APT50GP60B2DQ2(G) 600V TYPICAL PERFORMANCE CURVES APT50GP60B2DQ2 APT50GP60B2DQ2G* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. POWER MOS 7 IGBT ® (B2) T-Max® The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • SSOA Rated • Low Gate Charge C • Ultrafast Tail Current shutoff G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GP60B2DQ2(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 7 @ TC = 25°C UNIT Volts 150 72 1 Amps 190 Switching Safe Operating Area @ TJ = 150°C 190A @ 600V Total Power Dissipation Watts 625 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 525µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) 2.1 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 3 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 525 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 3000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Units nA 11-2005 MIN Rev A Characteristic / Test Conditions 050-7495 Symbol DYNAMIC CHARACTERISTICS Symbol APT50GP60B2DQ2(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf f = 1 MHz 30 Gate Charge 7.5 VGE = 15V 165 15V, L = 100µH,VCE = 600V 465 635 Inductive Switching (125°C) 19 VCC = 400V 36 VGE = 15V 115 RG = 4.3Ω 85 465 I C = 50A Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 44 55 µJ 835 6 Current Fall Time ns 60 TJ = +25°C Turn-off Delay Time nC 85 I C = 50A Current Rise Time V A 36 RG = 4.3Ω Turn-on Delay Time pF 190 19 5 UNIT 50 VCC = 400V 4 MAX 40 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy td(off) 465 TJ = 150°C, R G = 4.3Ω, VGE = Turn-off Delay Time Eoff tr VGE = 0V, VCE = 25V VGE = 15V Turn-on Switching Energy (Diode) td(on) 5700 I C = 50A Current Rise Time Eon2 TYP Capacitance VCE = 300V Turn-on Delay Time Turn-on Switching Energy MIN TJ = +125°C ns µJ 1260 6 1060 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .20 RθJC Junction to Case (DIODE) .67 WT Package Weight 6.10 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7495 Rev A 11-2005 4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. APT Reserves the right to change, without notice, the specifications and information contained herein. 70 70 60 60 IC, COLLECTOR CURRENT (A) TJ = -55°C 30 TJ = 25°C 20 TJ = 125°C 10 0 70 60 50 TJ = -55°C 40 TJ = 25°C 30 TJ = 125°C 20 10 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics IC = 100A 3.0 2.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC = 50A 2.0 IC = 25A 1.5 1.0 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.10 1.05 1.00 0.95 0.90 0.85 0.80 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 20 33.5 1.20 1.15 I = 50A C T = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 3.5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 FIGURE 2, Output Characteristics (TJ = 125°C) 40 60 80 100 120 140 160 180 GATE CHARGE (nC) FIGURE 4, Gate Charge 3 IC = 100A 2.5 IC = 50A 2 IC = 25A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 200 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 80 TJ = 125°C 10 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE TJ = 25°C 20 0 0.5 1.0 1.5 2.0 2.5 3.0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 90 TJ = -55°C 30 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 100 40 180 160 140 120 100 80 60 Lead Temperature Limited 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 11-2005 40 50 Rev A 50 APT50GP60B2DQ2(G) 050-7495 IC, COLLECTOR CURRENT (A) TYPICAL PERFORMANCE CURVES 15 10 5 VCE = 400V TJ = 25°C or 125°C RG = 4.3Ω L = 100µH td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) VGE = 15V 20 0 90 40 30 TJ = 25 or 125°C,VGE = 15V tf, FALL TIME (ns) tr, RISE TIME (ns) 50 20 20 30 40 50 60 70 80 90 100 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 40 20 VCE = 400V RG = 4.3Ω L = 100µH RG = 4.3Ω, L = 100µH, VCE = 400V TJ = 125°C, VGE = 15V 80 60 TJ = 25°C, VGE = 15V 40 = 400V V CE = +15V V GE R = 4.3Ω 3500 3500 TJ = 125°C G 3000 2500 2000 1500 1000 500 20 30 40 50 60 70 80 90 100 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 25°C EOFF, TURN OFF ENERGY LOSS (µJ) 4000 EON2, TURN ON ENERGY LOSS (µJ) VGE =15V,TJ=25°C 0 0 = 400V V CE = +15V V GE R = 4.3Ω 3000 G 2500 TJ = 125°C 2000 1500 1000 TJ = 25°C 500 0 0 20 30 40 50 60 70 80 90 100 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 20 30 40 50 60 70 80 90 100 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 6000 4000 = 400V V CE = +15V V GE T = 125°C J 5000 Eon2,100A 4000 Eoff,100A 3000 2000 Eon2,50A 1000 E 25A on2, 0 Eoff,50A