Rohm BA10393KN Comparators : ground sense Datasheet

ROHM’s Selection Operational Amplifiers / Comparators
Comparators:
Ground Sense
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901S F/FV/KN,BA2901F/FV/KN
●Description
General purpose BA10393/BA10339 family and high
reliability BA2903S/BA2903/BA2901S/BA2901 family
and automotive BA2903HFVM-C integrate two or
fourindependent high gain voltage comparator.
Somefeatures are the wide operating voltage that is
2 to 36[V](for BA10393, BA2903S, BA2903,
BA2901S,BA2901 family, BA2903HFVM-C), 3 to
36[V](for BA10339 family) and low supply current.
Therefore, this series is suitable for any application.
BA10393F
Dual
General-purpose
High-reliabillity
No.10049EBT15
Quad
BA10339 F/FV
Dual
BA2903S F/FV/FVM
Operation guaranteed up to + 105 ℃
BA2903F/FV/FVM
Operation guaranteed up to +125 ℃
BA2901S F/FV/KN
Operation guaranteed up to + 105 ℃
Quad
BA2901 F/FV/KN
Operation guaranteed up to + 125 ℃
Dual
Automotive
●Characteristics
1) Operable with a single power supply
2) Wide operating supply voltage
+2.0[V]~+36.0[V] (single supply)
BA10393 family
±1.0[V]~±18.0[V] (dual supply)
+3.0[V]~+36.0[V] (single supply)
BA10339 family
±1.5[V]~±18.0[V] (dual supply)
BA2903S/BA2901S family
+2.0[V]~+36.0[V] (single supply)
BA2903 /BA2901 family
BA2903H
±1.0[V]~±18.0[V] (dual supply)
3) Standard comparator pin-assignments
4) Input and output are operable GND sense
BA2903 HFVM-C
5) Internal ESD protection
Human body model (HBM)±5000[V](Typ.)
(BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C)
6) Gold PAD
(BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C)
7) Wide temperature range
-40[℃]~+125[℃](BA2903/BA2901 family,BA2903HFVM-C)
-40[℃]~+105[℃](BA2903S/BA2901S family)
-40[℃]~+85[℃](BA10393/BA10339 family)
●Pin Assignment
OUT1 OUT2 OUT3 OUT4
OUT1 11
-IN1 22
+IN1 33
8 VCC
CH1
CH1
-- ++
7 OUT2
CH2
CH2
+
-
+ -
VEE 44
6 -IN2
5 +IN2
SOP8
SSOP-B8
BA10393F
BA10393F
BA2903SF
BA2903F
BA2903F
BA2903SFV
BA2903FV
BA2903FV
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
MSOP8
BA2903SFVM
BA2903FVM
BA2903FVM
BA2903HFVM-C
1/16
OUT2
1
14
OUT3
OUT1
2
13
OUT4
VCC
3
12
VEE
-IN1
-IN2
4
+IN1
+IN2
5
-IN2
-IN1
6
+IN2
+IN1
7
CH1
- +
CH2
- +
CH4
+ +‐
CH3
- +
11
16
16
15
15
14
14
13
13
VCC 11
12
12
VEE
22
11
11
NC
+IN4
NC
CH1
-CH1
+
-
+
CH2
-CH2
+
- +
CH3
-
+
CH3
- +
CH4
-CH4
+
- +
+IN4
-IN1 33
10
10
10
-IN4
+IN1 44
99 -IN4
9
+IN3
8
-IN3
55
66
77
88
-IN2
+IN2
-IN3
+IN3
SOP14
SSOP-B14
VQFN16
BA10339F
BA10339F
BA2901SF
BA2901F
BA2901F
BA10339FV
BA2901SFV
BA2901FV
BA2901FV
BA2901SKN
BA2901KN
BA2901KN
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
Rating
Parameter
Symbol
Supply Voltage
VCC-VEE
Differential Input Voltage (*1)
Vid
Input Common-mode Voltage Range Vicm
Operating Temperature Range
Topr
Storage Temperature Range
Tstg
Maximum junction Temperature
Tjmax
BA10393
family
BA10339
family
BA2903S family BA2903 family BA2903H
BA2901S family BA2901 family
family
Unit
+36
VCC-VEE
VEE~VCC
-40~+85
-55~+125
+125
36
(VEE-0.3)~VEE+36
-40~+105
-40~+125
-55~+150
+150
V
V
V
℃
℃
℃
Note Absolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause
deterioration of characteristics.
