APA2603 3W Stereo Class D Audio Power Amplifier (with DC Volume Control) Features • • • • • • General Description Operating Voltage: 3.3V-5.5V The APA2603 is a stereo, high efficiency, filter-free Class- High Efficiency 85% at PO=3W, 4Ω Speaker, VDD=5V D audio amplifier available in SOP-16P and DIP-16 packages. Filter-Free Class D Amplifier The APA2603 provides the precise DC volume control, the gain range is from -80dB (V VOLUME =5V) to +20dB Low Shutdown Current - IDD=1µA at VDD=5V (VVOLUME=0V) with 64 steps precise control. It’s easy to get the suitable amplifier’s gain with the 64 steps gain setting. 64 Steps Volume Adjustable from -80dB to +20dB by DC Voltage with Hysteresis The filter-free architecture eliminates the output filters compared to the traditional Class-D audio amplifier and Output Power at THD+N=1% - 2.6W at VDD=5V ,RL=3Ω reduces the external component counts and the components high. Besides, it can save the PCB space, system - 2.4W at VDD=5V, RL=4Ω cost, and simplify the design and the power loss at filter. The APA2603 also integrates the de-pop circuitry that re- - 1.4W at VDD=5V, RL=8Ω Output Power at THD+N=10% duces the pops and click noises during power on/off or shutdown enable process. - 3.2W at VDD=5V ,RL=3Ω - 3W at VDD=5V, RL=4Ω • • • • • The APA2603 has build-in, over-current, and thermal protection that prevent the chip being destroyed by short cir- - 1.75W at VDD=5V, RL=8Ω Less External Components Required cuit or over temperature situation. APA2603 is capable of driving 3W at 5V into 4Ω speaker. Thermal and Over-Current Protections with AutoRecovery The efficiency can archive 85% at RL=4Ω when PO=3W at VDD=5V. Pin-to-Pin Compatible APA2069 and APA2071 Power Enhanced Packages SOP-16P & DIP-16 Simplified Application Circuit Lead Free and Green Devices Available (RoHS Compliant) Applications • • • ROUTP Stereo Input Signals LCD TVs RINN ROUTN LINN Stereo Speakers APA2603 DVD Player Active Speakers LOUTN DC Volume Control VOLUME LOUTP ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 1 www.anpec.com.tw APA2603 Ordering and Marking Information APA2603 Package Code KA : SOP-16P J : DIP-16 Operating Ambient Temperature Range I : -40 to 85 oC Handling Code TR : Tape & Reel TU : Tube Assembly Material G : Halogen and Lead Free Device Assembly Material Handling Code Temperature Range Package Code APA2603 KA : APA2603 XXXXX XXXXX - Date Code APA2603 J : APA2603 XXXXX XXXXX - Date Code Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). Pin Configuration SD 1 BYPASS RINN GND GND LINN VOLUME MUTE 2 3 4 5 6 7 8 APA2603 16 15 14 13 ROUTP VDD ROUTN GND 12 11 10 9 GND LOUTN VDD LOUTP SD BYPASS RINN GND GND LINN VOLUME MUTE SOP-16P 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 APA2603 ROUTP VDD ROUTN GND GND LOUTN VDD LOUTP DIP-16 = Thermal Pad (connected the Thermal Pad to GND plane for better dissipation Absolute Maximum Ratings Symbol VDD TJ (Note 1) Parameter Supply Voltage (VDD to GND) -0.3 to VDD+0.3 Input Voltage (SD, MUTE, VOLUME and BYPASS to GND) -0.3 to VDD+0.3 Maximum Junction Temperature Storage Temperature Range TSDR Soldering Temperature Range, 10 Seconds Unit -0.3 to 6 Input Voltage (LINN, RINN to GND) TSTG PD Rating V 150 -65 to +150 ο C 260 Power Dissipation Internally Limited W Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 2 www.anpec.com.tw APA2603 Thermal Characteristics Parameter Symbol θJA Typical Value Thermal Resistance -Junction to Ambient SOP-16P (Note 2) DIP-16 (Note 3) Unit 45 ο C/W θJC Thermal Resistance -Junction to Case (Note 4) 8 SOP-16P DIP-16 (Note 5) Note 2: Please refer to “ Layout Recommendation”, the Thermal Pad on the bottom of the IC should soldered directly to the PCB’s Thermal Pad area that with several thermal vias connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with 2oz copper thickness. Note 3: Please refer to “ Layout Recommendation”, the Thermal PIN (PIN4.5.12.13) on the central of the IC should connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with 