ARIZONA MICROTEK, INC. AZ100EL16VS ECL/PECL Differential Receiver with Variable Output Swing FEATURES • • • • • • 250ps Propagation Delay High Bandwidth Output Transitions 75kΩ Internal Input Pulldown Resistors Functionally Equivalent to ON Semiconductor MC100EL16 Variable Output Swing Available in a 3x3mm MLP Package PACKAGE AVAILABILITY PACKAGE MLP 8 MLP 8 T&R MLP 8 T&R SOIC 8 SOIC 8 T&R SOIC 8 T&R TSSOP 8 TSSOP 8 T&R TSSOP 8 T&R PART NO. AZ100EL16VSL AZ100EL16VSLR1 AZ100EL16VSLR2 AZ100EL16VSD AZ100EL16VSDR1 AZ100EL16VSDR2 AZ100EL16VST AZ100EL16VSTR1 AZ100EL16VSTR2 MARKING AZM16P AZM16P AZM16P AZM100EL16VS AZM100EL16VS AZM100EL16VS AZH16VS AZH16VS AZH16VS DESCRIPTION The AZ100EL16VS is a differential receiver with variable output swing. The EL16VS has functionality and output transition times similar to the EL16, with an input that controls the amplitude of the Q/Q̄ outputs. Maximum swing is achieved by leaving the VCTRL pin open or tied to VEE. The operational range of the EL16VS control input, VCTRL, is from VBB (full swing) to VCC (min. swing). Simple control of the output swing can be obtained by a variable resistor between the VBB and VCC pins, with the wiper driving VCTRL. Typical application circuits and results are described in this Data Sheet. The EL16VS provides a VBB output for single-ended use or a DC bias reference for AC coupling to the device. For single-ended input applications, the VBB reference should be connected to one side of the D/D̄ differential input pair. The input signal is then fed to the other D/D̄ input. The VBB pin can support 1.0mA sink/source current. When used, the VBB pin should be bypassed to ground via a 0.01µF capacitor. Under open input conditions (pulled to VEE) internal input clamps will force the Q output LOW. NOTE: Specifications in ECL/PECL tables are valid when thermal equilibrium is established. 1630 S. STAPLEY DR., SUITE 125 • MESA, ARIZONA 85204 • USA • (480) 962-5881 • FAX (480) 890-2541 www.azmicrotek.com AZ100EL16VS LOGIC DIAGRAM AND PINOUT ASSIGNMENT VCTRL V CC 7 8 1 8 VCC D 2 7 Q D 3 6 Q VBB 4 5 VEE VCTRL 6 Q D 1 D 2 5 Q 3 4 V BB VEE 8 MLP (TOP VIEW) 8 SOIC & 8 TSSOP PIN DESCRIPTION PIN D, D̄ VCTRL Q, Q̄ VBB VCC FUNCTION Data Inputs Output Swing Control Data Outputs Reference Voltage Output Positive Supply Absolute Maximum Ratings are those values beyond which device life may be impaired. Symbol VCC VI VEE VI IOUT TA TSTG Characteristic PECL Power Supply (VEE = 0V) PECL Input Voltage (VEE = 0V) ECL Power Supply (VCC = 0V) ECL Input Voltage (VCC = 0V) Output Current --- Continuous --- Surge Operating Temperature Range Storage Temperature Range Rating 0 to +8.0 0 to +6.0 -8.0 to 0 -6.0 to 0 50 100 -40 to +85 -65 to +150 Unit Vdc Vdc Vdc Vdc mA °C °C 100K ECL DC Characteristics (VEE = -4.2V to -5.5V, VCC = GND; VCTRL = VBB) Symbol VOH VOL VOL VIH VIL VBB IIH IIL IEE 1. 2. Characteristic 2 Min -1085 -40°C Typ Max -880 Min -1025 0°C Typ Max -880 Min -1025 Output HIGH Voltage Output LOW Voltage2 -1890 -1620 -1870 -1680 -1870 VCTRL = VBB1 2 Output LOW Voltage -1180 -975 -1135 -990 -1135 VCTRL = VCC Input HIGH Voltage -1165 -880 -1165 -880 -1165 Input LOW Voltage -1810 -1475 -1810 -1475 -1810 Reference Voltage -1420 -1260 -1420 -1260 -1420 Input HIGH Current 150 150 D, D̄ VCTRL 40 40 Input LOW Current 0.5 0.5 0.5 Power Supply Current 18 25 18 25 If VCTRL is Open Circuit, use the VOH (Max & Min) and VOL (VCTRL = VREF : Max only) limits. Each output is terminated through a 50Ω resistor to VCC – 2V. October 2001 * REV - 2 www.azmicrotek.com 2 25°C Typ -955 Max -880 Min -1025 85°C Typ -1775 -1680 -1870 -1680 -1065 -990 -1135 -990 mV -880 -1475 -1260 -1165 -1810 -1420 -880 -1475 -1260 mV mV mV 150 40 µA 150 40 Max -880 0.5 18 25 21 26 Unit mV mV µA mA AZ100EL16VS 100K PECL DC Characteristics (VEE = GND, VCC = +5.0V) Symbol VOH VOL VOL VIH VIL VBB IIH IIL IEE 1. 2. 