September 2004 Preliminary Information AS9C25512M2018L AS9C25256M2018L ® 2.5V 512/256K X 18 Synchronous Dual-port SRAM with 3.3V or 2.5V interface Features • True Dual-Port memory cells that allow simultaneous access of the same memory location • Organisation: 524,288/262,144 × 18[1] • Fully Synchronous, independent operation on both ports • Selectable Pipeline or Flow-Through output mode • Fast clock speeds in Pipeline output mode: 250 MHz operation (9Gbps bandwidth) • Fast clock to data access: 2.8ns for Pipeline output mode • Asynchronous output enable control • Fast OE access times: 2.8ns • Double Cycle Deselect (DCD) for Pipeline Output Mode • 19/18[1]-bit counter with Increment, Hold and Repeat features on each port • • • • • • • • Dual Chip enables on both ports for easy depth expansion Interrupt and Collision Detection Features 2.5 V power supply for the core LVTTL compatible, selectable 3.3V or 2.5V power supply for I/Os, addresses, clock and control signals on each port Snooze modes for each port for standby operation 15mA typical standby current in power down mode Available in 256-pin Ball Grid Array (BGA), 144-pin Thin Quad Flatpack (TQFP) and 208-pin fine pitch Ball Grid Array (fpBGA) Supports JTAG features compliant with IEEE 1149.1 Note: 1. AS9C25512M2018L/AS9C25256M2018L Selection guide Feature -250 -200 -166 -133 Units 4 5 6 7.5 ns Maximum Pipeline clock frequency 250 200 166 133 MHz Maximum Pipeline clock access time 2.8 3.4 3.6 4.2 ns Maximum flow-through clock frequency 150 133 100 83 MHz Maximum flow-through clock access time 6.5 7.5 10 12 ns TBD 350 300 260 mA 18 18 18 18 mA Minimum cycle time Maximum operating current Maximum snooze mode current 9/24/04; v.1.2 Alliance Semiconductor P. 1 of 30 Copyright © Alliance Semiconductor. All rights reserved. AS9C25512M2018L AS9C25256M2018L ® Dual port logic block diagram R/W Control BE1A-BE0A REGISTER BANK CE0A D R/W Control REGISTER BANK D Q Q BE1B-BE0B REGISTER BANK REGISTER BANK Q D Q CE0B D CE1A CE1B R/WA R/WB O/P Control O/P Control O/P Control 1 PL/FT 0 1 0 O/P Control PL/FT PL/FTA PL/FTB QoutB<17:0> QoutA<17:0> OEA OEB PL/FT PL/FT 0 Q D REGISTER BANK True Dual Port Memory Array 512/256K X 18 REGISTER BANK DQ17A-DQ0A D Q D 0 REGISTER BANK 1 Q 1 REGISTER BANK DinA<17:0> DinB<17:0> Q DQ17B-DQ0B D RPTA RPTB ADSA ADSB INCB INCA A18[1]A-A0A Address Decoding Address Decoding REGISTER BANK Increment Logic Mirror Register D REGISTER BANK Increment Logic Mirror Register D Q Q Address Counter A A18[1]B-A0B Address Counter B CE0B CE0A OPTA CE1A CLKA R/WA PL/FTA CLKA OPTA Interrupt/Collision Detection Logic/Registers CE1B OPTB R/WB PL/FTB CLKB OPTB CLKB INTA INTB COLA COLB ZZA TDI Snooze Logic Snooze Logic ZZB TCK JTAG TDO TMS TRST Note: 1. Address A18 is a NC for AS9C25256M2018L 9/24/04, v.1.2 Alliance Semiconductor P. 2 of 30 AS9C25512M2018L AS9C25256M2018L ® General Description The AS9C25512M2018L/AS9C25256M2018L is a high-speed CMOS 9/4.5-Mbit synchronous Dual-Port Static Random Access Memory device, organized as 524,288/262,144 × 18 bits. It incorporates a selectable Flow-Through/Pipeline output feature for user flexibility. Clockto-data valid time is 2.8ns at 250 MHz for “Pipeline output” mode of operation. Each port contains a 19/18 bit linear burst counter on the input address register that can loop through the whole address sequence. After externally loading the counter with the initial address, it can be Incremented or Held for the next cycle. A new address can also be Loaded or the “Previous Loaded” address can be re-accessed (Repeated) using counter controls (More description to follow). The Registers on control, data, and address inputs provide minimal setup and hold times. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. A particular port can write to a certain location while another port is reading from the same location, but the validity of read data is not guaranteed. However, the reading port is informed about the possible collision through its collision alert signal. The result of writing to the same location by more than one port at the same time is undefined. The Asynchronous Output Enable input pin allows asynchronous disabling of output buffers at any given time. The Byte Enable inputs allow individual byte read/write operations (refer Byte Control Truth Table). An automatic power down feature, controlled by CE0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. AS9C25512M2018L/AS9C25256M2018L can support an operating voltage of either 3.3V or 2.5V on either or both ports, which is controlled by the OPT pins. The power supply for the core of the device (VDD) is at 2.5V. This device is available in 256-pin Ball Grid Array (BGA), 208-pin fine pitch Ball Grid Array (fpBGA) and 144-pin Thin Quad Flatpack (TQFP) Address Counter The AS9C25512M2018L/AS9C25256M2018L carries an internal 19/18 bit address counter for each port which can loop through the entire memory array. The Address counter features are discussed below: Load: Any required external address can be loaded on to the counter. This feature is similar to normal address load in conventional memories. Increment: The address counter has the capability to internally increment the address value, potentially covering the entire memory array. Once the whole address space is completed, the counter will wrap around. The address counter is not initailized on Power-up, hence a known location has to be loaded before Increment operation. Hold: The value of the counter register can be held for an unlimited number of clock cycles by de-asserting ADS, INC, and RPT inputs. Repeat: The previously loaded address (loaded using a valid Load operation) can be re-accessed by asserting RPT input. A separate 19/18 bit register called “Mirror register” is used to hold the last loaded address.This register is not initialized on Power-up, hence a known location has to be loaded before Repeat operation (Refer Counter control truth table for details). 