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA10393 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃])
Guaranteed limit
Temperature
Parameter
Symbol
Unit
range
Min.
Typ.
Max.
25℃
-
±1
±5
Condition
Input Offset Voltage
Vio
mV VOUT=1.4[V]
Input Offset Current
Iio
25℃
-
±5
±50
nA VOUT=1.4[V]
Input Bias Current (*2)
Input Common-mode
Voltage Range
Large Signal Voltage Gain
Ib
25℃
-
50
250
nA VOUT=1.4[V]
Vicm
25℃
0
-
VCC-1.5
AV
25℃
93
106
-
dB RL=15[kΩ],VCC=15[V]
Supply Current
ICC
25℃
-
0.4
1
mA RL=∞All Comparators
mA VIN-=1[V],VIN+=0[V],VOUT=1.5[V]
V
-
Output Sink Current
IOL
25℃
6
16
-
Output Saturation Voltage
VOL
25℃
-
250
400
mV VIN-=1[V],VIN+=0[V],IOL=4[mA]
Output Leakage Current 1
Ileak1
25℃
-
0.1
-
μA VIN-=0[V],VIN+=1[V],VOUT=5[V]
Output Leakage Current 2
Ileak2
25℃
-
0.1
1
μA VIN-=0[V],VIN+=1[V],VOUT=36[V]
Tre
25℃
-
1.3
-
μs
Response Time
RL=5.1[kΩ],VRL=5[V]
(*2)Current Direction : Since first input stage is composed with PNP transistor, input bias current flows out of IC.
○BA10339 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃])
Guaranteed limit
Temperature
Parameter
Symbol
Unit
range
Min.
Typ.
Max.
Input Offset Voltage
Vio
Input Offset Current
Iio
25℃
-
±5
±50
nA VOUT=1.4[V]
Input Bias Current (*2)
Input Common-mode
Voltage Range
Large Signal Voltage Gain
Ib
25℃
-
50
250
nA VOUT=1.4[V]
Vicm
25℃
0
-
VCC-1.5
AV
25℃
-
106
-
dB RL=15[kΩ],VCC=15[V]
Supply Current
ICC
25℃
-
0.8
2
mA RL=∞All Comparators
Output Sink Current
IOL
25℃
6
16
-
mA VIN-=1[V],VIN+=0[V],VOUT=1.5[V]
Output Saturation Voltage
VOL
25℃
-
250
400
mV VIN-=1[V],VIN+=0[V],IOL=4[mA]
Output Leakage Current 1
Ileak1
25℃
-
0.1
-
μA VIN-=0[V],VIN+=1[V],VOUT=5[V]
Output Leakage Current 2
Ileak2
25℃
-
-
-
μA VIN-=0[V],VIN+=1[V],VOUT=36[V]
Tre
25℃
-
1.3
-
μs
Response Time
25℃
-
±1
±5
Condition
mV VOUT=1.4[V]
V
-
RL=5.1[kΩ],VRL=5[V]
(*2)Current Direction : Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
2/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA2903S/BA2903 family (Unless otherwise specified VCC=+5[V], VEE=0[V])
Guaranteed limit
Temperature
Parameter
Symbol
range
Min.
Typ.
Max.