2oz copper thickness. Note 4: The case temperature is measured at the center of the Thermal Pad on the underside of the SOP-16P package. Note 5: The case temperature is measured at the center of the Thermal PIN of the DIP-16 package. Recommended Operating Conditions Symbol Parameter Range VDD Supply Voltage VIH High Level Threshold Voltage SD, MUTE 2 ~VDD VIL Low Level Threshold Voltage SD, MUTE 0~0.8 VICM Common Mode Input Voltage 1~VDD-1 TA Ambient Temperature Range -40~85 TJ Junction Temperature Range -40~125 RL Speaker Resistance Unit 3.3~5.5 V ο C Ω 2~ Electrical Characteristics VDD=5V, GND=0V, TA= 25oC (unless otherwise noted) Symbol Parameter APA2603 Test Conditions Unit Min. Typ. Max. Supply Current VMUTE=0V, VSD=5V, No Load - 8 20 IMUTE Supply Current (Mute Mode) VMUTE=5V, VSD=5V, No Load - 4 10 ISD Supply Current (Mute Mode) VMUTE=0V, VSD=0V, No Load - 1 10 Input Current SD, MUTE, VOLUME - - 1 FOSC Oscillator Frequency (VDD=3.3~5.5V, TA= -40~85οC) 400 500 600 kHz Ri(min) Minimum Input Resistance AV=20dB 36 43 50 kΩ - 360 - - 250 - - 370 - - 260 - - 400 - - 270 - IDD Ii P-channel Power MOSFET N-channel Power MOSFET P-channel Power MOSFET N-channel Power MOSFET P-channel Power MOSFET N-channel Power MOSFET VDD=5.5V, IL=0.8A RDS(ON) Static Drain-Source On-State Resistance VDD=4.5V, IL=0.6A VDD=3.6V, IL=0.4A Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 3 mA µA mΩ www.anpec.com.tw APA2603 Electrical Characteristics (Cont.) VDD=5V, GND=0V, TA= 25oC (unless otherwise noted) Symbol TSTART-UP Parameter Start-Up Time from Shutdown APA2603 Test Conditions Unit Min. Typ. Max. - 1.2 2 RL=3Ω 2.3 2.6 - RL=4Ω 2.1 2.4 - RL=8Ω 1 1.4 - RL=3Ω 2.9 3.2 - RL=4Ω 2.5 3.0 - RL=8Ω 1.3 1.75 - 80 85 - RL=3Ω, PO=1.9W - 0.2 0.4 RL=4Ω, PO=1.7W - 0.1 0.3 RL=8Ω, PO=1W - 0.08 0.2 - -100 -60 Bypass Capacitor, C1=2.2µF s VDD=5V, TA=25° C THD+N=1% fin=1kHz PO Output Power THD+N=10% fin=1kHz η THD+N Crosstalk PSRR Efficiency Total Harmonic Distortion Plus Noise RL=4Ω, PO=3W fin=1kHz Channel Separation PO=0.24W, RL=4Ω, fin=1kHz Power Supply Rejection Ratio RL=4Ω, Input AC-Ground fin=100Hz - -50 -45 fin=1kHz - -55 -50 85 90 - % dB SNR Signal to Noise Ratio With A-weighting Filter PO = 0.96W, RL = 8Ω AttMute Mute Attenuation fin=1kHz, RL=8Ω, Vin=1Vpp - -85 -70 Attshutdown W Shutdown Attenuation fin=1kHz, RL=8Ω, Vin=1Vpp - -110 -100 Vn Output Noise With A-weighting Filter (AV=20dB) - 75 100 µVrms VOS Output Offset Voltage RL=4Ω, AV=20dB - 20 30 mV RL=3Ω - 1.3 - RL=4Ω - 1.2 - RL=8Ω 0.5 0.7 - RL=3Ω - 1.6 - RL=4Ω - 1.5 - VDD=3.6V,TA=25° C THD+N=1% fin=1kHz PO Output Power THD+N=10% fin=1kHz - 0.9 - 78 83 - RL=3Ω, PO=1W - 0.3 0.5 RL=4Ω, PO=0.8W - 0.2 0.4 RL=8Ω, PO=0.5W - 0.1 0.3 - -60 RL=8Ω η THD+N Crosstalk PSRR SNR Efficiency Total Harmonic Distortion Plus Noise RL=4Ω, PO=1.5W fin=1kHz Channel Separation PO=0.12W, RL=4Ω, fin=1kHz Power Supply Rejection Ratio RL=4Ω, Input AC-Ground Signal to Noise Ratio Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 fin=100Hz - -50 -45 fin=1kHz - -55 -50 80 85 - With A-weighting Filter PO=0.5W, RL=8Ω 4 W % dB www.anpec.com.tw APA2603 Electrical Characteristics (Cont.) VDD=5V, GND=0V, TA= 25oC (unless otherwise noted) Symbol Parameter APA2603 Test Conditions Unit Min. Typ. Max. VDD=3.6V,TA=25° C (CONT.) AttMute Mute Attenuation fin=1kHz, RL=8Ω, Vin=1Vpp - -85 -70 Shutdown Attenuation fin=1kHz, RL=8Ω, Vin=1Vpp - -110 -90 Vn Output Noise With A-weighting Filter (AV=20dB) - 75 100 µVrms VOS Output Offset Voltage RL=4Ω, AV=20dB - 20 30 mV Attshutdown Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 5 dB www.anpec.com.tw APA2603 Typical Operating Characteristics Efficiency vs. Output Power (8Ω) 100 80 90 70 80 60 Efficiency (%) Efficiency (%) Efficiency vs. Output Power (4Ω) 90 50 40 VDD=5V RL=4Ω+33µH fin=1kHz THD+N≦10% AV=20dB AUX-0025 AES-17(20kHz) 30 20 10 0 0 0.5 1.0 1.5 2.0 Output Power (W) 2.5 70 60 50 VDD=5V RL=8Ω+33µH fin=1kHz THD+N≦10% AV=20dB AUX-0025 AES-17(20kHz) 40 30 20 10 0 3.0 0 0.5 1.0 1.5 Output Power (W) THD+N