9/24/04, v.1.2 Alliance Semiconductor P. 3 of 30 AS9C25512M2018L AS9C25256M2018L ® Ball Assignment - 256-ball BGA AS9C25512M2018L/AS9C25256M2018L B - 256 Top view 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A NC TDI NC A17A A14A A11A A8A NC CE1A OEA INCA A5A A2A A0A NC NC A B INTA NC TDO A18[1]A A15A A12A A9A BE1A CE0A R/WA RPTA A4A A1A VDD NC NC B C COLA DQ9A VSS A16A A13A A10A A7A NC BE0A CLKA ADSA A6A A3A OPTA NC DQ8A C D NC DQ9B NC PL/FTA VDDQA VDDQA VDDQB VDDQB VDDQA VDDQA VDDQB VDDQB VDD NC NC DQ8B D E DQ10B DQ10A NC VDDQA VDD VDD NC VSS VSS VSS VDD VDD VDDQB NC DQ7A DQ7B E F DQ11A NC DQ11B VDDQA VDD NC NC VSS VSS VSS VSS VDD VDDQB DQ6B NC DQ6A F G NC NC DQ12A VDDQB VSS VSS VSS VSS VSS VSS VSS VSS VDDQA DQ5A NC NC G H NC DQ12B VDDQB VSS VSS VSS VSS VSS VSS VSS VSS VDDQA NC DQ5B H DQ13A DQ14B DQ13B VDDQA ZZB VSS VSS VSS VSS VSS VSS ZZA VDDQB DQ4B DQ3B DQ4A J NC DQ3A K J NC NC K NC NC DQ14A VDDQA VSS VSS VSS VSS VSS VSS VSS VSS VDDQB L DQ15A NC DQ15B VDDQB VDD NC NC VSS VSS VSS VSS VDD VDDQA DQ2A NC DQ2B L M DQ16B DQ16A VDD VDD NC VSS VSS VSS VDD VDD VDDQA DQ1B DQ1A NC M NC VDDQB PL/FTB VDDQB VDDQB VDDQA VDDQA VDDQB VDDQB VDDQA VDDQA N NC DQ17B NC P COLB DQ17A TMS A16B A13B A10B A7B NC BE0B CLKB ADSB R INTB NC TRST A18[1]B A15B A12B A9B BE1B CE0B R/WB T NC TCK NC A17B A14B A11B A8B NC CE1B 1 2 3 4 5 6 7 8 9 NC VDD NC DQ0B NC N A6B A3B NC NC DQ0A P RPTB A4B A1B OPTB NC NC R OEB INCB A5B A2B A0B NC NC T 10 11 12 13 14 15 16 Note: 1. Address A18 is a NC for AS9C25256M2018L 9/24/04, v.1.2 Alliance Semiconductor P. 4 of 30 AS9C25512M2018L AS9C25256M2018L ® Ball Assignment - 208-ball fpBGA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A DQ9A INTA VSS TDO NC A16A A12A A8A NC VDD CLKA INCA A4A A0A OPTA NC VSS A B NC VSS COLA TDI A17A A13A A9A NC CE0A VSS ADSA A5A A1A NC NC B VDDQA DQ9B VDDQB PL/FTA A18[1] A14A A A10A BE1A CE1A VSS R/WA A6A A2A VDD VSS C A7A BE0A VDD OEA RPTA A3A VDD NC DQ7B D C NC D NC VSS DQ10A E DQ11A NC VDDQB DQ10B F VDDQA DQ11B NC E DQ6B NC VDDQB F NC G NC H VDD NC VDDQB DQ12B J VDDQA VDD VSS ZZB K DQ14B DQ13B VSS L NC M VDDQA NC DQ15B VSS N NC VSS NC DQ15A AS9C25512M2018L/AS9C25256M2018L F - 208 Top view DQ14A VDDQB DQ13A VDDQA DQ7A VSS NC DQ12A NC NC VSS VSS DQ8B DQ6A VSS NC P A11A NC G VSS A15A VDDQB DQ8A VDDQA DQ5A VDD NC VSS DQ5B H ZZA VDD VSS VDDQB J VSS K DQ4A L DQ3B VDDQA DQ4B NC DQ3A VSS NC DQ1B VDDQA DQ2B VDDQB M NC DQ2A N VSS NC P DQ16B DQ16A VDDQB COLB TRST A16B A12B A8B NC VDD CLKB INCB A4B NC TCK A17B A13B A9B NC CE0B VSS ADSB A5B A1B NC A18[1]B A14B A10B BE1B CE1B VSS R/WB A6B A2B VSS NC VSS NC T U NC DQ17B DQ1A VSS VDDQA DQ0B VDDQB R VSS T NC U VSS INTB PL/FTB NC A15B A11B A7B BE0B VDD OEB RPTB A3B A0B VDD OPTB NC DQ0A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 DQ17A VDDQA TMS R Note: 1. Address A18 is a NC for AS9C25256M2018L 9/24/04, v.1.2 Alliance Semiconductor P. 5 of 30 AS9C25512M2018L AS9C25256M2018L ® 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PL/FTA NC NC A18[1]A A17A A16A A15A A14A A13A A12A A11A A10A A9A A8A A7A BE1A BE0A CE1A CE0A VDD VSS CLKA OEA R/WA ADSA INCA RPTA A6A A5A A4A A3A A2A A1A A0A VDD NC Pin Assignment - 144-pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 AS9C25512M2018L/AS9C25256M2018L T - 144 Top view 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 OPTA VDDQB VSS DQ8A DQ8B DQ7A DQ7B DQ6A DQ6B VSS VDDQA DQ5A DQ5B VSS VDDQB VDD VDD VSS VSS ZZA VDDQA DQ4B DQ4A DQ3B DQ3A VSS VDDQB DQ2B DQ2A DQ1B DQ1A DQ0B DQ0A VSS VDDQA OPTB PL/FTB NC NC [1] A18 B A17B A16B A15B A14B A13B A12B A11B A10B A9B A8B A7B BE1B BE0B CE1B CE0B VDD VSS CLKB OEB R/WB ADSB INCB RPTB A6B A5B A4B A3B A2B A1B A0B VDD NC 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 VSS VDDQB VSS DQ9A DQ9B DQ10A DQ10B DQ11A DQ11B VDDQA VSS DQ12A DQ12B VDDQB ZZB VDD VDD VSS VSS VDDQA VSS DQ13B DQ13A DQ14B DQ14A VDDQB VSS DQ15B DQ15A DQ16B DQ16A DQ17B DQ17A VSS VDDQA NC Note: 1. Address A18 is a NC for AS9C25256M2018L 9/24/04, v.1.2 Alliance Semiconductor P. 6 of 30 AS9C25512M2018L AS9C25256M2018L ® Signal description Signal Port A Port B CLKA CLKB A0A - A18A A0B - A18B DQ0A - DQ17A DQ0B - DQ17B CE0A, CE1A CE0B, CE1B R/WA R/WB BE0A - BE1A BE0B - BE1B ADSA ADSB INCA INCB RPTA RPTB OEA OEB ZZA ZZB PL/FTA PL/FTB OPTA OPTB INTA INTB COLA COLB VDDQA VDDQB VDD VSS TCK TDI TDO TMS TRST I/O Properties Description Notes Clock. Each port has an independent Clock input that can be of different frequencies. All I CLOCK inputs except OEx and ZZx are synchronous to the corresponding port’s clock and must meet setup and hold time about the rising edge of the clock. I SYNC External Address. Sampled on the rising edge of corresponding port clock I/O SYNC Bidirectional data pins Chip enable inputs. Active low and high, respectively. Sampled on the rising edge of I SYNC corresponding port clock. I SYNC Read/Write enable. Drive this pin LOW to write to, or HIGH to Read from the memory array. Byte Enable Inputs. Active low. Asserting these signals enables Read and Write operations to I SYNC the corresponding bytes of the memory array. (Refer Byte Control Truth Table) Address Strobe Enable.Active low. Loads external address onto the counter. (Refer Counter I SYNC Control Truth Table) Address Counter Increment. Active low. Increments the counter value. (Refer Counter Control I SYNC Truth Table) Address Counter Repeat. Active low. Reloads the counter with the previously loaded external I SYNC address.