25℃
2
7
(*3)
Input Offset Voltage
Vio
Full range(*4)
15
25℃
5
50
Input Offset Current(*3)
Iio
v
200
25℃
50
250
Input Bias Current(*3)
Ib
Full range(*4)
500
25℃
0
VCC-1.5
Input Common-mode
Vicm
Voltage Range
Full range(*4)
25℃
88
100
Large Signal Voltage Gain
AV
Full range(*4)
25℃
0.6
1
Supply Current
ICC
Full range(*4)
2.5
Output Sink Current(*4)
IOL
25℃
6
16
Output Saturation Voltage
25℃
150
400
VOL
(Low Level Output Voltage)
Full range(*4)
700
25℃
0.1
Output Leakage Current
Ileak
(High Level Output Current)
Full range(*4)
1
Response Time
Operable Frequency
(*3)
(*4)
(*4)
Tre
Fopr
-
1.3
-
-
0.4
-
-
-
-
VOUT=1.4[V]
VCC=5~36[V],VOUT=1.4[V]
nA
VOUT=1.4[V]
nA
VOUT=1.4[V]
V
-
mA
VCC=15[V],VOUT=1.4~11.4[V]
RL=15[kΩ],VRL=15[V]
VOUT=open
VOUT=open,VCC=36[V]
VIN+=0[V],VIN=1[V],VOL=1.5[V]
mV
VIN+=0[V],VIN-=1[V],IOL=4[mA]
nA
μA
VIN+=1[V],VIN-=0[V],VOH=5[V]
VIN+=1[V],VIN-=0[V],VOH=36[V]
RL=5.1[kΩ],VRL=5[V]
VIN=100[mVp-p],overdrive=5[mV]
RL=5.1[kΩ],VRL=5[V],VIN=TTL
Logic Swing,VREF=1.4[V]
VCC=5[V],RL=2[kΩ], VIN+=1.5[V]
VIN-=5[Vp-p]
(Duty 50% Rectangular Pulse)
dB
mA
kHz
Absolute value
BA2903S family:Full range -40[℃]~+105[℃]
BA2903 family :Full range -40[℃]~+125[℃]
○BBA2901S/BA2901 family (Unless otherwise specified VCC=+5[V], VEE=0[V])
Guaranteed limit
Temperature
Parameter
Symbol
range
Min.
Typ.
Max.
25℃
2
7
(*3)
Input Offset Voltage
Vio
Full range(*4)
15
25℃
5
50
Input Offset Current(*3)
Iio
v
200
25℃
50
250
Input Bias Current(*3)
Ib
Full range(*4)
500
25℃
0
VCC-1.5
Input Common-mode
Vicm
Voltage Range
Full range(*4)
25℃
88
100
Large Signal Voltage Gain
AV
Full range(*4)
25℃
0.8
2
Supply Current
ICC
Full range(*4)
2.5
Output Sink Current(*4)
IOL
25℃
6
16
Output Saturation Voltage
25℃
150
400
VOL
(Low Level Output Voltage)
Full range(*4)
700
25℃
0.1
Output Leakage Current
Ileak
(High Level Output Current)
Full range(*4)
1
Response Time
Operable Frequency
(*3)
(*4)
(*4)
Condition
mV
μs
25℃
25℃
Unit
Tre
Fopr
-
1.3
-
-
0.4
-
-
-
-
Condition
mV
VOUT=1.4[V]
VCC=5~36[V],VOUT=1.4[V]
nA
VOUT=1.4[V]
nA
VOUT=1.4[V]
V
-
mA
VCC=15[V],VOUT=1.4~11.4[V]
RL=15[kΩ],VRL=15[V]
VOUT=open
VOUT=open,VCC=36[V]
VIN+=0[V],VIN=1[V],VOL=1.5[V]
mV
VIN+=0[V],VIN-=1[V],IOL=4[mA]
nA
μA
VIN+=1[V],VIN-=0[V],VOH=5[V]
VIN+=1[V],VIN-=0[V],VOH=36[V]
RL=5.1[kΩ],VRL=5[V]
VIN=100[mVp-p],overdrive=5[mV]
RL=5.1[kΩ],VRL=5[V],VIN=TTL
Logic Swing,VREF=1.4[V]
VCC=5[V],RL=2[kΩ], VIN+=1.5[V]
VIN-=5[Vp-p]
(Duty 50% Rectangular Pulse)
dB
mA
μs
25℃
25℃
Unit
kHz
Absolute value
BA2901S family:Full range -40[℃]~+105[℃]
BA2901 family :Full range -40[℃]~+125[℃]
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
3/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA2903HFVM-C (Unless otherwise specified VCC=+5[V], VEE=0[V])
Guaranteed limit
Temperature
Parameter
Symbol
range
Min.