vs. Output Power THD+N vs. Output Power 20 1 VDD=3.6V VDD=3.3V AV=12dB VDD=5V 60m 100m 500m 1 AV=6dB VDD=5.5V 2 0.01 60m 5 THD+N vs. Output Power 1 fin=1kHz RL=4Ω AV=20dB AUX-0025 AES-17(20kHz) SOP-16P 1 VDD=3.3V VDD=3.6V 0.1 VDD=5V 0.01 0.1 500m 1 2 5 THD+N vs. Output Power 10 THD+N (%) 10 200m Output Power (W) Output Power (W) THD+N (%) AV=20dB 0.1 0.1 0.01 fin=1kHz RL=3Ω AUX-0025 AES-17(20kHz) SOP-16P 1 THD+N (%) THD+N (%) 20 fin=1kHz RL=3Ω AV=20dB AUX-0025 AES-17(20kHz) SOP-16P 2.0 VDD=5V fin=1kHz RL=4Ω AUX-0025 AES-17(20kHz) SOP-16P AV=20dB 0.1 AV=12dB AV=6dB VDD=5.5V 0.5 1 Output Power (W) Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 2 0.01 6m 10m 3 4 6 100m Output Power (W) 1 2 4 www.anpec.com.tw APA2603 Typical Operating Characteristics (Cont.) THD+N vs. Output Power THD+N vs. Output Power 10 10 fin=1kHz RL=8Ω AV=20dB AUX-0025 AES-17(20kHz) SOP-16P 1 THD+N (%) THD+N (%) 1 VDD=3.3V VDD=3.6V 0.1 VDD=5V 0.01 0.1 VDD=5V fin=1kHz RL=8Ω AUX-0025 AES-17(20kHz) SOP-16P AV=12dB VDD=5.5V 0.5 1 Output Power (W) 0.01 6m 10m 2 THD+N vs. Frequency VDD=3.3/3.6/5.0/5.5V PO=0.85/1/2/2.45W RL=3Ω AUX-0025 AES-17(20kHz) SOP-16P THD+N (%) 1 VDD=3.3V ,PO=0.85W VDD=3.6V ,PO=1W 0.01 0.001 20 100 VDD=5.0V ,PO=2W 1k Frequency (Hz) AV=20dB ,R-ch 0.01 0.001 10k 20k 20 VDD=3.6V PO=0.9W RL=4Ω AUX-0025 AES-17(20kHz) SOP-16P THD+N (%) THD+N (%) 1 AV=20dB,R-ch AV=20dB,L-ch 0.1 0.01 0.006 20 100 0.1 AV=10dB,R-ch 1k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 AV=10dB ,L-ch 100 AV=10dB ,R-ch 1k Frequency (Hz) VDD=5.0V PO=1.8W RL=4Ω AUX-0025 AES-17(20kHz) SOP-16P 0.01 AV=10dB,L-ch 2 10k 20k THD+N vs. Frequency 10 1 1 0.1 THD+N vs. Frequency 10 100m Output Power (W) VDD=5.0V PO=2W RL=3Ω AUX-0025 AES-17(20kHz) AV=20dB ,L-ch SOP-16P 1 0.1 VDD=5.5V ,PO=2.45W AV=6dB THD+N vs. Frequency 10 THD+N (%) 10 AV=20dB 0.1 0.001 20 10k 20k 7 AV=20dB,L-ch AV=20dB,R-ch AV=10dB,R-ch AV=10dB,L-ch 100 1k Frequency (Hz) 10k 20k www.anpec.com.tw APA2603 Typical Operating Characteristics (Cont.) THD+N vs. Frequency THD+N (%) 1 THD+N vs. Frequency 10 VDD=3.6V PO=0.5W RL=8Ω AUX-0025 AES-17(20kHz) SOP-16P AV=20dB,L-ch 0.1 0.01 0.001 20 AV=20dB,R-ch AV=10dB,L-ch 100 VDD=5.0V PO=0.9W RL=8Ω AUX-0025 AES-17(20kHz) SOP-16P 1 THD+N (%) 10 AV=20dB,L-ch AV=20dB,R-ch 0.1 0.01 AV=10dB,R-ch AV=10dB,R-ch 1k Frequency (Hz) 0.001 20 10k 20k 100 +0 VDD=3.6V -10 P =0.9W O -20 RL=4Ω AUX-0025 -30 AES-17(20kHz) -40 SOP-16P -50 -60 AV=20dB,R-ch to L-ch AV=6dB,R-ch to L-ch -70 A =20dB,L-ch to R-ch V -80 -90 -100 -110 -120 20 AV=6dB,L-ch to R-ch 100 1k Frequency (Hz) +0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 AV=20dB,L-ch to R-ch AV=6dB,L-ch to R-ch 100 1k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 10k 20k T T T T T VDD=5.0V PO=1.8W RL=4Ω AUX-0025 AES-17(20kHz) SOP-16P AV=20dB,R-ch to L-ch AV=6dB,R-ch to L-ch AV=20dB,L-ch to R-ch AV=6dB,L-ch to R-ch 100 1k Frequency (Hz) 10k 20k Crosstalk vs. Frequency Crosstalk (dB) Crosstalk (dB) Crosstalk vs. Frequency -120 20 T -120 20 10k 20k +0 V =3.6V -10 PDD=0.5W O -20 RL=8Ω AUX-0025 -30 AES-17(20kHz) -40 SOP-16P -50 -60 AV=20dB,R-ch to L-ch -70 AV=6dB,R-ch to L-ch -80 -90 -100 -110 1k Frequency (Hz) Crosstalk vs. Frequency Crosstalk (dB) Crosstalk (dB) Crosstalk vs. Frequency AV=10dB,L-ch +0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 20 10k 20k 8 VDD=5.0V PO=1W RL=8Ω AUX-0025 AES-17(20kHz) SOP-16P AV=20dB,R-ch to L-ch AV=6dB,R-ch to L-ch AV=20dB,L-ch to R-ch AV=6dB,L-ch to R-ch 100 1k Frequency (Hz) 10k 20k www.anpec.com.tw APA2603 Typical Operating Characteristics (Cont.) Output Noise Voltage vs. Frequency AV=20dB Output Noise Voltage (Vrms) Output Noise Voltage (Vrms) Output Noise Voltage vs. Frequency 100µ 90µ 80µ 70µ 60µ 50µ AV=14dB AV=6dB 40µ 30µ VDD=3.6V 20µ RL=8Ω Input AC Ground AUX-0025 AES-17(20kHz) SOP-16P 10µ 20 100 1k Frequency (Hz) 100µ 90µ 80µ 70µ 60µ 50µ AV=14dB AV=6dB 40µ 30µ VDD=5.0V 20µ R =8Ω L Input AC Ground AUX-0025 AES-17(20kHz) SOP-16P 10µ 10k 20k AV=20dB 20 Frequency Response +22 +300 VDD=3.6V RL=8Ω Po=70mW