ALSC AS7C256L-12SC High performance 32kx8 cmos sram Datasheet

High Performance
32K×8
CMOS SRAM
AS7C256
AS7C256L
32K×8 CMOS SRAM (Common I/O)
FEATURES
• Organization: 32,768 words × 8 bits
• Equal access and cycle times
• High speed
• Easy memory expansion with CE and OE inputs
– 10/12/15/20/25/35 ns address access time
• TTL-compatible, three-state I/O
– 3/3/4/5/6/8 ns output enable access time
• 28-pin JEDEC standard packages
• Low power consumption
– 300 mil PDIP and SOJ
Socket compatible with 7C512 and 7C1024
– Active:
660 mW max (10 ns cycle)
– Standby:
11 mW max, CMOS I/O
2.75 mW max, CMOS I/O, L version
– 330 mil SOIC
– 8×13.4 TSOP
– Very low DC component in active power
• ESD protection > 2000 volts
• 2.0V data retention (L version)
• Latch-up current > 200 mA
PIN ARRANGEMENT
DIP, SOJ, SOIC
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
I/O0
I/O1
I/O2
GND
Vcc
GND
I/O7
256×128×8
ARRAY
(262,144)
SENSE AMP
A0
A1
A2
A3
A4
A5
A6
A14
ROW DECODER
INPUT BUFFER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
AS7C256
LOGIC BLOCK DIAGRAM
Vcc
WE
A13
A8
A9
A11
OE
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
28
27
26
25
24
23
22
21
20
19
18
17
16
15
I/O0
COLUMN DECODER
TSOP 8×13.4
WE
CONTROL
CIRCUIT
OE
CE
A A A A A A A
7 8 9 10 11 12 13
AS7C256-01
SELECTION GUIDE
OE
A11
A9
A8
A13
WE
Vcc
A14
A12
A7
A6
A5
A4
A3
22
23
24
25
26
27
28
1
2
3
4
5
6
7
21
20
19
18
17
16
15
14
13
12
11
10
9
8
AS7C256
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
GND
I/O2
I/O1
I/O0
A0 AS7C256-02
A1
A2
7C256-10
7C256-12
7C256-15
7C256-20
7C256-25
7C256-35
Unit
Maximum Address Access Time
10
12
15
20
25
35
ns
Maximum Output Enable Access Time
3
3
4
5
6
8
ns
Maximum Operating Current
120
115
110
100
90
80
mA
2.0
2.0
2.0
2.0
2.0
2.0
mA
0.5
0.5
0.5
0.5
0.5
0.5
mA
Maximum CMOS Standby Current
L
ALLIANCE SEMICONDUCTOR
AS7C256
AS7C256L
FUNCTIONAL DESCRIPTION
The AS7C256 is a high performance CMOS 262,144-bit
Static Random Access Memory (SRAM) organized as
32,768 words × 8 bits. It is designed for memory applications where fast data access, low power, and simple interfacing are desired.
A write cycle is accomplished by asserting chip enable (CE)
and write enable (WE) LOW. Data on the input pins
I/O0-I/O7 is written on the rising edge of WE (write cycle 1)
or CE (write cycle 2). To avoid bus contention, external
devices should drive I/O pins only after outputs have been
disabled with output enable (OE) or write enable (WE).
Equal address access and cycle times (tAA, tRC, tWC) of
10/12/15/20/25/35 ns with output enable access times (tOE)
of 3/3/4/5/6/8 ns are ideal for high performance applications. A chip enable (CE) input permits easy memory
expansion with multiple-bank memory organizations.
A read cycle is accomplished by asserting chip enable (CE)
and output enable (OE) LOW, with write enable (WE)
HIGH. The chip drives I/O pins with the data word referenced by the input address. When chip enable or output
enable is HIGH, or write enable is LOW, output drivers stay
in high-impedance mode.
When CE is HIGH the device enters standby mode. The
standard AS7C256 is guaranteed not to exceed 11 mW
power consumption in standby mode; the L version is guaranteed not to exceed 2.75 mW, and typically requires only
500 µW. The L version also offers 2.0V data retention, with
maximum power consumption in this mode of 300 µW.
All chip inputs and outputs are TTL-compatible, and operation is from a single 5V supply. The AS7C256 is packaged
in all high volume industry standard packages.