Eoff,25A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 60 20 10 11-2005 80 100 60 VGE =15V,TJ=125°C 120 70 Rev A 100 20 30 40 50 60 70 80 90 100 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current RG = 4.3Ω, L = 100µH, VCE = 400V 80 120 0 20 30 40 50 60 70 80 90 100 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 050-7495 APT50GP60B2DQ2(G) 140 25 = 400V V CE = +15V V GE R = 4.3Ω 3500 G Eon2,100A 3000 Eoff,100A 2500 2000 1500 1000 Eon2,50A 500 Eon2,25A 0 Eoff,50A 0 Eoff,25A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES Cies 1,000 500 Coes 100 50 APT50GP60B2DQ2(G) 200 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 10,000 180 160 140 120 100 80 60 Cres 40 20 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.20 0.16 0.7 0.12 0.5 Note: 0.08 0.3 SINGLE PULSE 0.04 0 PDM ZθJC, THERMAL IMPEDANCE (°C/W) D = 0.9 t2 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 10-5 t1 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.00463 0.0193 0.00218 0.0658 0.0142 0.0658 0.0142 Power (watts) Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 50 10 T = 125°C J T = 75°C C D = 50 % V = 667V CE R = 5Ω G max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 11-2005 0.00908 100 Rev A RC MODEL 050-7495 Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 220 APT50GP60B2DQ2(G) APT40DQ60 Gate Voltage 10% TJ = 125 °C td(on) V CE IC V CC Collector Current tr 90% A 5% D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions 90% Gate Voltage TJ = 125 °C tf Collector Voltage 90% 0 Switching Energy 10% Collector Current Rev A 11-2005 Figure 23, Turn-off Switching Waveforms and Definitions 050-7495 5 % Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit td(off) 10% TYPICAL PERFORMANCE CURVES APT50GP60B2DQ2(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) All Ratings: TC = 25°C unless otherwise specified. APT50GP60B2DQ2(G) Characteristic / Test Conditions Maximum Average Forward Current (TC = 111°C, Duty Cycle = 0.5) 40 RMS Forward Current (Square wave, 50% duty) 63 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) IFSM UNIT Amps 320 STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions MIN Forward Voltage VF TYP IF = 50A 2.14 IF = 100A 2.67 IF = 50A, TJ = 125°C 1.80 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 22 trr Reverse Recovery Time - 25 Qrr Reverse Recovery Charge - 35 - 3 - 160 ns - 480 nC - 6 - 85 ns - 920 nC - 20 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 40A, diF/dt = -200A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 400V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 40A, diF/dt = -200A/µs IF = 40A, diF/dt = -1000A/µs Maximum Reverse Recovery Current VR = 400V, TC = 125°C ns nC - - Amps Amps 0.60 D = 0.9 0.50 0.7 0.40 0.5 Note: 0.30 0.3 0.20 0.10 t2 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 0.289 0.00448 0.381 0.120 11-2005 RC MODEL Junction temp (°C) Rev A 10-5 t1 Power (watts) Case temperature (°C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 050-7495 0 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 100 80 60 TJ = 125°C 40 TJ = 175°C 20 TJ = 25°C 0.5 1 1.5 2 2.5 3 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 1400 T = 125°C J V = 400V R 1200 80A 1000 800 40A 600 400 20A 200 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change 0.6 trr 0.4 CJ, JUNCTION CAPACITANCE (pF) 40 25 T = 125°C J V = 400V R 80A 20 15 40A 10 20A 5 Duty cycle = 0.5 T = 175°C J 60 50 40 30 Qrr 20 10 0 200 11-2005 60 70 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) IRRM 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature Rev A 80 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change trr 0.2 050-7495 20A 100 0 Qrr 0.8 180 160 140 120 100 80 60 40 20 0 40A 120 80 1.0 0.0 140 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change 1.4 1.2 R 80A 0 IRRM, REVERSE RECOVERY CURRENT (A) 0 T = 125°C J V = 400V 160 20 TJ = -55°C 0 APT50GP60B2DQ2(G) 180 trr, REVERSE RECOVERY TIME (ns) IF, FORWARD CURRENT (A) 120 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT50GP60B2DQ2(G) Vr diF /dt Adjust +18V APT40GT60BR 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions T-MAX® (B2) Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector (Cathode) 5.38 (.212) 6.20 (.244) 20.80 (.819) 21.46 (.845) 2.21 (.087) 2.59 (.102) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 11-2005 19.81 (.780) 20.32 (.800) Rev A 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123) 050-7495 4.50 (.177) Max.