AUX-0025 SOP-16P +4 10 100 Gain (dB) Gain (dB) Phase, AV=12dB +6 +4 +2 -20 Gain (dB) -30 -40 VDD=5.0V RL=4Ω AV=20dB VO=1Vrms AUX-0025 AES-17(20kHz) SOP-16P -50 -60 Right Channel -90 Left Channel -100 20 100 1k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 10 100 1k 10k Frequency (Hz) +0 100k -20 -30 -40 -50 -60 -70 VDD=5.0V RL=4Ω AV=20dB VO=1Vrms AUX-0025 AES-17(20kHz) SOP-16P -80 -90 -100 -110 -70 -80 +100 VDD=5.0V RL=8Ω Po=150mW AUX-0025 SOP-16P Shutdown Attenuation vs. Frequency +0 -10 Gain (dB) +0 Phase, AV=12dB +10 Mute Attenuation vs. Frequency -10 +200 +12 +6 +0 100k Phase, AV=20dB Amplitude,AV=12dB +14 +8 +100 1k 10k Frequency (Hz) +300 Phase (Deg) +200 +12 +8 +360 Amplitude,AV=20dB +16 Phase (Deg) Phase, AV=20dB +10 10k 20k +18 Amplitude,AV=12dB +14 +2 +22 +20 +18 +16 1k Frequency (Hz) Frequency Response +360 Amplitude,AV=20dB +20 100 -120 20 10k 20k 9 Right Channel Left Channel 100 1k Frequency (Hz) 10k 20k www.anpec.com.tw APA2603 Typical Operating Characteristics (Cont.) PSRR vs. Frequency Gain vs. Volume Voltage 20 +0 VDD=5.0V RL=8Ω AV=20dB Vrr=0.2Vrms Input floating AUX-0025 AES-17(20kHz) SOP-16P PSRR (dB) -20 -30 Gain Down 0 Gain (dB) -10 -40 Gain Up -20 -40 -50 VDD=5.0V No Load AUX-0025 AES-17(20kHz) -60 -60 -70 20 100 1k Frequency (Hz) -80 10k 20k 0 Supply Current vs. Voltage 0.8 No Load No Load 0.7 Shutdown Current (µA) 5.0 Supply Current (mA) 5.0 Shutdown Current vs. Voltage 6.0 4.0 3.0 2.0 1.0 0 1.0 2.0 3.0 4.0 DC Volume Voltage (V) 0.6 0.5 0.4 0.3 0.2 0.1 0 1.0 2.0 3.0 4.0 Voltage (V) Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 5.0 0 6.0 10 0 1.0 2.0 3.0 4.0 Voltage (V) 5.0 6.0 www.anpec.com.tw APA2603 Pin Description PIN I/O/P FUNCTION NO. NAME 1 SD I Shutdown Mode Control Input, Place entire IC in shutdown mode when held low. 2 BYPASS P Bias Voltage for Power Amplifiers. 3 RINN I Negative Input of Right Channel Power Amplifier. 4,5,12,13 GND P Ground Connection. 6 LINN I Negative Input of Left Channel Power Amplifier. 7 VOLUME I To Set The Amplifier’s Gain by Using The DC Voltage. 8 MUTE I Mute control signal input, hold low for normal operation, hold high to mute. 9 LOUTP O Positive Output of Left Channel Power Amplifier. 10,15 VDD P Power Supply. 11 LOUTN O Negative Output of Left Channel Power Amplifier. 14 ROUTN O Negative Output of Right Channel Power Amplifier. 16 ROUTP O Positive Output of Right Channel Power Amplifier. Typical Application Circuit Shutdown Control Right Channel Input Signal 1µF Ci1 0.1µF 2 BYPASS Ci2 0.1µF V DD R1 VDD 15 3 RINN ROUTN 14 4 GND GND 13 5 GND Left Channel Input Signal ROUTP 16 1 SD CB APA2603 (Top View) 6 LINN CS2 CS1 GND 12 CS3 LOUTN 11 0.1µF 4Ω V DD 10µF 0.1µF VDD 10 7 VOLUME LOUTP 9 8 MUTE 50kΩ 4Ω Mute Control Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 11 www.anpec.com.tw APA2603 Block Diagram Gate Drive RINN ROUTP VDD Gate Drive MUTE ROUTN Mute Control BYPASS BYPASS VOLUME Volume Control SD Protection Function Biases & Reference GND Oscillator Shutdown Control Gate Drive LINN LOUTP VDD Gate Drive Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 12 LOUTN www.anpec.com.tw APA2603 Volume Control Table Step Gain Low (%) High (%) Recom (%) Low (5V) High(5V) Recom (5V) 1 20 0.00 2.50 0.00 0.000 0.125 0.00 2 19.6 2.00 3.98 2.99 0.100 0.199 0.15 3 19.2 3.48 5.46 4.47 0.174 0.273 0.22 4 18.8 4.96 6.94 5.95 0.248 0.347 0.30 5 18.4 6.44 8.42 7.43 0.322 0.421 0.37 6 18 7.92 9.90 8.91 0.396 0.495 0.45 7 17.6 9.40 11.38 10.39 0.470 0.569 0.52 8 17.2 10.88 12.86 11.87 0.544 0.643 0.59 9 16.8 12.36 14.34 13.35 0.618 0.717 0.67 10 16.4 13.84 15.82 14.83 0.692 0.791 0.74 11 16 15.32 17.30 16.31 0.766 0.865 0.82 12 15.6 16.80 18.78 17.79 0.840 0.939 0.89 13 15.2 18.28 20.26 19.27 0.914 1.013 0.96 14 14.8 19.76 21.74 20.75 0.988 1.087 1.04 15 14.4 21.24 23.22 22.23 1.062 1.161 1.11 16 14 22.72 24.70 23.71 1.136 1.235 1.19 17 13.6 24.20 26.18 25.19 1.210 1.309 1.26 18 13.2 25.68 27.66 26.67 1.284 1.383 1.33 19 12.8 27.16 29.14 28.15 1.358 1.457 1.41 20 12.4 28.64 30.62 