Rohm BA06TFP Low saturation voltage type 3-pin regulator Datasheet

BAOOT / FP series
Regulator ICs
Low saturation voltage type 3-pin
regulator
BAOOT / FP series
The BAΟΟT/ FP series are fixed positive output low drop-out type, 3-pin voltage regulators with positive output.. These
regulators are used to provide a stabilized output voltage from a fluctuating DC input voltage.
There are 10 fixed output voltages, as follows:3V, 3.3V, 5V, 6V*, 7V, 8V, 9V, 10V, 12V and 15V. The maximum current
capacity is 1A for each of the above voltages. (Items marked with an asterisk are under development.)
!Applications
Constant voltage power supply
!Features
1) Built-in overvoltage protection circuit, overcurrent
protection circuit and thermal shutdown circuit.
2) TO220FP and TO252-3 packages are available to
cover a wide range of applications.
3) Compatible with the BA178ΟΟ series.
4) Richly diverse lineup.
5) Low minimum I / O voltage differential.
!Product codes
Output voltage (V)
Product No.
Output voltage (V)
Product No.
3.0
BA03T / FP
8.0
BA08T / FP
3.3
BA033T / FP
9.0
BA09T / FP
5.0
BA05T / FP
10.0
BA10T / FP
12.0
BA12T / FP
15.0
BA15T / FP
*
6.0
BA06T / FP
7.0
BA07T / FP
*
* : Under development.
!Block diagram
VCC
1
REFERENCE
VOLTAGE
−
+
OUT
3
+
GND
2
BAOOT / FP series
Regulator ICs
!Absolute maximum ratings (Ta = 25°C)
Parameter
Symbol
Limits
VCC
35
Power supply voltage
Power
dissipation
TO220FP
Pd
TO252 - 3
Unit
V
2000
*1
1000
*2
mW
Topr
-40~85
°C
Storage temperature
Tstg
-55~150
°C
Peak applied voltage
Vsurge
50
Operating temperature
*3
V
*1 Reduced by 16mW for each increase in Ta of 1°C over 25°C
*2 Reduced by 8mW for each increase in Ta of 1°C over 25°C
*3 Voltage application time : 200 msec. or less
!Recommended operating conditions
BA03T / FP
Parameter
Symbol Min.
BA08T / FP
Typ.
Max.
Unit
Typ.
Max.
Unit
Input voltage
VIN
4
-
25
V
Input voltage
VIN
9
-
25
V
Output current
Io
-
-
1
A
Output current
Io
-
-
1
A
Typ.
Max.
Unit
BA033T / FP
Parameter
Parameter
Symbol Min.
BA09T / FP
Symbol Min.
Typ.
Max.
Unit
Parameter
Symbol Min.
Input voltage
VIN
4.3
-
25
V
Input voltage
VIN
10
-
25
V
Output current
Io
-
-
1
A
Output current
Io
-
-
1
A
BA05T / FP
Parameter
BA10T / FP
Typ.
Max.
Unit
Typ.
Max.
Unit
Input voltage
Symbol Min.
VIN
6
-
25
V
Input voltage
VIN
11
-
25
V
Output current
Io
-
-
1
A
Output current
Io
-
-
1
A
Typ.
Max.
Unit
BA06T / FP (under development)
Parameter
Symbol Min.
Parameter
Symbol Min.
BA12T / FP
Typ.
Max.
Unit
Parameter
Symbol Min.
Input voltage
VIN
7
-
25
V
Input voltage
VIN
13
-
25
V
Output current
Io
-
-
1
A
Output current
Io
-
-
1
A
BA07T / FP
Parameter
BA15T / FP
Typ.
Max.
Unit
Typ.
Max.
Unit
Input voltage
Symbol Min.
VIN
8
-
25
V
Input voltage
Parameter
Symbol Min.
VIN
16
-
25
V
Output current
Io
-
-
1
A
Output current
Io
-
-
1
A
BAOOT / FP series
Regulator ICs
!Electrical characteristics
BA03T / FP (unless otherwise noted, Ta = 25°C, VCC = 8V, IO = 500mA)
Parameter
Output voltage
Symbol
Min.
Typ.
Max.