(Refer Counter Control Truth Table) Asynchronous output enable. I/O pins are driven when the OE is low and the chip is in Read I ASYNC mode. A high on OE tristates the I/O pins. Snooze Mode Input. Places the device in low power mode. Data is retained. This pin has an I ASYNC internal pull-down and can be floating. Pipeline/Flow-Through Select. When low, enables single register flow-through mode. When I STATIC high, enables double register Pipeline mode. This pin has an internal pull-up and can be left floating to operate in pipeline mode. VDDQx Option. OPTx selects the operating voltage levels for the I/Os, addresses, clock, and I STATIC controls on that port. This pin has an internal pull-up and can be left floating to operate in 3.3V mode. Interrupt Flag. Used for message passing between two ports. (Refer Interrupt Logic Truth O SYNC Table) Collision Alert Flag. Used to indicate collision during simultaneous memory access to the O SYNC same location by both the ports (Refer Collision Detection Truth Table) I POWER Power to I/O bus. Can be 3.3V or 2.5V depending on OPTx input. I POWER Power Inputs (To be connected to 2.5V Power supply) I GROUND Ground Inputs (To be connected to Ground supply) CLOCK I JTAG Test Clock Input. All JTAG signals except TRST are synchronous to this clock. (JTAG) SYNC JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers. I (JTAG) SYNC JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally O (JTAG) tristated except when the captured data is shifted out of the JTAG TAP. SYNC JTAG Test Mode Select Input. It controls the JTAG TAP state machine. State machine I (JTAG) transitions occur on the rising edge of TCK. ASYNC JTAG Test Reset Input. Asynchronous input used to initialize TAP controller. I (JTAG) 1 6 1,2,3 5 5 1,2,3 2 Notes: 1. Subscript 'x' represents 'A' for Port A and 'B' for Port B. 2. OPTx,VDDQx and VDD must be set to appropriate operating levels before applying inputs on the I/Os and controls for that port. 3. OPTx = VDD (2.5V) implies that corresponding port's I/Os, addresses, clock, and controls will operate at 3.3V level and VDDQx must be supplied at 3.3V. OPTx = VSS (0V) implies that corresponding port's I/Os, addresses, clock, and controls will operate at 2.5V level and VDDQx must be supplied at 2.5V. Each port can independently operate on either of the VDDQ levels. 4. If unused JTAG inputs may be left unconnected. 5. JTAG, Collision Detection & Interrupt features are not supported in TQFP package. 6. Address A18 is a NC for AS9C25256M2018L. 9/24/04, v.1.2 Alliance Semiconductor P. 7 of 30 4,5 4,5 5 4,5 4,5 AS9C25512M2018L AS9C25256M2018L ® Byte control truth table[1,2,3,4,5] BE1 BE0 CLK Mode H H L to H All Bytes Deselected - NOP H L L to H Read or Write Byte 0 L H L to H Read or Write Byte 1 Notes: 1. L = low, H = high 2. CE0 = L, CE1 = H (Chip in Select mode) 3. R/W = H for a Read operation, R/W = L for a Write operation 4. Byte 1 - DQ[17:9], Byte 0 - DQ[8:0] 5. More than one byte enable may be simultaneously asserted Read/write control truth table[1,4] CE[2] R/W BEn[3] CLK DQn[0:8][3,7] H X X L to H Chip Deselect Hi-Z[5,9] L X H L to H Byte Deselect Hi-Z[5,9] L L L L to H Byte Write Din[6] L H L L to H Byte Read Qout[5,8] Operation Notes: 1. L = low, H = high, X = don't care 2. CE is an internal signal. CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H) 3. BEn refers to any one of the 2 byte controls [n = 1 or 0] and DQn refers to the corresponding Byte 4. Snooze de-asserted (ZZ=L) 5. True in flow-through mode. For Pipeline mode there will be a 1 cycle latency [refer timing diagrams] 6. For a write command issued before the completion of a read command, OE must be HIGH before the input data setup time and held HIGH throughout the input data hold time. 7. All DQs are tristated on power-up 8. OE should be asserted (OE = L) (Refer Read timing waveform) 9. In pipeline mode the DQs are HighZ-ed in the same cycle if R/W=L Counter control truth table[1,2,5,6] CLK ADS[3] INC[3] RPT[3] External Address Previous Address Accessed Mirror Register Content[4] Address Accessed Operation Load [4] L to H L X H An X An An L to H H L H X An Am An + 1 L to H H H H X An Am An Hold L to H X X L X X Am Am Repeat Increment Notes: 1. L = low, H = high, X = don't care 2. Cycle can be Read, Write or Deselect (Controlled by appropriate setting of R/W, CE0, CE1 and BEn) 3. ADS, INC, RPT are independent of all other memory controls including R/W, CE0,CE1 and BEn (i.e Counter works independent of R/W, CE0,CE1 and BEn) 4. The 'Mirror register' used for the Repeat operation is loaded with External address during every valid ADS access. “Am” refers to the mirror register content. 5. Clock to the counter is disabled during Snooze mode (True for both ports). 6. The counter and the mirror registers are not initialized on Power-up (refer Counter description). 9/24/04, v.1.2 Alliance Semiconductor P. 8 of 30 AS9C25512M2018L AS9C25256M2018L ® Package Thermal Resistance Description Conditions Thermal Resistance (junction to ambient)[1] Thermal Resistance (junction to top of case)[1] Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA/JESD51 Symbol Typical Units BGA θJA TBD °C/W fpBGA θJA TBD °C/W TQFP θJA TBD °C/W θJC TBD °C/W Notes: 1. This parameter is sampled. Capacitance[1] (TA = +25 °C, F = 1.0 Mhz)[2] Parameter Input Capacitance Symbol Signals Test Condition[3] BGA (Max) fpBGA (Max) TQFP (Max) Unit CIN Address and Control pins VIN = L to H or H to L TBD TBD TBD pF Output Capacitance COUT I/O Capacitance CI/O Flag Output pins VOUT = L to H or H to L I/O pins VI/O = L to H or H to L TBD TBD TBD pF TBD TBD TBD pF Notes: 1. Sampled, not 100% tested 2. TA stands for 'Ambient temperature'. 3. L = 0V; H = 3V Absolute maximum ratings[1] Rating Parameter Symbol Min Max Unit VDD -0.5 3.6 V VDDQ -0.3 3.9 V Input and I/O voltage relative to VSS VIN -0.3 VDDQ + 0.3 V Power Dissipation PD - TBD W Short circuit output current IOUT - TBD mA Storage Temperature TSTG -65 150 °C Storage Temperature under Bias TBIAS -55 125 °C TJN - TBD °C Core supply voltage relative to VSS I/O supply voltage relative to VSS Junction Temperature Notes: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating for extended periods may affect reliability. 