29.63 1.432 1.531 1.48 21 12 30.12 32.10 31.11 1.506 1.605 1.56 22 11.6 31.60 33.58 32.59 1.580 1.679 1.63 23 11.2 33.08 35.06 34.07 1.654 1.753 1.70 24 10.8 34.56 36.54 35.55 1.728 1.827 1.78 25 10.4 36.04 38.02 37.03 1.802 1.901 1.85 26 10 37.52 39.50 38.51 1.876 1.975 1.93 27 9.6 39.00 40.98 39.99 1.950 2.049 2.00 28 9.2 40.48 42.46 41.47 2.024 2.123 2.07 29 8.8 41.96 43.94 42.95 2.098 2.197 2.15 30 8.4 43.44 45.42 44.43 2.172 2.271 2.22 31 8 44.92 46.90 45.91 2.246 2.345 2.30 32 7.6 46.40 48.38 47.39 2.320 2.419 2.37 33 7.2 47.88 49.86 48.87 2.394 2.493 2.44 34 6.8 49.36 51.34 50.35 2.468 2.567 2.52 35 6.4 50.84 52.82 51.83 2.542 2.641 2.59 36 6 52.32 54.30 53.31 2.616 2.715 2.67 37 5.6 53.80 55.78 54.79 2.690 2.789 2.74 38 5.2 55.28 57.26 56.27 2.764 2.863 2.81 39 4.8 56.76 58.74 57.75 2.838 2.937 2.89 Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 13 www.anpec.com.tw APA2603 Volume Control Table (Cont.) Step Gain Low (%) High (%) Recom (%) Low (5V) High(5V) Recom (5V) 40 4.4 58.24 60.22 59.23 2.912 3.011 2.96 41 4 59.72 61.70 60.71 2.986 3.085 3.04 42 3.6 61.20 63.18 62.19 3.060 3.159 3.11 43 3.2 62.68 64.66 63.67 3.134 3.233 3.18 44 2.8 64.16 66.14 65.15 3.208 3.307 3.26 45 2.4 65.64 67.62 66.63 3.282 3.381 3.33 46 2 67.12 69.10 68.11 3.356 3.455 3.41 47 1.6 68.60 70.58 69.59 3.430 3.529 3.48 48 1.2 70.08 72.06 71.07 3.504 3.603 3.55 49 0.8 71.56 73.54 72.55 3.578 3.677 3.63 50 0.4 73.04 75.02 74.03 3.652 3.751 3.70 51 0 74.52 76.50 75.51 3.726 3.825 3.78 52 -1 76.00 77.98 76.99 3.800 3.899 3.85 53 -2 77.48 79.46 78.47 3.874 3.973 3.92 54 -3 78.96 80.94 79.95 3.948 4.047 4.00 55 -5 80.44 82.42 81.43 4.022 4.121 4.07 56 -7 81.92 83.90 82.91 4.096 4.195 4.15 57 -9 83.40 85.38 84.39 4.170 4.269 4.22 58 -11 84.88 86.86 85.87 4.244 4.343 4.29 59 -17 86.36 88.34 87.35 4.318 4.417 4.37 60 -23 87.84 89.82 88.83 4.392 4.491 4.44 61 -29 89.32 91.30 90.31 4.466 4.565 4.52 62 -35 90.80 92.78 91.79 4.540 4.639 4.59 63 -41 92.28 94.26 93.27 4.614 4.713 4.66 64 -80 93.76 100 100.00 4.688 5.000 5.00 Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 14 www.anpec.com.tw APA2603 Function Description Class D Operation Bypass Voltage Output = 0V The bypass voltage is equal to VDD/2, this voltage is for bias the internal preamplifier stages. The external ca- VOUTP pacitor for this reference (CB) is a critical component and serves several important functions. VOUTN VOUT (VOUTP-VOUTN) DC Volume Control Function The APA2603 has an internal stereo volume control that setting is the function of the DC voltage applied to the IOUT Output > 0V VOUTP VOLUME input pin. The APA2603 volume control consists of 64 steps that are individually selected by a variable DC VOUTN voltage level on the VOLUME control pin. The range of the steps controlled by the DC voltage are from +20dB to VOUT (VOUTP-VOUTN) -80dB. Each gain step corresponds to a specific input voltage range, as shown in the table. To minimize the effect of noise on the volume control pin, which can affect the selected gain level, hysteresis and clock delay are IOUT Output < 0V implemented. The amount of hysteresis corresponds to half of the step width, as shown in the “DC Volume Con- VOUTP VOUTN trol Graph”. For the highest accuracy, the voltage shown in the ‘recommended voltage’column of the table is used to select VOUT (VOUTP-VOUTN) a desired gain. This recommended voltage is exactly halfway between the two nearest transitions. The gains’ IOUT level are 0.4dB/step from 20dB to 0dB; 1dB/step from 0dB to -3dB; 2dB/step from -3dB to -11dB and 6dB/step Figure 1. The APA2603 Output Waveform (Voltage& from -11dB to -41dB and the last step at -80dB as mute mode. Current) The APA2603 power amplifier modulation scheme is Mute Operation shown in figure 1; the outputs VOUTP and VOUTN are in phase with each other when no input signals. When output > 0V, When place the logic high on MUTE pin, the APA2603’s outputs runs at a constant 50% duty cycle, and the APA2603 the duty cycle of VOUTP is greater than 50% and