Unit
Measurement
circuit
Fig.1
Conditions
VO1
2.85
3.0
3.15
V
Input stability
Reg.I
-
20
100
mV
VIN = 4→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Dropout voltage
Vd
-
0.3
0.5
V
Bias current
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
-
% / °C Io = 5mA, Tj = 0~125°C
Vcc = 0.95VO
Fig.1
Fig.3
BA033T / FP (unless otherwise noted, Ta = 25°C, VCC = 8V, IO = 500mA)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Measurement
circuit
Fig.1
VO1
3.13
3.3
3.47
V
Input stability
Reg.I
-
20
100
mV
VIN = 4.3→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Vd
-
0.3
0.5
V
Output voltage
Dropout voltage
-
% / °C Io = 5mA, Tj = 0~125°C
Vcc = 0.95VO
Fig.1
Fig.3
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
Bias current
BA05T / FP (unless otherwise noted, Ta = 25°C, VCC = 10V, IO = 500mA)
Parameter
Output voltage
Input stability
Symbol
Min.
Typ.
Max.
Unit
Conditions
VO1
4.75
5.0
5.25
V
Reg.I
-
20
100
mV
VIN = 6→25V
-
Measurement
circuit
Fig.1
Fig.1
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Ripple rejection ratio
% / °C Io = 5mA, Tj = 0~125°C
Tcvo
-
±0.02
-
Dropout voltage
Vd
-
0.3
0.5
V
Bias current
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
Vcc = 4.75V
Fig.1
Fig.3
BAOOT / FP series
Regulator ICs
BA06T / FP (unless otherwise noted, Ta = 25°C, VCC = 11V, IO = 500mA) (under development)
VO1
5.7
6.0
6.3
V
-
Measurement
circuit
Fig.1
Input stability
Reg.I
-
20
100
mV
VIN = 7→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
mV
Io = 5mA→1A
Fig.1
% / °C Io = 5mA, Tj = 0125°C
Fig.1
Parameter
Output voltage
Symbol
Min.
Typ.
Max.
Unit
Conditions
Load regulation
Reg.L
-
50
150
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Dropout voltage
Vd
-
0.3
0.5
V
Bias current
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
Vcc = 0.95V
Fig.3
BA07T / FP (unless otherwise noted, Ta = 25°C, VCC = 12V, IO = 500mA)
VO1
6.65
7.0
7.35
V
-
Measurement
circuit
Fig.1
Input stability
Reg.I
-
20
100
mV
VIN = 8→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Dropout voltage
Vd
-
0.3
0.5
V
Bias current
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
Parameter
Output voltage
Symbol
Min.
Typ.
Max.
Unit
Conditions
% / °C Io = 5mA, Tj = 0~125°C
Vcc = 0.95VO
Fig.1
Fig.3
BA08T / FP (unless otherwise noted, Ta = 25°C, VCC = 13V, IO = 500mA)
VO1
7.6
8.0
8.4
V
-
Measurement
Circuit
Fig.1
Input stability
Reg.I
-
20
100
mV
VIN = 9→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Vd
-
0.3
0.5
V
Parameter
Output voltage
Dropout voltage
Bias current
Symbol
Min.
Typ.
Max.
Unit
Conditions
% / °C Io = 5mA, Tj = 0~125°C
Vcc = 0.95VO
Fig.1
Fig.3
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
BAOOT / FP series
Regulator ICs
BA09T / FP (unless otherwise noted, Ta = 25°C, VCC = 14V, IO = 500mA) (under development)
VO1
8.45
9.0
9.45
V
-
Measurement
circuit
Fig.1
Input stability
Reg.I
-
20
100
mV
VIN = 10→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Vd
-
0.3
0.5
V
Parameter
Output voltage
Dropout voltage
Bias current
Symbol
Min.
Typ.
Max.
Unit
Conditions
% / °C Io = 5mA, Tj = 0~125°C
Vcc = 0.95VO
Fig.1
Fig.3
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
BA10T / FP (unless otherwise noted, Ta = 25°C, VCC = 15V, IO = 500mA)
VO1
9.5
10
10.5
V
-
Measurement
circuit
Fig.1
Input stability
Reg.I
-
20
100
mV
VIN = 11→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Dropout voltage
Vd
-
0.3
0.5
V
Bias current
Ib
-
2.5
5.0
Peak output current
IO-P
1.0
1.5
Output short-circuit current
Ios
-
0.4
Parameter
Output voltage
Symbol
Min.
Typ.
Max.