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Min
Max
Unit
Voltage on Any Pin Relative to GND
Vt
–0.5
+7.0
V
Power Dissipation
PD
–
1.0
W
Storage Temperature (Plastic)
Tstg
–55
+150
oC
Temperature Under Bias
Tbias
–10
+85
oC
DC Output Current
Iout
–
20
mA
NOTE: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
.
TRUTH TABLE
CE
WE
OE
Data
Mode
H
X
X
High Z
Standby (ISB, ISB1)
L
H
H
High Z
Output Disable
L
H
L
Dout
Read
L
L
X
Din
Write
Key: X = Don’t Care, L = LOW, H = HIGH
2
AS7C256
AS7C256L
RECOMMENDED OPERATING CONDITIONS
(Ta = 0°C to +70°C)
Parameter
Supply Voltage
Input Voltage
Symbol
Min
Typ
Max
Unit
VCC
4.5
5.0
5.5
V
GND
0.0
0.0
0.0
V
VIH
2.2
–
VCC+1
V
VIL
–0.5*
–
0.8
V
*VIL min = –3.0V for pulse width less than tRC/2.
DC OPERATING CHARACTERISTICS1
(VCC = 5V±10%, GND = 0V, Ta = 0°C to +70°C)
-10
-12
-15
-20
-25
-35
Parameter
Symbol Test Conditions
Input Leakage
Current
|ILI|
VCC = Max,
Vin = GND to VCC
–
1
–
1
–
1
–
1
–
1
–
1
µA
Output Leakage
Current
|ILO|
CE = VIH, VCC = Max,
Vout = GND to VCC
–
1
–
1
–
1
–
1
–
1
–
1
µA
Operating Power
Supply Current
ICC
CE = VIL, f = fmax,
Iout = 0 mA
–
120
–
115
–
110
–
100
–
90
–
80
mA
–
115
–
110
–
105
–
95
–
85
–
75
mA
ISB
CE = VIH, f = fmax
–
45
–
40
–
30
–
30
–
25
–
25
mA
–
40
–
35
–
25
–
25
–
20
–
20
mA
CE > VCC–0.2V, f = 0,
Vin ≤ 0.2V or
Vin ≥ VCC–0.2V
–
2.0
–
2.0
–
2.0
–
2.0
–
2.0
–
2.0
mA
ISB1
–
0.5
–
0.5
–
0.5
–
0.5
–
0.5
–
0.5
mA
VOL
IOL = 8 mA, VCC = Min
–
0.4
–
0.4
–
0.4
–
0.4
–
0.4
–
0.4
V
VOH
IOH = –4 mA, VCC = Min
2.4
–
2.4
–
2.4
–
2.4
–
2.4
–
2.4
–
V
Standby
Power Supply
Current
Output Voltage
Min Max Min Max Min Max Min Max Min Max Min Max Unit
L
L
L
CAPACITANCE2
(f = 1 MHz, Ta = Room Temperature, VCC = 5V)
Parameter
Symbol
Signals
Test Conditions
Max
Unit
Input Capacitance
CIN
A, CE, WE, OE
Vin = 0V
5
pF
I/O Capacitance
CI/O
I/O
Vin = Vout = 0V
7
pF
3
AS7C256
AS7C256L
READ CYCLE 3, 9
(VCC = 5V±10%, GND = 0V, Ta = 0°C to +70°C)
-10
-12
-15
-20
-25
-35
Parameter
Symbol Min Max Min Max Min Max Min Max Min Max Min Max Unit
Read Cycle Time
tRC
10
–
12
–
15
–
20
–
25
–
35
–
ns
Address Access Time
tAA
–
10
–
12
–
15
–
20
–
25
–
35
ns
3
Chip Enable (CE) Access Time
tACE
–
10
–
12
–
15
–
20
–
25
–
35
ns
3
Output Enable (OE) Access Time
tOE
–
3
–
3
–
4
–
5
–
6
–
8
ns
Output Hold from Address Change
tOH
2
–
3
–
3
–
3
–
3
–
3
–
ns
5
CE LOW to Output in Low Z
tCLZ
3
–
3
–
3
–
3
–
3
–
3
–
ns
4, 5
CE HIGH to Output in High Z
tCHZ
–
3
–
3
–
4
–
5
–
6
–
8
ns
4, 5
OE LOW to Output in Low Z
tOLZ
0
–
0
–
0
–
0
–
0
–
0
–
ns
4, 5
OE HIGH to Output in High Z
tOHZ
–
3
–
3
–
4
–
5
–
6
–
8
ns
4, 5
Power Up Time
tPU
0
–
0
–
0
–
0
–
0
–
0
–
ns
4, 5
Power Down Time
tPD
–
10
–
12
–
15
–
20
–
25
–
35
ns
4, 5
TIMING WAVEFORM OF READ CYCLE 13, 6, 7, 9
Notes
(Address Controlled)
tRC