VOUTN is less than 50%; when output <0V, the duty cycle of VOUTP is is at mute state. Place the logic low on MUTE pin enables the outputs, and the output changes the duty cycle with less than 50% and VOUTN is greater than 50%. This method reduces the switching current across the load and re- the input signal. This pin could be used as a quick disable/enable of outputs when changing channels on a tele- 2 duces the I R losses in the load that improves the amplifier’s efficiency. This modulation scheme has very short pulses across vision or transitioning between different audio sources. The MUTE pin should never be left floating. When MUTE the load, this making the small ripple current and very little loss on the load, and the LC filter can be eliminated pin hold high to mute. in most applications. Added the LC filter can increase the efficiency by filter the ripple current. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 15 www.anpec.com.tw APA2603 Function Description (Cont.) Shutdown Operation In order to reduce power consumption while not in use, the APA2603 contains a shutdown function to externally turn off the amplifier bias circuitry. This shutdown feature turns the amplifier off when logic low is placed on the SD pin for APA2603. The trigger point between a logic high and logic low level is typically 0.65V. It is the best to switch between the ground and the supply voltage VDD to provide maximum device performance. By switching the SD pin to a low level, the amplifier enters a low-consumptioncurrent state, IDD for APA2603 is in shutdown mode. On normal operating, APA2603’s SD pin should pull to a high level to keep the IC out of the shutdown mode. The SD pin should be tied to a definite voltage to avoid unwanted state change. Over-Current Protection The APA2603 monitors the output current. When the current exceeds the current-limit threshold, the APA2603 turnoff the output stage to prevent the output device from damaging in over-current or short-circuit condition. The IC will turn-on the output buffer after 1ms. However, if the overcurrent or short-circuits condition still remains, it enters the Over-Current protection again. The situation will circulate until the over-current or short-circuits has being removed. Thermal Protection The over-temperature circuit limits the junction temperature of the APA2603. When the junction temperature exceeds TJ = +150oC, a thermal sensor turns off the output buffer, allowing the devices to cool. The thermal sensor allows the amplifier to start-up after the junction temperature down about 125 oC. The thermal protection is designed with a 25 oC hysteresis to lower the average TJ during continuous thermal overload conditions, increasing lifetime of the IC. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 16 www.anpec.com.tw APA2603 Application Information Square Wave into the Speaker The value of Ci must be considered carefully because it directly affects the low frequency performance of the circuit. Apply the square wave into the speaker may cause the voice coil of speaker jumping out the air gap and defacing Where Ri is 36kΩ (minimum) and the specification calls for a flat bass response down to 50Hz. The equation is the voice coil. However, this depends on the amplitude of square wave is high enough and the bandwidth of speaker reconfigured as below: Ci = is higher than the square wave’s frequency. For 500kHz switching frequency, this is not issued for the speaker 1 2πRifc (2) because the frequency is beyond the audio band and can’t significantly move the voice coil, as cone movement When the input resistance variation is considered, the Ci is 0.08µF, so a value in the range of 0.01µF to 0.022µF is proportional to 1/f2 for frequency out of audio band. would be chosen. A further consideration for this capacitor is the leakage path from the input source through the Input Resistor, Ri input network (Ri + Rf, Ci) to the load. This leakage current creates a DC offset voltage at the input to the amplifier Gain vs. Input Resistance 200 that reduces useful headroom, especially in high gain applications. For this reason, a low-leakage tantalum or Input Resistance (kΩ) 180 ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should 160 140 face the amplifiers’ input in most applications because the DC level of the amplifiers’ inputs are held at VDD/2. 