Unit
Conditions
% / °C Io = 5mA, Tj = 0~125°C
Fig.1
Vcc = 0.95VO
Fig.3
mA
Io = 0mA
Fig.4
-
A
Tj = 25°C
Fig.1
-
A
Vcc = 25V
Fig.5
BA12T / FP (unless otherwise noted, Ta = 25°C, VCC = 17V, IO = 500mA)
VO1
11.4
12
12.6
V
-
Measurement
circuit
Fig.1
Input stability
Reg.I
-
20
100
mV
VIN = 13→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
Load regulation
Reg.L
-
50
150
mV
Io = 5mA→1A
Fig.1
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Vd
-
0.3
0.5
V
Parameter
Output voltage
Dropout voltage
Symbol
Min.
Typ.
Max.
Unit
Conditions
% / °C Io = 5mA, Tj = 0~125°C
Vcc = 0.95VO
Fig.1
Fig.3
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 25V
Fig.5
Bias current
BAOOT / FP series
Regulator ICs
BA15T / FP (unless otherwise noted, Ta = 25°C, VCC = 20V, IO = 500mA)
VO1
14.25
15
15.75
V
-
Measurement
circuit
Fig.1
Input stability
Reg.I
-
20
100
mV
VIN = 6→25V
Fig.1
Ripple rejection ratio
R.R.
45
55
-
dB
eIN = 1Vrms, f = 120Hz, Io = 100mA
Fig.2
mV
Io = 5mA→1A
Parameter
Output voltage
Symbol
Min.
Typ.
Max.
Unit
Conditions
Load regulation
Reg.L
-
90
200
Temperature coefficient of output voltage
Tcvo
-
±0.02
-
Dropout voltage
Vd
-
0.3
0.5
V
Vcc = 0.95VO
Fig.3
Bias current
Ib
-
2.5
5.0
mA
Io = 0mA
Fig.4
Peak output current
IO-P
1.0
1.5
-
A
Tj = 25°C
Fig.1
Output short-circuit current
Ios
-
0.4
-
A
Vcc = 30V
Fig.5
% / °C Io = 5mA, Tj = 0~125°C
Fig.1
Fig.1
BAOOT / FP series
Regulator ICs
!Measurement circuits
V
ein
10Ω5W
OUT
VCC
0.33µF
VCC
OUT
VCC
22µF
100µF
V
IO
GND
VCC
22µF
0.33µF
eOUT
V
GND
eIN = 1Vrms
f = 120Hz
IN
Ripple rejection ratio R.R. = 20 log ( eeOUT
)
Fig. 2 Measurement circuit for ripple rejection ratio
Fig. 1 Measurement circuit for output voltage,
input stability, load regulation,
temperature coefficient of output
voltage
V
0.33µF
VCC
OUT
VCC
0.33µF
IO = 500mA
GND
Fig. 3 Measurement circuit for minimum I/O voltage differential
VCC
22µF
GND
22µF
VCC = 0.95VO
0.33µF
OUT
VCC
OUT
VCC
22µF
GND
IOS
Fig. 5 Measurement circuit for
output short-circuit current
A
A
Fig. 4 Measurement circuit for bias current
IO = 100mA
BAOOT / FP series
Regulator ICs
!Operation notes
(1) Operating power supply voltage
When operating within the normal voltage range and
within the ambient operating temperature range, most
circuit functions are guaranteed.
The rated values cannot be guaranteed for the electrical
characteristics, but there are no sudden changes of the
characteristics within these ranges.
(2) Power dissipation
Heat attenuation characteristics are noted on a separate
page and can be used as a guide in judging power
dissipation.
If these ICs are used in such a way that the allowable
power dissipation level is exceeded, an increase in the
chip temperature could cause a reduction in the current
capability or could otherwise adversely affect the
performance of the IC. Make sure a sufficient margin is
allowed so that the allowable power dissipation value is
not exceeded.
(3) Output oscillation prevention and bypass capacitor
Be sure to connect a capacitor between the output pin
and GND to prevent oscillation. Since fluctuations in the
valve of the capacitor due to temperature changes may
cause oscillations, a tantalum electrolytic capacitor with a
small internal series resistance (ESR) is recommended.
A 22µ F capacitor is recommended; however, be aware
that if an extremely large capacitance is used (1000µ F
or greater), then oscillations may occur at low
frequencies. Therefore, be sure to perform the
appropriate verifications before selecting the capacitor.
Also, we recommend connecting a 0.33µ F bypass
capacitor as close as possible between the input pin and
GND.