Address
tOH
tAA
AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAA
AA
AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAA
AA
Dout
Data Valid
TIMING WAVEFORM OF READ CYCLE 23, 6, 8, 9
(CE Controlled)
tRC1
CE
AAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAA
A
tOE
AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AA
AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAA
AA
AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAA
AA
OEAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAA
A
tACE
Dout
tOLZ
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAAAAAA
AAAAAAAA
AAAA
tOHZ
tCHZ
Data Valid
tCLZ
Supply
Current
tPU
tPD
50%
50%
ICC
ISB
AS7C256-04
4
AS7C256
AS7C256L
WRITE CYCLE 11
(VCC = 5V±10%, GND = 0V, Ta = 0°C to +70°C)
-10
-12
-15
-20
-25
-35
Parameter
Symbol Min Max Min Max Min Max Min Max Min Max Min Max Unit Notes
Write Cycle Time
tWC
10
–
12
–
15
–
20
–
20
–
30
–
ns
Chip Enable to Write End
tCW
9
–
10
–
12
–
12
–
15
–
20
–
ns
Address Setup to Write End
tAW
9
–
10
–
12
–
12
–
15
–
20
–
ns
Address Setup Time
tAS
0
–
0
–
0
–
0
–
0
–
0
–
ns
Write Pulse Width
tWP
7
–
8
–
9
–
12
–
15
–
17
–
ns
Address Hold From End of Write
tAH
0
–
0
–
0
–
0
–
0
–
0
–
ns
Data Valid to Write End
tDW
6
–
6
–
8
–
10
–
10
–
15
–
ns
Data Hold Time
tDH
0
–
0
–
0
–
0
–
0
–
0
–
ns
4, 5
Write Enable to Output in High Z
tWZ
–
5
–
5
–
5
–
5
–
5
–
5
ns
4, 5
Output Active from Write End
tOW
3
–
3
–
3
–
3
–
3
–
3
–
ns
4, 5
TIMING WAVEFORM OF WRITE CYCLE 1 10, 11
(WE Controlled)
tWC
tAW
tAH
Address
WE
tWP
AAAAAAAAAA
AAAA
AAAAAAAA
AAAAAA
AA
AAAA
AAAAAAAA
AAAAAA
AA
tAS
tDW
Din
tDH
Data Valid
tWZ
tOW
Dout
AS7C256-05
TIMING WAVEFORM OF WRITE CYCLE 2 10, 11
(CE Controlled)
tWC
tAW
tAH
Address
tAS
tCW
CE
tWP
AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
WE AAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAA
AAA
tWZ
Din
Dout
tDW
tDH
Data Valid
AAAA
AAAA
AAAA
AAA
AAAA
AAAA
AAAA
AAA
AAAA
AAAA
AAAA
AAA
AAAA
AAAA
AAAA
AAAAAAAAAAAAAAA
AAA
AS7C256-06
5
AS7C256
AS7C256L
DATA RETENTION CHARACTERISTICS
Parameter
Symbol
VCC for Data Retention
VDR
Data Retention Current
ICCDR
Chip Enable to Data Retention Time
tCDR
Operation Recovery Time
tR
Input Leakage Current
| ILI |
(L Version Only)
Test Conditions
VCC = 2.0V
CE ≥ VCC–0.2V
Vin ≥ VCC–0.2V or
Vin ≤ 0.2V
Min
Max
Unit
2.0
–
V
–
150
µA
0
–
ns
tRC
–
ns
–
1
µA
DATA RETENTION WAVEFORM
(L Version Only)
Data retention mode
VCC
VDR ≥ 2.0V
4.5V
4.5V
tCDR
tR
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
VDR
AAAAAAAAAAAAAAAAAAAAAAAAAAA
CE AAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA VIH
AAAAAAAAAAAAAAAAAAAAAAAAAAA
VIH AAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AS7C256-07
AC TEST CONDITIONS
– Output load: see Figure B,
except for tCLZ and tCHZ see Figure C.