9/24/04, v.1.2 Alliance Semiconductor P. 9 of 30 AS9C25512M2018L AS9C25256M2018L ® Recommended operating Temperature Grade Ambient Temperature (TA) Commercial 0°C to 70°C Industrial -40°C to 85°C Recommended operating conditions Parameter Core Supply Voltage I/O supply Voltage Ground VDDQ = 2.5V[1] VDDQ = 3.3V[2] Symbol Min Typ Max Min Typ Max Unit VDD 2.4 2.5 2.6 2.4 2.5 2.6 V VDDQ 2.4 2.5 2.6 3.15 3.3 3.45 V VSS 0 0 0 0 0 0 V Notes: 1. OPT pin for a given port must be set to VSS(0V) to operate at VDDQ = 2.5V levels on the I/Os, addresses, clock and controls of that port. 2. OPT pin for a given port must be set to VDD(2.5V) to operate at VDDQ = 3.3V levels on the I/Os, addresses, clock and controls of that port. DC Electrical Characteristics (VDD = 2.5 V ± 100 mV) VDDQ = 2.5V Parameter Symbol Input Leakage Current |ILI| PL/FT and ZZ Input Leakage Current |ILI| Output Leakage Current[1] |ILO| Input high (logic 1) voltage (Address, Control, Clock & Data Inputs) VIH Test Conditions VDDQ = Max; Min VDDQ = 3.3V Max Test Conditions VDDQ = Max; Min Max Units - 2 µA - 2 µA - 2 µA - 2 - 2 - 2 - 1.7 VDDQ + 0.1V - 2 VDDQ + 0.15V V VIH - VDD - 0.2V VDD + 0.1V - VDD - 0.2V VDD + 0.1V V Input low (logic 0) voltage (Address, Control, Clock & Data Inputs) VIL - -0.3 0.7 - -0.3 0.8 V Input low voltage (ZZ,OPT,PL/FT) VIL - -0.3 0.2 - -0.3 0.2 V Output low voltage VOL - 0.4 - 0.4 V Output high voltage VOH 2.0 - 2.4 - V Input high voltage (ZZ,OPT,PL/FT) 0V < VIN < VDDQ VDD = Max; 0V < VIN < VDD OE>=VIH; 0V < VOUT < VDDQ IOL = +2mA; VDDQ = Min IOH = -2mA; VDDQ = Min 0V < VIN < VDDQ VDD = Max; 0V < VIN < VDD OE>=VIH; 0V < VOUT < VDDQ IOL = +4mA; VDDQ = Min IOH = -4mA; VDDQ = Min Notes: 1. Outputs disabled (High-Z condition). 9/24/04, v.1.2 Alliance Semiconductor P. 10 of 30 AS9C25512M2018L AS9C25256M2018L ® IDD operating conditions and maximum limits[4] (VDD = 2.5 V ± 100 mV) Parameter Symbol Test Conditions -250 -200 -166 -133 Units Typ Max Typ Max Typ Max Typ Max Operating current (Both ports active) Pipeline mode -(PL/FT > VIH) Operating current (Both ports active) Both ports enabled (CEA = CEB = L[3]), ICC TBD 350 TBD 300 TBD 260 mA TBD TBD TBD TBD TBD TBD TBD TBD mA TBD TBD TBD 105 TBD 90 TBD 80 mA TBD TBD TBD 265 TBD 225 TBD 190 mA 20 25 20 25 20 25 20 25 mA TBD TBD TBD 265 TBD 225 TBD 190 mA 15 18 15 18 15 18 15 18 mA f=fMax[1] Both ports disabled (CEA = CEB = H), ISB1 ZZA = ZZB < VIL, f=fMax [1] One port enabled (CEA = L and CEB = H)[5], Standby current (One port) ISB2 Full standby current (Both ports) ISB3 Full standby current (One port) TBD Outputs disabled (IOUT = 0mA), ZZA = ZZB < VIL, Flow-through mode (PL/FT < VIL) Standby current (Both ports) TBD Active port's outputs disabled, ZZA = ZZB < VIL, f=fMax [1] Both ports disabled (CEA = CEB = H), ZZA = ZZB < VIL, [2] f=0 ISB4 One port in Snooze (ZZA > VIH, ZZB < VIL, and CEB = L)[5], Active port's outputs disabled, f=fMax[1] Snooze mode current IZZ Both ports in Snooze (ZZA = ZZB > VIH), f=fMax[1] Notes: 1. f=fMax implies address and controls (except OE) are cycling at maximum clock frequency using AC test conditions (Refer AC test conditions). 2. f = 0 implies address and controls are static. Corresponding current numbers indicated are true for both CMOS (VIN > VDDQ - 0.2V or VIN < 0.2V) and TTL (VIN > VIH or VIN < VIL) level inputs. 3. CEA and CEB are internal signals (CEx = L implies CE0x < VIL and CE1x > VIH, CEx = H implies CE0x > VIH or CE1x < VIL). 4. Subscript 'x' represents 'A' for Port A and 'B' for Port B. 5. “A” and “B” are interchangeable. 9/24/04, v.1.2 Alliance Semiconductor P. 11 of 30 AS9C25512M2018L AS9C25256M2018L ® AC timing characteristics[1,2,5,6] (VDD = 2.5 ± 100mV) Parameter Symbol Clock Cycle Time (Pipeline) Clock High Pulse Width (Pipeline) Clock Low Pulse Width (Pipeline) Cycle Time (Flow-Through) Clock High Pulse Width (Flow-Through) Clock Low Pulse Width (Flow-Through) Output Clock access time (Pipeline) Output Data Hold from Clock High (Pipeline) Clock High to Output Low-Z (Pipeline) Clock High to Output High-Z (Pipeline) Clock access time (Flow-Through) Output Data Hold from Clock High (Flow-Through) Clock High to Output Low-Z (Flow-Through) Clock High to Output High-Z (Flow-Through) Output Enable to Data Valid Output Enable Low to Output Low-Z Output Enable High to Output High-Z Setup Address Setup to Clock High Chip Enable Setup to Clock High Byte Enable Setup to Clock High R/W Setup to Clock High Input Data Setup to Clock High ADS Setup to Clock High INC Setup to Clock High RPT Setup to Clock High Hold Address Hold from Clock High Chip Enable Hold from Clock High Byte Enable Hold from Clock High R/W Hold from Clock High Input Data Hold from Clock High ADS Hold from Clock High INC Hold from Clock High RPT Hold from Clock High Flag Interrupt Flag Set Time Interrupt Flag Reset Time Collision Flag Set Time Collision Flag Reset Time Port-to-Port Delay Clock-to-Clock Delay tCYCP tCHP tCLP tCYCF tCHF tCLF tCDP tOHP tLZCP tHZCP tCDF tOHF tLZCF tHZCF tOE tLZOE tHZOE -250 Min. Max. 4 1.7 1.7 6.5 1.7 1.7 - 1 1 1 1 1 1 - 5 2 2 7.5 2 2 - 2.8 - - 1 1 1 2.8 6.5 2.8 2.8 - 1 1 1 - -166 Min. Max. 6 2.4 2.4 10 2.4 2.4 - 3.4 - - 1 1 1 Notes ns ns ns ns ns ns 3 3 3 3 3 3 3.6 - 4.2 3 - 1 1 1 - - 4.2 4.2 1 1 4.2 ns ns ns ns ns ns ns ns ns ns ns - 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 - ns ns ns ns ns ns ns ns 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - ns ns ns ns ns ns ns ns 6 6 3.4 3.4 - 6 6 3.6 3.6 - 7 7 4.2 4.2 ns ns ns ns - 4 - 5 - ns 3.4 7.5 3.4 3.4 - 1 1 1 - 3.6 10 3.6 3.6 - 2.8 3.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 - 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 - 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 - tADSH tINCH tRPTH 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 - 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - tSINT tRINT tSCOL tRCOL - 6 6 2.8 2.8 - tCCO 3.0 - 3.5 tAH tCEH tBH tWH tDH Unit - 1 1 tADSS tINCS tRPTS -133 Min. Max. 7.5 3 3 12 3 3 1 1 tAS tCES tBS tWS tDS 1 1 -200 Min. Max. 3.6 1 1 1 4.2 12 - - 3,8 3,8 3 3,8 3,8 4 4 4 7 Notes: 1. All timings are same for both ports. 2. These values are valid for either level of VDDQ (2.5V/3.3V) 3. A particular port will operate in Pipeline output mode if PL/FT = VDD and in flow-through output mode if PL/FT = 0V. Each port can independently operate in any of these modes. 