(4) Overcurrent protection circuit
An overcurrent protection circuit is built into the outputs,
to prevent destruction of the IC in the even the load is
shorted.
This protection circuit limits the current in the shape of
a ’7’. This circuit is designed with a high margin, so that
that current is restricted and latching is prevented, even if
a high-capacitance capacitator causes a large amount of
current to temporary flow through the IC.
However, these protection circuits are only good for preventing damage from sudden accidents and should not
be used for continuous protection (for instance, clamping
at an output of 1VF or greater; below 1VF , the short mode
circuit operates). Note that the capacitor has negative
temperature characteristics, and the design should take
this into consideration.
(5) Thermal overload circuit
A built-in thermal overload circuit prevents damage from
overheating. When the thermal circuit is activated, the
outputs are turned OFF. When the temperature drops
back to a constant level, the circuit is restored.
(6) Internal circuits could be damaged if there are
modes in which the electric potential of the application’s
input (VCC ) and GND are the opposite of the electric
potential normally used by each of the outputs. Use of a
diode or other such bypass path is recommended.
(7) Although the manufacture of this product includes
rigorous quality assurance procedures, the product may
be damaged if absolute maximum ratings for voltage or
operating temperature are exceeded. If damage has
occurred, special modes (such as short circuit mode or
open circuit mode) cannot be specified. If it is possible
that such special modes may be needed, please
consider using a fuse or some other mechanical safety
mea-sure.
(8) When used within a strong magnetic field, be aware
that the possibility of malfunction exists.
BAOOT / FP series
Regulator ICs
!Electrical characteristic curves
15
(2) 11.0
10
(3) 6.5
5
(1) 10.0
10
7.5
5
2.5
(4) 2.0
0
5
4
3
2
1
(2) 1.0
25
50
75
100
125
0
0
150
25
10
75
100
125
0
25
150
50
75
100
125
150
Fig. 7 Ta - power dissipation
characteristics
(TO 252-3)
Fig. 8 Thermal cutoff circuit
characteristics
6
VCC = 10V
BA05T
BA05T
5
OUTPUT VOLTAGE : VOUT (V)
8
6
4
2
0
0
1.0
4
3
2
1
0
0
2.0
10
20
30
40
50
OUTPUT CURRENT : IOUT (A)
INPUT VOLTAGE : VCC (V)
Fig. 9 Current limit characteristics
Fig. 10 Over voltage protection
characteristics
!External dimensions (Units : mm)
BA
T Series
+0.3
−0.1
+0.2
−0.1
6.5±0.2
0.2
5.0 +
−0.1
2.3±0.2
0.5±0.1
9.5±0.5
2.8
1
2
3
1.5
2.5
4.5
φ3.1±0.1
0.8
+0.3
−0.1
+0.3
−0.1
7.0±0.3
7.0
5.0±0.2 8.0±0.2
+0.4
−0.2
17.0
13.5Min.
12.0±0.2
1.8±0.2
10.0
FP Series
5.5±0.2
BA
1.3
0.65
2.3±0.2
0.65
2.3±0.2
0.5±0.1
0.8
2.54±0.5
2.54±0.5
0.55
(1) (2) (3)
TO220FP
+0.1
−0.05
175
JUNCTION TEMPERATURE : Tj (°C)
(Note) When Al thermal plate is used: Tightening torque: 6 (kg-cm) Apply silicon grease
Fig.6 Ta - power dissipation
characteristics (TO220FP)
50
AMBIENT TEMPERATURE : Ta ( °C )
AMBIENT TEMPERATURE : Ta (°C)
OUTPUT VOLTAGE : VOUT (V)
VCC = 10V IOUT = 0
BA05T
(1) Infinite heat sink θ j-c=12.5 (°C/W)
(2) IC alone θ j-c=125.0 (°C/W)
OUTPUT VOLTAGE : VOUT (V)
20
POWER DISSIPATION : Pd (W)
(1) Infinite heat sink, θ j-c = 5.7 (°C/W)
(2) 100 × 100 × 2 (mm3), with Al heat sink
(3) 50 × 50 × 2 (mm3), with Al heat sink
(4) No heat sink θ j-a = 62.5 (°C/W)
(1) 22.0
POWER DISSIPATION : Pd (W)
6
12.5
25
2.6±0.5
(1) VCC
(2) GND
(3) OUT
(1) VCC
(2) GND
(3) OUT
TO252-3
200
Similar pages