3. Characteristic 1,3 Min 3915 -40°C Typ Max 4120 Min 3975 0°C Typ Max 4120 Min 3975 Output HIGH Voltage Output LOW Voltage1,3 3110 3380 3130 3320 3130 VCTRL = VBB2 1,3 Output LOW Voltage 3820 4025 3865 4010 3865 VCTRL = VCC 1 Input HIGH Voltage 3835 4120 3835 4120 3835 Input LOW Voltage1 3190 3525 3190 3525 3190 Reference Voltage1 3580 3740 3580 3740 3580 Input HIGH Current 150 150 D, D̄ VCTRL 40 40 Input LOW Current 0.5 0.5 0.5 Power Supply Current 18 25 18 25 For supply voltages other that 5.0V, use the ECL table values and ADD supply voltage value. If VCTRL is Open Circuit, use the VOH (Max & Min) and VOL (VCTRL = VREF : Max only) limits. Each output is terminated through a 50Ω resistor to VCC – 2V. 25°C Typ 4045 Max 4120 Min 3975 85°C Typ 3225 3320 3130 3320 mV 3935 4010 3865 4010 mV 4120 3525 3740 3835 3190 3580 4120 3525 3740 mV mV mV 150 40 µA 150 40 Max 4120 0.5 18 25 21 26 85°C Typ Max 280 280 5 355 405 20 Unit mV µA mA AC Characteristics (VEE = -4.2V to -5.5V; VCC =GND or VEE =GND; VCC = +4.2V to +5.5V) Symbol Characteristic tSKEW VPP (AC) Input to Output Delay (Diff) (SE) Duty Cycle Skew1 (Diff) Minimum Input Swing2 VCMR Common Mode Range3 tPLH / tPHL tr / t f 1. 2. 3. Min -40°C Typ Max 250 250 5 150 VCC 2.0 Min 175 125 VCC 0.4 0°C Typ Max Min 250 250 5 325 375 20 175 125 150 VCC 2.0 VCC 0.4 150 VCC 2.0 25°C Typ Max Min 250 250 5 325 375 20 205 155 VCC 0.4 150 VCC 2.0 VCC 0.4 Rise/Fall Time 100 350 100 350 100 350 100 350 20 – 80% Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device. VPP is the minimum peak-to-peak differential input swing for which AC parameters are guaranteed. The VCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP(min) and 1V. October 2001 * REV - 2 www.azmicrotek.com 3 Unit ps ps mV V ps AZ100EL16VS VSWING (% pk-pk differential) 100 Typical Voltage Output Swing at +25C, VEE Nom (see Figure 1 and Figure 2) 1.500 V (100K ECL) 75 %OUT Vbb 100K ECL 50 25 0 0.0 0.4 0.8 1.2 VCTRL (V) Vbb 1.320 Figure 1: Voltage Source Implementation VCTRL VCTRL 1 8 V CC D 2 7 Q 3 6 Q 4 5 VEE V SWING (pk-pk) D 50 V BB -2V Figure 2: Alternative Implementation 10k VCTRL 1 8 V D 2 7 Q D 3 6 Q V BB 4 5 VEE 50 +5 V CC V SWING (pk-pk) 240 October 2001 * REV - 2 www.azmicrotek.com 4 240 1.6 AZ100EL16VS PACKAGE DIAGRAM SOIC 8 NOTES: 1. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 2. MAXIMUM MOLD PROTRUSION FOR D IS 0.15mm. 3. MAXIMUM MOLD PROTRUSION FOR E IS 0.25mm. October 2001 * REV - 2 DIM A A1 A2 A3 bp c D E e HE L Lp Q v w y Z θ www.azmicrotek.com 5 MILLIMETERS MIN MAX 12.32 12.57 0.10 0.25 1.25 1.45 0.25 0.36 0.49 0.19 0.25 4.8 5.0 3.8 4.0 1.27 5.80 6.20 1.05 0.40 1.00 0.60 0.70 0.25 0.25 0.10 0.30 0.70 8O 0O INCHES MIN MAX 0.485 0.495 0.004 0.010 0.049 0.057 0.01 0.014 0.019 0.0075 0.0100 0.19 0.20 0.15 0.16 0.050 0.228 0.244 0.041 0.016 0.039 0.024 0.028 0.01 0.01 0.004 0.012 0.028 0O 8O AZ100EL16VS PACKAGE DIAGRAM TSSOP 8 DIM A A1 A2 A3 bp c D E e HE L Lp v w y Z θ NOTES: 1. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 2. MAXIMUM MOLD PROTRUSION FOR D IS 0.15mm. 3. MAXIMUM MOLD PROTRUSION FOR E IS 0.25mm. October 2001 * REV - 2 www.azmicrotek.com 6 MILLIMETERS MIN MAX 1.10 0.05 0.15 0.80 0.95 0.25 0.25 0.45 0.15 0.28 2.90 3.10 2.90 3.10 0.65 4.70 5.10 0.94 0.40 0.70 0.10 0.10 0.10 0.35 0.70 6O 0O AZ100EL16VS PACKAGE DIAGRAM MLP 8 NOTES 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME T14-1994. 2. THE TERMINAL #1 AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. 3. DIMENSION b APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30mm FROM PAD TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. DIM A A1 A3 b D D2 E E2 e L aaa bbb ccc MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.25 REF 0.30 0.35 2.90 3.10 1.65 1.95 2.90 3.10 1.65 1.95 0.65 BSC 0.35 0.45 0.25 0.10 0.10 October 2001 * REV - 2 www.azmicrotek.com 7 AZ100EL16VS Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part. October 2001 * REV - 2 www.azmicrotek.com 8