Thevenin Equivalent:
168Ω
Dout
+1.728V
– Input pulse level: GND to 3.0V. See Figure A.
– Input rise and fall times: 5 ns. See Figure A.
+5V
– Input and output timing reference levels: 1.5V.
+5V
480Ω
+3.0V
GND
Dout
90%
10%
90%
255Ω
30 pF*
10%
Figure A: Input Waveform
AS7C256-08
480Ω
Dout
GND
Figure B: Output Load
AS7C256-09
255Ω
5 pF*
*including scope
and jig capacitance
GND
Figure C: Output Load for tCLZ, tCHZ
AS7C256-10
NOTES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
During VCC power-up, a pull-up resistor to VCC on CE is required to meet ISB specification.
This parameter is sampled and not 100% tested.
For test conditions, see AC Test Conditions, Figures A, B, C.
tCLZ and tCHZ are specified with CL = 5pF as in Figure C. Transition is measured ±500mV from steady-state voltage.
This parameter is guaranteed but not tested.
WE is HIGH for read cycle.
CE and OE are LOW for read cycle.
Address valid prior to or coincident with CE transition LOW.
All read cycle timings are referenced from the last valid address to the first transitioning address.
CE or WE must be HIGH during address transitions.
All write cycle timings are referenced from the last valid address to the first transitioning address.
6
AS7C256
AS7C256L
Normalized supply current ICC, ISB
vs. ambient temperature Ta
1.4
1.2
1.2
0.8
0.6
0.2
0.0
4.0
Normalized access time tAA
vs. supply voltage VCC
Normalized access time
Ta = 25°C
1.0
0.9
4.5
5.0
5.5
Supply voltage (V)
Output source current I OH
vs. output voltage VOH
VCC = 5.0V
Ta = 25°C
60
40
20
1.25
2.5
3.75
Output voltage (V)
1.3
5.0
–10
35
80
125
Ambient temperature (°C)
5
1
0.2
1.4
-10
35
80
125
Ambient temperature (°C)
Normalized supply current ICC
vs. cycle frequency 1/tRC, 1/tWC
1.2
VCC = 5.0V
1.0
0.9
VCC = 5.0V
Ta = 25°C
1.0
0.8
0.6
0.4
0.2
0.0
–10
35
80
125
Ambient temperature (°C)
0
25
50
75
Cycle frequency (MHz)
100
Typical access time change ∆tAA
vs. output capacitive loading
Output sink current I OL
vs. output voltage VOL
35
120
30
VCC = 5.0V
Ta = 25°C
80
60
40
20
0
0.0
VCC = 5.0V
25
-55
Normalized access time t AA
vs. ambient temperature Ta
1.1
100
625
0.04
1.2
140
80
0
0.0
ISB
1.4
0.8
–55
6.0
120
100
0.4
1.5
1.1
140
0.6
0.0
–55
6.0
1.2
0.8
4.0
Output source current (mA)
4.5
5.0
5.5
Supply voltage (V)
1.4
1.3
0.8
0.2
Output sink current (mA)
Normalized access time
1.5
1.0
Normalized ICC
0.4
ISB
ICC
Change in tAA (ns)
1.0
ICC
Normalized supply current ISB1
vs. ambient temperature Ta
Normalized ISB1 (log scale)
Normalized supply current ICC, ISB
vs. supply voltage VCC
1.4
Normalized ICC, ISB
Normalized ICC, ISB
TYPICAL DC AND AC CHARACTERISTICS
VCC = 4.5V
25
20
15
10
5
0
1.25
2.5
3.75
Output voltage (V)
5.0
0
250
500
750
Capacitance (pF)
1000
AS7C256-11
7
AS7C256
AS7C256L
ORDERING CODES
Package / Access Time