4. Output Enable (OE) is an asynchronous input. 5. PL/FT and OPT should be treated as DC signals and should reach steady state before normal operation. 6. Refer AC Test Conditions to view the test conditions used for these measurements. 7. This parameter has to be taken care to avoid collision during simultaneous memory access of the same location. 8. To avoid bus contention, at a given voltage and temperature tLZC is more than tHZC (True in both Pipeline and flow-through output mode). 9/24/04, v.1.2 Alliance Semiconductor P. 12 of 30 AS9C25512M2018L AS9C25256M2018L ® Timing waveform of read cycle[7] Don’t care tCYC[2] tCL tCH Undefined CLK tCES tCEH CE[3] tBS tBH BEn[4] R/W tWH tWS tAS tAH ADDRESS[5] A2 A1 A6 A5 A4 A3 A7 A11 A10 A9 A8 A13 A12 tLZOE OE[6] [Pipeline Mode] tOHP DATA OUT[1] tLZCP Q1 Q1 [Pipeline Mode] tHZCP tHZOE Q2 tOE Q10 Q8 Q6 tLZOE tCDP tLZOE OE[6] [Flow-through Mode] tOHF tLZCF DATA OUT[1] Q1 Q1 [Flow-through Mode] tHZCF tHZOE Q2 tOE Q12 Q10 Q8 Q6 tLZOE tCDF Read (A1) Read (A2) Dsel Read[8] (A4) Dsel Read (A6) Read (A7) Read (A8) Dsel Read (A10) Dsel Read (A12) Notes: 1. Both Flow-through and Pipeline Outputs indicated. A particular port is configured in Flow-through mode if PL/FT for that port is driven low, and in Pipeline mode if PL/FT is driven high or left unconnected. 2. Parameters tCYC, tCH and tCL are different in Flow-through and Pipeline modes of operation (Refer AC Timing characteristics). 3. CE is an internal signal.CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H). Timings indicated for CE hold good for CE0 and CE1 4. BEn refers to any one of the 2 byte controls [n = 1 or 0] and DATA OUT refers to the corresponding Byte. 5. Counter set in “Load” mode (ADS = L,INC = X,RPT = H). 6. OE is an asynchronous input. 7. All timings are similar for both ports. 8. Read with Byte disabled. Data is not read out.Bus in High-Z condition. 9/24/04, v.1.2 Alliance Semiconductor P. 13 of 30 AS9C25512M2018L AS9C25256M2018L ® Timing wave form read/write cycle[7] tCYC[2] tCL tCH CLK Don’t care Undefined tCES tCEH CE[3] tBS tBH BEn[4] R/W tWH tWS tAS tAH [5] ADDRESS A2 A1 A5 A4 A3 A3 A6 A8 A7 A10 A9 A11 A12 OE[6] tDS tDH [Pipeline Mode] [1] DATA IN D3 [Pipeline Mode] tCDP D6 tHZCP [1] DATA OUT D8 tHZOE Q9 Q1 [Pipeline Mode] tLZCP OE[6] [Flow-through Mode] [1] DATA IN [Flow-through Mode] D3 [1] DATA OUT Q1 [Flow-through Mode] D11 D6 tHZCF tOHF tCDF tHZOE Q4 Q2 tDS tDH Q9 Q7 tLZCF Read (A1) Read (A2) Write[8] Write (A3) Read (A4) Read (A5) Write (A6) Read (A7) Write[9] (A8) Read (A9) Dsel Write[9] (A11) Notes: 1. Both Flow-through and Pipeline Inputs/Outputs indicated.A particular port is configured in Flow-through mode if PL/FT for that port is driven low, and in Pipeline mode if PL/FT is driven high or left unconnected. 2. Parameters tCYC,tCH and tCL are different in Flow-through and Pipeline modes of operation.(Refer AC Timing characteristics) 3. CE is an internal signal.CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H). Timings indicated for CE hold good for CE0 and CE1 4. BEn refers to any one of the 2 byte controls [n = 1 or 0] and DATA OUT refers to the corresponding Byte. 5. Counter set in “Load” mode (ADS = L,INC = X,RPT = H). 6. OE is an asynchronous input. 7. All timings are similar for both ports. 8. Invalid write. Memory Content of the selected location may get corrupted and should be re-written before future readback. 9. Write (A11) is invalid in Pipeline mode and Write (A8) is invalid in Flow-through mode. Memory Content of the selected location may get corrupted and should be re-written before future readback. 9/24/04, v.1.2 Alliance Semiconductor P. 14 of 30 AS9C25512M2018L AS9C25256M2018L ® Timing waveform of address counter[6] tCYC[2] tCL tCH Don’t care Undefined CLK tCES tCEH [4] CE[3] R/W tWH tWS tAS tAH ADDRESS A2 A1 INTERNAL ADDRESS A1+1 A1 A1+2 A1+2 A1+1 A1 A1+2 A1+2 A2+1 A2 A2+1 A2 Dsel Hold Dsel Rept tADSS tADSH ADS tINCS tINCH INC tRPTS tRPTH RPT DATA IN tDS tDH D1 D1+1 D1+2 D1+2 tCDP tOHP tHZCP [5] DATA OUT[1] Q1 [Pipeline Mode] tCDF DATA OUT[1] tLZCP Q1 [Flow-through Mode] Write Load (A1) Write Incr Write Incr Write Hold Q4 Q4 Q3 Q1+2 Q1+1 tOHF tHZCF [5] Q1+2 Q1+1 tLZCF Read Rept Read Incr Read Incr Read Hold Dsel Load (A2) Dsel Incr Notes: 1. Both Flow-through and Pipeline Outputs indicated. A particular port is configured in Flow-through mode if PL/FT for that port is driven low, and in Pipeline mode if PL/FT is driven high or left unconnected. 2. Parameters tCYC,tCH and tCL are different in Flow-through and Pipeline modes of operation (Refer AC Timing characteristics). 3. CE is an internal signal. CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H). Timings indicated for CE hold good for CE0 and CE1. 4. These cycles indicate that Counter works independent of all memory controls including R/W,CE and BEn. 5. If a Hold operation is performed for a Read access, the Data-out is held valid for the subsequent clock cycle also. 6. All timings are similar for both ports. 9/24/04, v.1.2 Alliance Semiconductor P. 15 of 30 AS9C25512M2018L AS9C25256M2018L ® Mailbox Interrupts The AS9C25512M2018L/AS9C25256M2018L has an Inbuilt Mailbox Logic that can be used for communication between the two ports. One memory location is assigned as mail box (message center) for each port. The location 7FFFE (HEX) is assigned as the message center for Port A and 7FFFF (HEX) for Port B (3FFFE and 3FFFF for AS9C25256M2018L). The port A interrupt flag (INTA) is asserted when the port B writes to memory location 7FFFE (HEX) (3FFFE for AS9C25256M2018L). The port A clears the interrupt flag by reading the address location 7FFFE (HEX) (3FFFE for AS9C25256M2018L). Likewise, the port B interrupt flag (INTB) is asserted when the port A writes to memory location 7FFFF (HEX) (3FFFF for AS9C25256M2018L) and to clear the interrupt flag (INTB), the port B must read the memory location 7FFFF (3FFFF for AS9C25256M2018L).