.80
6.20
0.228
0.244
E1
3.80
4.00
0.150
0.157
E2
2.00
3.00
0.079
0.118
e
1.27 BSC
0.050 BSC
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
θ
0o
8o
0o
aaa
8o
0.004
0.10
Note : 1. Follow from JEDEC MS-012 BC.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
3. Dimension "E" does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
20
www.anpec.com.tw
APA2603
Package Information
DIP-16
E1
D
0.38
A
L
A1
A2
E
b
D1
b2
e
c
eA
eB
S
Y
M
B
O
L
DIP-16
MILLIMETERS
MIN.
INCHES
MIN.
MAX.
A
MAX.
0.210
5.33
A1
0.38
A2
2.92
0.015
4.95
0.115
0.195
0.022
b
0.36
0.56
0.014
b2
1.14
1.78
0.045
0.070
c
0.20
0.35
0.008
0.014
D
18.6
20.31
0.732
0.800
D1
0.13
E
7.62
E1
0.005
6.10
e
2.54 BSC
eA
7.62 BSC
eB
L
8.26
0.300
0.325
7.11
0.240
0.280
0.100 BSC
0.300 BSC
0.430
10.92
2.92
0.115
3.81
0.150
Note : 1. Followed from JEDEC MS-001AB
2. Dimension D, D1 and E1 do not include mold flash or
protrusions. Mold flash or protrusions shall not exceed
10 mil.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
21
www.anpec.com.tw
APA2603
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
SOP-16P
A
H
T1
C
d
D
330.0±2.00
50 MIN.
16.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
P0
P1
P2
D0
D1
T
2.0±0.10
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
4.0±0.10
8.0±0.10
W
E1
16.0±0.30 1.75±0.10
A0
B0
F
7.5±0.10
K0
6.40±0.20 10.30±0.20 2.10±0.20
(mm)
Devices Per Unit
Package Type
Unit
Quantity
SOP-16P
Tape & Reel
2500
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
22
www.anpec.com.tw
APA2603
Taping Direction Information
SOP-16P
USER DIRECTION OF FEED
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
23
www.anpec.com.tw
APA2603
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3 °C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Thickness
<2.5 mm
Volume mm
<350
235 °C
Volume mm
≥350
220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
24
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APA2603
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Mar., 2013
25
www.anpec.com.tw
Similar pages