120 100 Please note that it is important to confirm the capacitor polarity in the application. 80 60 Effective Bypass Capacitor, CB 40 20 -40 -35 -30 -25 -20 -15 -10 -5 Gain (dB) 0 5 As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply 10 15 20 rejection. The bypass capacitance sffects the startiup time. It is For achieving the 64 steps gain setting, it varies the input determined in the following wquation: resistance network (R i & R f ) of amplifier. The input resistor’s range form smallest to maximum is about 6 TSTART-UP=0.5(sec/µF) x CB + 0.2(sec) times. Therefore, the input high-pass filter’s low cutoff frequency will change six times from low to high. The (3) The capacitor location on the bypass pin should be as cutoff frequency can be calculated by equation 1. close to the device as possible. The effect of a larger half bypass capacitor is improved PSRR due to increased Input Capacitor, Ci In the typical application, an input capacitor, Ci, is required half-supply stability. The selection of bypass capacitors, especially CB, is thus dependent upon desired PSRR to allow the amplifier to bias the input signal to the proper DC level for optimum operation. In this case, Ci and the requirements, click and pop performance.To avoid the start-up pop noise occurred, choose Ci which is not larger input impedance Ri form a high-pass filter with the corner frequency determined in the following equation: than CB. f C(highpass ) = 1 2πRiCi Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 (1) 17 www.anpec.com.tw APA2603 Application Information (Cont.) Ferrite Bead Selection If the traces form APA2603 to speaker are short, the ferrite bead filters can reduce the high frequency radiated to meet the FCC & CE required. OUTP 36µH A ferrite that has very low impedance at low frequencies and high impedance at high frequencies (above 1 MHz) 1µF is recommended. OUTN Output Low-Pass Filter 36µH 8Ω 1µF If the traces form APA2603 to speaker are short, it doesn’t require output filter for FCC & CE standard. A ferrite bead may be needed if it’s failing the test for FCC Figure 3. LC output filter for 8Ω speaker or CE tested without the LC filter. The figure 2 is the sample for added ferrite bead; the ferrite shows choosing high impedance in high frequency. OUTP 18µH 2.2µF VON Ferrite Bead OUTN 18µH 4Ω 2.2µF 1nF Ferrite Bead VOP 4Ω Figure 4. LC output filter for 4Ω speaker 1nF Figure 3 and 4’s low pass filter cut-off frequency are 25kHz (FC). fC(lowpass) = Figure 2. Ferrite bead output filter 1 (5) 2π LC Power-Supply Decoupling Capacitor, CS Figure 3 and 4 are examples for added the LC filter The APA2603 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to (Butterworth), it’s recommended for the situation that the trace form amplifier to speaker is too long and needs to ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents eliminate the radiated emission or EMI. the oscillations being caused by long lead length between the amplifier and the speaker. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 18 www.anpec.com.tw APA2603 Application Information (Cont.) Power-Supply Decoupling Capacitor, CS (Cont.) 2.0 mm The optimum decoupling is achieved by using two different types of capacitors that target on different types of 4.0mm 1.27mm noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1µF placed as close as possible to the device 2.54mm VDD pin for works best. For filtering lower frequency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near the audio power amplifier is recommended. Layout Recommendation 1.5mm 3.0mm 2.5mm Via Diameter = 0.3mm X 32 0.7mm 1.27mm 7.62mm Figure 6. DIP-16 Land Pattern Recommendation 4.0 mm Via Diameter = 0.3mm X 6 1. All components should be placed close to the APA2603. For example, the input capacitor (Ci) should be close to APA2603’s input pins to avoid causing noise coupling to APA2603’s high impedance inputs; the decoupling Ground Plane for ThermalPAD Via Diameter = 0.5mm X 8 capacitor (Cs) should be placed by the APA2603’s power pin to decouple the power rail noise. 