(Refer Interrupt Logic Truth Table). The interrupt flag is asserted in a flow-through mode (i.e., it follows the clock edge of the writing port). Also, the flag is reset in a flowthrough mode (i.e., it follows the clock edge of the reading port). Each port can read the other port’s mailbox without de-asserting the interrupt and each port can write to its own mailbox without asserting the interrupt. If an application does not require message passing, INT pins can be ignored. Interrupt logic truth table[1,4,5] CLKA R/WA CEA[2] A18A-A0A[3,6] CLKB R/WB CEB[2] A18B-A0B[3,6] Function INTA INTB L to H L L 7FFFF L to H X X X X L Assert Port B Interrupt Flag L to H X X X L to H H L 7FFFF X H De-assert Port B Interrupt Flag L to H X X X L to H L L 7FFFE L X Assert Port A Interrupt Flag L to H H L 7FFFE L to H X X X H X De-assert Port A Interrupt Flag Notes: 1. L = low, H = high, X = don't care 2. CEx is an internal signal ('x' = 'A' or 'B'). CEx = H implies 'Chip is Deselected' (CE0x = H or CE1x =L), CEx = L implies 'Chip is Selected' (CE0x = L and CE1x =H) 3. Address specified here is the internal address (refer Counter control truth table). 4. Both Interrupt Flags are De-asserted on power-up. 5. Interrupt feature is not supported in TQFP package. 6. Address A18 is a NC for AS9C25256M2018L, hence Interrupt addresses are 3FFFF and 3FFFE 9/24/04, v.1.2 Alliance Semiconductor P. 16 of 30 AS9C25512M2018L AS9C25256M2018L ® Interrupt timing wave form[2] tCYC[1] Don’t care CLKA tCL[1] tCH[1] tWS tWH R/WA[2] ADDRESSA[3] tAS tAH [4] Aa 7FFFF 7FFFF Aa [5] Aa Aa Aa 7FFFE tSINT tRINT INTA tCYC[1] CLKB tCL[1] tWS tCH[1] tWH R/WB[2] [5] ADDRESSB[3] Ab tSINT tAS tAH [4] Ab 7FFFF 7FFFE 7FFFE Ab Ab Ab tRINT INTB Notes: 1. Parameters tCYC,tCH and tCL are different in Flow-through and Pipeline mode of operation and can be different for different ports (Refer AC Timing characteristics). 2. Chip Selected (CE0 = L and CE1 =H). True for both ports. 3. Address indicated is the Internal Address used and is dependent on the Address counter control inputs for that cycle. 4. 7FFFF (3FFFF for AS9C25256M2018L) is the Mailbox for port B and 7FFFE (3FFFE for AS9C25256M2018L) is the Mailbox for port A. 5. “Aa” and “Ab” refer to any other valid address other than 7FFFF or 7FFFE (3FFFF or 3FFFE for AS9C25256M2018L). 9/24/04, v.1.2 Alliance Semiconductor P. 17 of 30 AS9C25512M2018L AS9C25256M2018L ® Collision detection Three different cases of collisions can be listed depending on the type of access from two ports: Simultaneous Read: A true dual-ported memory cell allows data to be read simultaneously from both ports of the device. Hence no data is corrupted, lost, or incorrectly output, and none of the collision alert flags is asserted. Simultaneous Write: When both ports are writing simultaneously to the same location, both write operations would fail. Therefore, the collision flag is asserted on both ports. Simultaneous Read and Write: When one port is writing and the other port is reading from the same location in the memory, the data written will be valid. However, the read operation would fail and hence the reading port's collision flag is asserted. The alert flag (COLx) is asserted on the 3rd (for both pipe-lined and flow-through output mode) rising clock edge of the affected port following the collision, and remains low for one cycle. On continuous collisions (one or both ports writing during each access), the collision alert flag will be asserted and de-asserted every alternate cycle. Collision detection truth table[1,2,4,5] CLKA R/WA CLKB R/WB Port address[3] COLA Function COLB L to H H L to H H MATCH H H Both ports reading. Not a valid collision. No collision flag asserted on either port. L to H H L to H L MATCH L H Port A reading, Port B writing. Valid collision. Collision flag asserted on port A. L to H L L to H H MATCH H L Port B reading, Port A writing. Valid collision. Collision flag asserted on port B. L to H L L to H L MATCH L L Both ports writing. Valid collision. Collision flag asserted on both ports. L to H L L to H H NO MATCH H H No match. No collision flag asserted on either port. Notes: 1. L = low, H = high, X = don't care 2. Chip Selected (CE0 = L and CE1 =H). True for both ports. Collision flag is not affected if any one or both ports are deselected. 3. “MATCH” indicates that internal addresses of both the ports are the same (refer Counter control truth table). 4. Both Collision Flags are De-asserted on power-up. 5. Collision detection feature is not supported in TQFP package. 9/24/04, v.1.2 Alliance Semiconductor P. 18 of 30 AS9C25512M2018L AS9C25256M2018L ® Collision timing waveform[2] Don’t care tCYC[1] CLKA tCH[1] [5] tCCO tCL[1] tWS tWH R/WA tAS tAH [4] ADDRESSA[3] Aa Am Am Aa Aa Am tSCOL Aa Am Am Am Am Aa tRCOL COLA tCYC[1] CLKB tCL[1] tCH[1] tWS tWH R/WB tAS tAH ADDRESSB[3] Am Ab [4] Am Ab Ab Am Ab Am tSCOL Am Am Am Ab tRCOL COLB Notes: 1. Parameters tCYC,tCH and tCL are different in Flow-through and Pipeline mode of operation and can be different for different ports (Refer AC Timing characteristics). 2. Chip Selected (CE0 = L and CE1 =H). True for both ports. 3. Address indicated is the Internal Address used and is dependent on the Address counter control inputs for that cycle. 4. “Am” refers to matched address. “Aa” and “Ab” refer to any other valid address. 5. During address collision the data validity is guaranteed only if tCCO is greater than the minimum specified (Refer AC timing characteristics). 