10 ns
12 ns
15 ns
20 ns
25 ns
35 ns
Plastic DIP, 300 mil
AS7C256-10PC
AS7C256L-10PC
AS7C256-12PC
AS7C256L-12PC
AS7C256-15PC
AS7C256L-15PC
AS7C256-20PC
AS7C256L-20PC
AS7C256-25PC
AS7C256L-25PC
AS7C256-35PC
AS7C256L-35PC
Plastic SOJ, 300 mil
AS7C256-10JC
AS7C256L-10JC
AS7C256-12JC
AS7C256L-12JC
AS7C256-15JC
AS7C256L-15JC
AS7C256-20JC
AS7C256L-20JC
AS7C256-25JC
AS7C256L-25JC
AS7C256-35JC
AS7C256L-35JC
Plastic SOIC, 330 mil
AS7C256-10SC
AS7C256L-10SC
AS7C256-12SC
AS7C256L-12SC
AS7C256-15SC
AS7C256L-15SC
AS7C256-20SC
AS7C256L-20SC
AS7C256-25SC
AS7C256L-25SC
AS7C256-35SC
AS7C256L-35SC
TSOP 8×13.4
AS7C256-10TC
AS7C256L-10TC
AS7C256-12TC
AS7C256L-12TC
AS7C256-15TC
AS7C256L-15TC
AS7C256-20TC
AS7C256L-20TC
AS7C256-25TC
AS7C256L-25TC
AS7C256-35TC
AS7C256L-35TC
PART NUMBERING SYSTEM
AS7C
256
X
SRAM Prefix
Device Number
Blank
L
= Standard Power
= Low Power
–XX
X
Access Time
Package:
C
P = PDIP 300 mil
J = SOJ 300 mil
S = SOIC 330 mil
T = TSOP 8×14
Commercial Temperature Range,
0°C to 70 °C
REPRESENTATIVES, DISTRIBUTORS, AND SALES OFFICES
DOMESTIC REPS
INDIANA
NEW HAMPSHIRE
SOUTH CAROLINA
CANADA
PUERTO RICO
ALABAMA
CC Electro Sales
(317) 921-5000
Kitchen & Kutchin Inc.
(617) 229-2660
Concord Component
(919) 846-3441
Micro-Electronic Comp.
(809) 746-9897
KANSAS
NEW JERSEY
SOUTH DAKOTA
CenTech
(816) 358-8100
North: ERA Associates
(800) 645-5500
South: Vantage Sales
(609) 424-6777
D. A. Case Associates
(612) 831-6777
Tech Trek Ltd.
Mississauga:
(905) 238-0366
Montreal:
(514) 337-7540
Ottawa:
(613) 599-8787
Vancouver:
(604) 276-8735
Calgary:
(403) 291-6866
Concord Component
(205) 772-8883
ARIZONA
Competitive Technology
(602) 265-9224
ARKANSAS
Southern States Marketing
(214) 238-7500
CALIFORNIA
North: Brooks Technical
(415) 960-3880
LA Area: Competitive Tech.
(714) 450-0170
San Diego: ATS
(619) 634-1488
COLORADO
Technology Sales
(303) 792-8835
CONNECTICUT
Kitchen & Kutchin Inc.
(203) 239-0212
DELAWARE
Vantage Sales
(609) 424-6777
FLORIDA
Micro-Electronic Comp.
Deerfield Beach
(305) 426-8944
Tampa
(813) 393-5011
GEORGIA
Concord Component
(404) 416-9597
HAWAII
Brooks Technical
(415) 960-3880
KENTUCKY
CC Electro Sales
(317) 921-5000
LOUISIANA
Southern States Marketing
North: (214) 238-7500
South: (713) 868-5180
MAINE
Kitchen & Kutchin Inc.
(617) 229-2660
MARYLAND
Chesapeake Technology
(301) 236-0530
MASSACHUSETTS
Kitchen & Kutchin Inc.
(617) 229-2660
NEW YORK
Austin: (512) 835-5822
Dallas: (214) 238-7500
NYC: ERA Associates
(516) 543-0510
Upstate: Tri-Tech
Rochester
(716) 385-6500
Birmingham
(607) 722-3580
Fishkill
(914) 897-5611
Concord Component
(919) 846-3441
MINNESOTA
NORTH DAKOTA
D. A. Case Associates
(612) 831-6777
D. A. Case Associates
(612) 831-6777
MISSOURI
OHIO
East: CenTech
(314) 291-4230
West: CenTech
(816) 358-8100
Midwest Marketing Assoc.