2. The output traces should be short, wide ( >50mil) and symmetric. 5.0mm 3. The input trace should be short and symmetric. 4. The power trace width should greater than 50mil. Figure 5. SOP-16P Land Pattern Recommendation 5. The SOP-16P Thermal PAD should be soldered on PCB, and the ground plane needs soldered mask (to avoid short circuit) except the Thermal PAD area. And the DIP-16’s pin 4,5,12, and 13 should be connected to the ground plane for thermal transformer. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 19 www.anpec.com.tw APA2603 Package Information SOP-16P D SEE VIEW A h X 45o E E2 EXPOSED PAD E1 D1 b c A1 0.25 A A2 e NX aaa c GAUGE PLANE SEATING PLANE 0 L VIEW A S Y M B O L SOP-16P INCHES MILLIMETERS MIN. MAX. A MAX. MIN. 0.069 1.75 0.006 0.000 0.15 A1 0.00 A2 1.25 b 0.31 0.51 0.012 0.020 c 0.17 0.25 0.007 0.010 D 9.80 10.00 0.386 0.394 3.50 4.50 0.138 0.177 D1 0.049 E 5.80 6.20 0.228 0.244 E1 3.80 4.00 0.150 0.157 E2 2.00 3.00 0.079 0.118 e 1.27 BSC 0.050 BSC h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 θ 0o 8o 0o aaa 8o 0.004 0.10 Note : 1. Follow from JEDEC MS-012 BC. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 20 www.anpec.com.tw APA2603 Package Information DIP-16 E1 D 0.38 A L A1 A2 E b D1 b2 e c eA eB S Y M B O L DIP-16 MILLIMETERS MIN. INCHES MIN. MAX. A MAX. 0.210 5.33 A1 0.38 A2 2.92 0.015 4.95 0.115 0.195 0.022 b 0.36 0.56 0.014 b2 1.14 1.78 0.045 0.070 c 0.20 0.35 0.008 0.014 D 18.6 20.31 0.732 0.800 D1 0.13 E 7.62 E1 0.005 6.10 e 2.54 BSC eA 7.62 BSC eB L 8.26 0.300 0.325 7.11 0.240 0.280 0.100 BSC 0.300 BSC 0.430 10.92 2.92 0.115 3.81 0.150 Note : 1. Followed from JEDEC MS-001AB 2. Dimension D, D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 10 mil. Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 21 www.anpec.com.tw APA2603 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application SOP-16P A H T1 C d D 330.0±2.00 50 MIN. 16.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. P0 P1 P2 D0 D1 T 2.0±0.10 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 4.0±0.10 8.0±0.10 W E1 16.0±0.30 1.75±0.10 A0 B0 F 7.5±0.10 K0 6.40±0.20 10.30±0.20 2.10±0.20 (mm) Devices Per Unit Package Type Unit Quantity SOP-16P Tape & Reel 2500 Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 22 www.anpec.com.tw APA2603 Taping Direction Information SOP-16P USER DIRECTION OF FEED Classification Profile Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 23 www.anpec.com.tw APA2603 Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly 100 °C 150 °C 60-120 seconds 150 °C 200 °C 60-120 seconds 3 °C/second max. 3 °C/second max. 183 °C 60-150 seconds 217 °C 60-150 seconds See Classification Temp in table 1 See Classification Temp in table 2 Time (tP)** within 5°C of the specified classification temperature (Tc) 20** seconds 30** seconds Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max. 6 minutes max. 8 minutes max. Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)* Time 25°C to peak temperature * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3 Package Thickness <2.5 mm Volume mm <350 235 °C Volume mm ≥350 220 °C ≥2.5 mm 220 °C 220 °C 3 Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm Volume mm <350 260 °C 260 °C 250 °C 3 Volume mm 350-2000 260 °C 250 °C 245 °C 3 Volume mm >2000 260 °C 245 °C 245 °C 3 Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78 24 Description 5 Sec, 245°C 1000 Hrs, Bias @ Tj=125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA www.anpec.com.tw APA2603 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.6 - Mar., 2013 25 www.anpec.com.tw