9/24/04, v.1.2 Alliance Semiconductor P. 19 of 30 AS9C25512M2018L AS9C25256M2018L ® Depth and Width expansion AS9C25512M2018L/AS9C25256M2018L has two chipselects (one active high and other active low) for simple depth expansion. This permits easy upgrade from 512/256K depth to 1M/512K depth without extra logic. Two such parts can also be combined to obtain an expanded width of 36 bits or wider. DQ<0:35> Data Address Clock CLK 512/256Kx18 DPSRAM INC RPT CLK DQ<0:17> 512/256Kx18 DPSRAM R/W BE<0:1> OE ADS INC RPT BANK 1 DQ<18:35> DQ<0:17> A<0:18>[1] A<0:18>[1] CE0 CE1 R/W BE<0:1> OE ADS Controller A<0:18>[1] A<19>[3] DQ<0:17> CE0 CE1 DQ<18:35> DQ<0:17> A<0:18>[1] Clock A<0:18>[1] A<19>[3] Microprocessor A<0:18>[1] A<0:19>[2] BANK 0 Notes: 1. A<0:18> for AS9C25512M2018L, A<0:17> for AS9C25256M2018L 2. A<0:19> for AS9C25512M2018L, A<0:18> for AS9C25256M2018L 3. A<19> for AS9C25512M2018L, A<18> for AS9C25256M2018L Timing waveform of multi device read[4,5,6] tCYC[1] tCL tCH CLK Don’t care Undefined tWS tWH R/W A[0:18][2] tAS tAH A1 A2 A5 A4 A3 A6 A8 A7 A[19][3] tCDP DATA OUT [0:35] (BANK 0) tOHP tCDP tOHF tCDF Q1 tHZCF tLZCP Q2 Q4 tCDF tLZCF Q3 Read (Bank0) Read (Bank1) Read (Bank0) tLZCF tHZCF tOHF Q5 [Flow-through Mode] Read (Bank0) tHZCP Q6 Q5 Q3 DATA OUT [0:35] (BANK 0) DATA OUT [0:35] (BANK 1) Q4 Q2 tLZCP DATA OUT [0:35] (BANK 1) [Flow-through Mode] tHZCP Q1 [Pipeline Mode] [Pipeline Mode] tOHP Read (Bank1) Q6 Read (Bank1) Read (Bank0) Notes: 1. Parameters tCYC, tCH and tCL are different in Flow-through and Pipeline mode of operation (Refer AC Timing characteristics). 2. A<0:18> for AS9C25512M2018L, A<0:17> for AS9C25256M2018L 3. A<19> for AS9C25512M2018L, A<18> for AS9C25256M2018L 4. Refer to the above block diagram for the assumed setup. 5. One Bank is assumed to have two AS9C25512M2018L/AS9C25256M2018Ls combined to have an expanded width of 36 bits. Two such Banks are used for depth expansion. 6. All BEn's = L, Counter set in “Load” mode (ADS = L, INC = X, RPT = H), OE =L. 9/24/04, v.1.2 Alliance Semiconductor P. 20 of 30 AS9C25512M2018L AS9C25256M2018L ® Snooze mode Snooze mode is a low-current, power-down mode in which the corresponding port is deselected and its current is reduced to a very low value. Both ports are equipped with independent SNOOZE inputs (ZZ). During Snooze mode, all inputs of the port except ZZ are internally disabled and all its Outputs go to High-Z. ZZ is an asynchronous, active HIGH input that causes the selected port to enter Snooze mode. If both ports go into Snooze mode, the device is deselected and current is reduced to IZZ. When ZZA and ZZB become a logic HIGH, IZZ is guaranteed after the setup time tSCZZ is met. Any READ or WRITE operation pending when the port enters Snooze mode is not guaranteed to complete. Therefore, Snooze mode must not be initiated until valid pending operations are completed. Similarly during the time tRCZZ, when the port is transitioning out of snooze mode, only DESELECT cycles should be given. Snooze mode electrical characteristics Description Conditions Symbol Min Max Units ZZA = ZZB >= VIH IZZ 15 18 mA ZZ active to input ignored tSCZZ - 2 cycle SNOOZE MODE Current ZZ inactive to input sampled tRCZZ 2 - cycle ZZ active to enter Snooze Current tSIZZ - 2 cycle ZZ inactive to exit Snooze Current tRIZZ 0 - cycle Snooze mode timing waveform[1,3] Don’t care Undefined tCYC CLK tCES tCEH tCH tCL CE[2,4] ZZ tSIZZ ISupply tSCZZ INPUTS (Except ZZ) OUTPUTS[5] (Qout) tRIZZ IZZ tRCZZ ZZ recovery cycles ZZ setup cycles Valid Valid tHZC tLZC High-Z Notes: 1. During Snooze mode, all dynamic inputs are disabled (except JTAG inputs). During JTAG operations, ZZx must be held Low in order to capture the parallel inputs of the boundary scan register. All static inputs (i.e. PL/FTx,OPTx) and ZZx themselves are not affected during snooze mode. 2. CE is an internal signal. CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H). 3. All timings are same for Port A and Port B. 4. Minimum of two deselect cycles should be given before asserting snooze and minimum of two deselect cycles should be given after de-asserting snooze to guarantee data integrity. 5. Select cycles indicated before and after Snooze are Read cycles. They can also be Write cycles. 9/24/04, v.1.2 Alliance Semiconductor P. 21 of 30 AS9C25512M2018L AS9C25256M2018L ® AC test conditions Input Pulse Level (Address and Controls) GND to 3.0V/GND to 2.4V Input Pulse Levels (I/Os) GND to 3.0V/GND to 2.4V Input Rise/Fall Times 2V/ns Input Timing Reference Levels 1.5V/1.25V Output Reference levels 1.5V/1.25V Output Load (for tLZC, tHZC, tLZOE, tHZOE) Fig. C Output Load (for all other measurements) Fig. B Thevenin equivalent: +3.0/2.4 V 90% GND 10% Z0 = 50 Ω 90% 10% +3.3/2.5 V; 50 Ω DOUT Figure A: Input Waveform 319Ω / 1667Ω VL = 1.5/1.25 V 10 pF* Figure B: Output Load (A) 353Ω / 1538Ω 5 pF* GND Figure C: Output Load (B) * Including scope and jig capacitance 9/24/04, v.1.2 Alliance Semiconductor P. 22 of 30 AS9C25512M2018L AS9C25256M2018L ® IEEE 1149.1 Serial boundary scan (JTAG) The SRAM incorporates a serial boundary scan Test Access Port (TAP). All JTAG pins operate using JEDEC standard 2.5V I/O logic levels. In order to operate the device without using the JTAG feature, all JTAG pins may be left unconnected. On power-up, the device will start in a reset state which will not interfere with normal device operation. TAP Controller block diagram 0 Bypass Register Selection Circuitry TDI 3 2 1 0 Instruction Register Selection Circuitry TDO 31 30 29 . . . 2 1 0 Identification Register x[1] . . . . . 2 1 0 Boundary Scan Register1 TCK TAP Controller TMS Note: 1. x = 111 JTAG timing waveform tJCYC tJCH Don’t care tJCL Undefined TEST CLK TCK tJIS tJIH TMS/TDI tJCD TDO tJRS tJOH tJRR TRST 9/24/04, v.1.2 Alliance Semiconductor P. 23 of 30 AS9C25512M2018L AS9C25256M2018L ® TAP AC electrical characteristics[2] Description Symbol Min Max Units Clock cycle time tJCYC 100 - ns Clock frequency fJTAG - 10 MHz Clock high time tJCH 40 - ns Clock low time tJCL 40 - ns TCK low to TDO unknown tJOH 0 - ns TCK low to TDO valid tJCD - 20 ns tJIS 10 - ns 10 - ns Clock Output Times Setup Times TMS/TDI setup Capture setup tJCS [1] Hold Times TMS/TDI hold tJIH 10 - ns tJCH[1] 10 - ns JTAG Reset tJRS 50 - ns JTAG Reset Recovery tJRR 50 - ns Capture hold Reset Times Notes: 1. tJCS and tJCH refer to the setup and hold time requirements of latching data from the boundary scan register. 