Lyndhurst: (216) 381-8575
Dayton: (513) 433-2511
MISSISSIPPI
Southern States Marketing
(214) 238-7500
OKLAHOMA
OREGON
MONTANA
ES/Chase
(503) 684-8500
ILLINOIS
NEVADA
North: El-Mech
(312) 794-9100
South: CenTech
(314) 291-4230
TEXAS
Enco Group
(810) 338-8600
Concord Component
(205) 772-8883
Concord Component
(205) 772-8883
Competitive Technology
(602) 265-9224
NORTH CAROLINA
MICHIGAN
ES/Chase
(503) 684-8500
NEBRASKA
CenTech
(816) 358-8100
IDAHO
NEW MEXICO
TENNESSEE
Southern States Marketing
Kitchen & Kutchin Inc.
(617) 229-2660
Britcomp Sales
Surrey, England
+44-1932 347077
+44-1932 346256
Munich, Germany
+49-894488496
Athismons, France
+33-1-69387678
VIRGINIA
HONG KONG
Chesapeake Technology
(301) 236-0530
Eastele Technology
+85-2-798-8860
WASHINGTON
INDIA
Houston: (713) 868-5180
UTAH
Charles Fields & Assoc.
(801) 299-8228
VERMONT
ES/Chase
(206) 823-9535
WEST VIRGINIA
Chesapeake Technology
(301) 236-0530
WISCONSIN
D. A. Case Associates
(612) 831-6777
WYOMING
Technology Sales
(303) 777-9726
ES/Chase
(503) 684-8500
North: Brooks Technical
(415) 960-3880
South: Competitive Tech.
(602) 265-9224
PENNSYLVANIA
INTERNATIONAL
East: Vantage Sales
(609) 424-6777
West: Midwest Marketing
(216) 381-8575
AUSTRALIA
RHODE ISLAND
Kitchen & Kutchin Inc.
(617) 229-2660
EUROPE
NJS Technology Pty Ltd.
Mulgrave, Victoria
+61-3-562-1244
R&D Electronics
Dingley, Victoria
+61-3-558-0444
Priya Electronics, Inc.
San Jose, CA USA
(408) 954-1866
ISRAEL
TAIWAN
Asian Specific Tech.
+886-2-521-2363
Puteam International
+886-2-729-0373
DISTRIBUTORS
All-American
Locations Nationwide
Headquarters:
(305) 621-8282
Axis Components
Sunnyvale, CA
(408) 522-9595
Axis Components
Irvine, CA
(714) 459-5510
Future Electronics
Locations Worldwide
Headquarters:
(514) 594-7710
Interface Electronics
Hopkinton, MA
(800) 632-7792
(508) 435-0100
Eldis Technology
+972-9-562-666
JAPAN
Actes Engineering
Tokyo
+81-3-3769-3029
Rohm Co. Ltd.
Kyoto
+81-75-311-2121
KOREA
FM Korea
+822-575-9720
Woo Young Tech
+822-369-7099
SALES OFFICES
HEADQUARTERS
Alliance Semiconductor
San Jose, CA
(408) 383-4900
NORTHEAST AREA
Alliance Semiconductor
Boston, MA
(617) 239-8127
MALAYSIA,
SINGAPORE
TECHNICAL CENTER
Technology Distr. Pte Ltd.
+65-299-7811
Alliance Semiconductor
+886-2-723-9944
TAIWAN
Alliance Semiconductor reserves the right to make changes in this data sheet at any time to improve design and supply the best product possible. Alliance Semiconductor cannot
assume responsibility for circuits shown or represent that they are free from patent infringement. Alliance products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of Alliance. The Alliance logo is a trademark of Alliance Semiconductor Corporation. All other
trademarks are property of their respective holders.
ALLIANCE SEMICONDUCTOR
Printed in U.S.A.
3099 North First Street San Jose, CA 95134
(408) 383-4900 Fax (408) 383-4999
Copyright © 1995 All rights reserved.
May 1996
Similar pages