2. Test conditions are specified using the load in the figure TAP AC output load equivalent. TAP AC test conditions & output load equivalent Input pulse levels Vss to 2.5V Input rise and fall times 1V/ns Input timing reference levels 1.25V Output reference levels 1.25V Test load termination supply voltage 1.25V 1.25V 50Ω TDO 20pF ZO=50Ω TAP DC electrical characteristics and operating conditions (VDD=2.5V ± 100 mV) Description Symbol Input high (logic 1) voltage VIH Conditions Min Max Units 1.7 VDD + 0.3 V Input low (logic 0) voltage VIL -0.3 0.7 V Input leakage current |ILI| VDD = Max; 0V < VIN < VDD 0 10 µA Output leakage current |ILO| Outputs disabled, 0V < VOUT < VDDQ (DQx) 0 10 µA Output low voltage VOLC IOLC = 100µA 0.2 V Output low voltage VOLT IOLT = 2mA Output high voltage VOHC IOHC = -100µA 2.1 V Output high voltage VOHT IOHT = -2mA 1.7 V 9/24/04, v.1.2 Alliance Semiconductor 0.7 P. 24 of 30 V AS9C25512M2018L AS9C25256M2018L ® Identification register definitions Instruction field Value Description Revision number (31:28) TBD Version Number Device depth (27:12) TBD ALSC part number JEDEC ID code (11:1) 00001010010 Manufacturer Identity Code (ALSC) Indicator Bit (0) 1 ID Register presence indicator Scan register sizes Register name Bit size Instruction Register (IR) 4 Bypass Register (BYR) 1 Identification Register (IDR) 32 Boundary Scan Register (BSR) 112 Instruction codes Instruction Code Description Selected Reg EXTEST 0000 Forces contents of the BSR onto the device outputs. BSR SAMPLE/PRELOAD 0001 Samples the I/O ring contents. Preloads test data into the BSR. BSR IDCODE 0010 Loads the IDR with the vendor ID code and places the register between TDI and TDO. IDR CLAMP 0011 Forces contents of the BSR onto the device outputs. BYR HIGHZ 0100 Forces all device 2-state and 3-state outputs to High-Z. BYR RESERVED BYPASS 9/24/04, v.1.2 0101 - 1110 Reserved states. Do not use. 1111 Places the BYR between TDI and TDO. Alliance Semiconductor BYR BYR P. 25 of 30 AS9C25512M2018L AS9C25256M2018L ® Package Diagram: 256-ball Ball Grid Array (BGA) All measurements are in mm. Min Typ Max A 1.00 B 16.95 17.00 17.05 C 15.00 D 16.95 17.00 17.05 E 15.00 F 0.36 G 0.35 0.50 H I 1.60 0.40 0.50 J A1 0.60 0.70 corner index Top View Bottom View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T oooooooooooooooo + oooooooooooooooo oooooooooooooooo + oooooooooooooooo + oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo + + ++ A B C A D E J 0.35 Z 1.60 MAX G 0.20 Z 0.35 ~ 0.50 0.36 0.70 oooooooooooooooo F H Side View 9/24/04, v.1.2 A B C D E F G H J K L M N P R T D oo oo I / 0.50±0.10 (256X) Ø 0.25 M Z X Y Ø 0.15 M Z Detail of Solder Ball Alliance Semiconductor P. 26 of 30 AS9C25512M2018L AS9C25256M2018L ® Package Diagram: 208-ball fine pitch Ball Grid Array (fpBGA) All measurements are in mm. Min Typ Max A 0.80 B 14.95 15.00 15.05 C 12.80 D 14.95 15.00 15.05 E 12.80 F G 0.26 0.25 0.40 H I 1.40 0.40 0.45 J A1 0.50 0.70 corner index Bottom View Top View 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A B C D E F G H J K L M N P R T U ooooooooooooooooo + ooooooooooooooooo ooooooooooooooooo + ooooooooooooooooo + oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo ooooooooooooooooo ooooooooooooooooo ooooooooooooooooo ooooooooooooooooo + ++ + A B C A D E 0.20 Z G 0.15 Z F 0.25 ~ 0.40 0.26 0.70 ooooooooooooooooo 1.40 MAX J H oo oo D I / 0.45±0.05 (208X) Ø 0.15 M Z X Y Ø 0.08 M Z Detail of Solder Ball Side View 9/24/04, v.1.2 A B C D E F G H J K L M N P R T U Alliance Semiconductor P. 27 of 30 AS9C25512M2018L AS9C25256M2018L ® Package Diagram: 144-pin Thin Quad Flat Pack (TQFP) TQFP Min Typ Max A1 0.05 0.15 A2 1.35 1.40 1.45 b 0.17 0.20 0.27 c 0.09 0.20 D 20.00 nominal E 20.00 nominal e 0.50 nominal Hd 22.00 nominal He 22.00 nominal L 0.45 0.60 0.75 L1 1.00 nominal α 0° 3.5° 7° Dimensions in millimeters Hd D b e He E c α 9/24/04, v.1.2 L1 L Alliance Semiconductor A1 A2 P. 28 of 30 AS9C25512M2018L AS9C25256M2018L ® Ordering Information Package & Width -250 -200 -166 -133 AS9C25512M2018L - 250BC AS9C25512M2018L - 200BC AS9C25512M2018L -166BC AS9C25512M2018L - 133BC AS9C25512M2018L - 250BI AS9C25512M2018L - 200BI AS9C25512M2018L - 166BI AS9C25512M2018L - 133BI AS9C25512M2018L - 250FC AS9C25512M2018L - 200FC AS9C25512M2018L - 166FC AS9C25512M2018L - 133FC AS9C25512M2018L - 250FI AS9C25512M2018L - 200FI AS9C25512M2018L - 166FI AS9C25512M2018L - 133FI AS9C25512M2018L - 250TC AS9C25512M2018L - 200TC AS9C25512M2018L - 166TC AS9C25512M2018L - 133TC AS9C25512M2018L - 250TI AS9C25512M2018L - 200TI AS9C25512M2018L - 166TI AS9C25512M2018L - 133TI AS9C25256M2018L - 250BC AS9C25256M2018L - 200BC AS9C25256M2018L -166BC AS9C25256M2018L - 133BC 512K X 18 BGA X 18 fpBGA X 18 TQFP X 18 256K X 18 BGA X 18 fpBGA X 18 TQFP X 18 AS9C25256M2018L - 250BI AS9C25256M2018L - 200BI AS9C25256M2018L - 166BI AS9C25256M2018L - 133BI AS9C25256M2018L - 250FC AS9C25256M2018L - 200FC AS9C25256M2018L - 166FC AS9C25256M2018L - 133FC AS9C25256M2018L - 250FI AS9C25256M2018L - 200FI AS9C25256M2018L - 166FI AS9C25256M2018L - 133FI AS9C25256M2018L - 250TC AS9C25256M2018L - 200TC AS9C25256M2018L - 166TC AS9C25256M2018L - 133TC AS9C25256M2018L - 250TI AS9C25256M2018L - 200TI AS9C25256M2018L - 166TI AS9C25256M2018L - 133TI Part Numbering Guide AS 9C 25 512/256 M20 18 L -XXX T or B or F C/I 1 2 3 4 5 6 7 8 9 10 1. Alliance Semiconductor prefix 2. Speciality Memory 3. Operating Voltage: 25 - VDD = 2.5V 4. Device depth: 512 - 512K; 256 - 256K 5. M20 - Multiport - 2port, SSRAM, DCD 6. I/O width - 18 7. I/O interface: L - LVTTL 8. Clock speed (MHz) 9. Package Type: T - TQFP, B - BGA, F - fpBGA 10. Operating Temperature: C - Commercial (00C to 700C); I -Industrial (-400C to 850C) 9/24/04, v.1.2 Alliance Semiconductor P. 29 of 30 ® AS9C25512M2018L AS9C25256M2018L ® Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel: 408 - 855 - 4900 Fax: 408 - 855 - 4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Preliminary Information Part Number: AS9C25512M2018L/ AS9C25256M2018L Document Version: v.1.2 © Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such lifesupporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.