Typ.
Max.
25℃
2
5
(*3)
Input Offset Voltage
Vio
Full range(*4)
15
25℃
5
50
Input Offset Current(*3)
Iio
v
200
25℃
50
250
Input Bias Current(*3)
Ib
Full range(*4)
500
25℃
0
VCC-1.5
Input Common-mode
Vicm
Voltage Range
Full range(*4)
0
VCC-2.0
25℃
88
100
Large Signal Voltage Gain
AV
Full range(*4)
74
25℃
0.6
1
Supply Current
ICC
Full range(*4)
2.5
Output Sink Current(*4)
IOL
25℃
6
16
Output Saturation Voltage
25℃
150
400
VOL
(Low Level Output Voltage)
Full range(*4)
700
25℃
0.1
Output Leakage Current
Ileak
(High Level Output Current)
Full range(*4)
1
Response Time
Operable Frequency
(*3)
(*4)
Tre
Fopr
-
-
-
-
-
-
100
-
-
Condition
mV
VOUT=1.4[V]
VCC=5~36[V],VOUT=1.4[V]
nA
VOUT=1.4[V]
nA
VOUT=1.4[V]
V
-
mA
VCC=15[V],VOUT=1.4~11.4[V]
RL=15[kΩ],VRL=15[V]
VOUT=open
VOUT=open,VCC=36[V]
VIN+=0[V],VIN=1[V],VOL=1.5[V]
mV
VIN+=0[V],VIN-=1[V],IOL=4[mA]
nA
μA
VIN+=1[V],VIN-=0[V],VOH=5[V]
VIN+=1[V],VIN-=0[V],VOH=36[V]
RL=5.1[kΩ],VRL=5[V]
VIN=100[mVp-p],overdrive=5[mV]
RL=5.1[kΩ],VRL=5[V],VIN=TTL
Logic Swing,VREF=1.4[V]
VCC=5[V],RL=2[kΩ], VIN+=1.5[V]
VIN-=5[Vp-p]
(Duty 50% Rectangular Pulse)
dB
mA
μs
25℃
25℃
Unit
kHz
Absolute value
BA2903HFVM-C:Full range -40[℃]~+125[℃]
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
4/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Example of electrical characteristics(Refarance Data)
○BA10393 family
BA10393 family
BA10393 family
1
800
0.8
BA10393F
400
200
25℃
0.6
0.4
85℃
0.2
0
75
100
125
0
10
20
30
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃] .
Fig. 1
Derating Curve
OUTPUT SATURATION VOLTAGE [mV]
OUTPUT SATURATION VOLTAGE [mV]
25℃
300
200
-40℃
100
400
2V
300
36V
100
0
-50
0
0
10
20
30
SUPPLY VOLTAGE [V]
5V
200
40
(IOL=4[mA])
BA10393 family
30
36V
5V
20
2V
10
0
0
25
50
75
-25
0
25
50
1.6
1.4
25℃
1.2
85℃
1.0
0.8
0.6
0.4
-40℃
0.2
100
0
75
6
8
10 12 14 16 18 20
Fig. 6
Low Level Output Voltage
– Output Sink Current
(IOL=4[mA])
(VCC=5[V])
BA10393 family
4
-40℃
2
25℃
0
-2
85℃
-4
-6
BA10393 family
8
6
4
2V
2
5V
0
-2
36V
-4
-6
-8
0
AMBIENT TEMPERATURE [℃]
10
20
30
40
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
SUPPLY VOLTAGE [V]
Fig. 7
Output Sink Current - Ambient Temperature
4
Fig. 5
Output Saturation Voltage
– Ambient Temperature
6
100
2
OUTPUT SINK CURRENT [mA]
-8
-50
1.8
0.0
-25
8
INPUT OFFSET VOLTAGE [mV]
40
100
BA10393 family
2.0
AMBIENT TEMPERATURE [℃]
Fig. 4
Output Saturation Voltage – Supply Voltage
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
Fig. 3
Supply Current - Ambient Temperature
BA10393 family
500
85℃
400
2V
0.2
-50
Fig. 2
Supply Current - Supply Voltage
BA10393 family
500
0.4
40
LOW LEVEL OUTPUT VOLTAGE [V]
50
INPUT OFFSET VOLTAGE [mV]
25
36V
5V
0.6
0
0
0
OUTPUT SINK CURRENT [mA]
SUPPLY CURRENT [mA]
SUPPLY CURRENT [mA]
0.8
600
BA10393 family
1
-40℃
.
POWER DISSIPATION [mW] .
1000
Fig. 8
Input Offset Voltage - Supply Voltage
Fig. 9
Input Offset Voltage – Ambient Temperature
(VOUT=1.5[V])
BA10393 family
.
160
100
-40℃
25℃
80
60
40
85℃
20
INPUT OFFSET CURRENT [nA]
INPUT BIAS CURRENT [nA]
120
120
36V
100
80
5V
60
40
2V
20
0
10
20
30
40
20
-40℃
10
0
25℃
-10
85℃
-20
-30
-50
-50
SUPPLY VOLTAGE [V]
Fig. 10
Input Bias Current – Supply Voltage
30
-40
0
0
BA10393 family
50
40
140
140
INPUT BIAS CURRENT [nA]
BA10393 family
160
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
Fig. 11
Input Bias Current – Ambient Temperature
0
10
20
30
SUPPLY VOLTAGE [V]
40
Fig. 12
Input Offset Current – Supply Voltage
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
5/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA10393 family
20
10
5V
0
-10
2V
-20
-30
-40
-50
.
25℃
130
LARGE SIGNAL VOLTAGE GAIN [dB]
36V
30
140
LARGE SIGNAL VOLTAGE GAIN [dB]
INPUT OFFSET CURRENT [nA]
40
BA10393 family
.
BA10393 family
50
120
110
100
85℃
-40℃
90
80
70
60
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
BA10393 family
140
130
36V
120
110
100
5V
2V
90
80
70
60
0
40
-50
Fig. 14
Large Signal Voltage Gain
– Supply Voltage
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 15
Large Signal Voltage Gain
– Ambient Temperature
.
Fig. 13
Input Offset Current – Ambient Temperature
10
20
30
SUPPLY VOLTAGE [V]
140
120
25℃
-40℃
100
80
85℃
60
40
0
10
20
30
SUPPLY VOLTAGE [V]
130
120
36V
110
90
80
2V
70
60
40
-50
4
3
5mV overdrive
2
20mV overdrive
1
100mV overdrive
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
.
Fig. 17
Common Mode Rejection Ratio
– Ambient Temperature
BA10393 family
140
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 18
Power Supply Rejection Ratio
– Ambient Temperature
BA10393 family
5
RESPONSE TIME (HIGH to LOW) [μs]
. .
RESPONSE TIME (LOW to HIGH) [μs]
BA10393 family
5V
100
Fig. 16
Common Mode Rejection Ratio
– Supply Voltage
5
BA10393 family
140
POWER SUPPLY REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO[dB]
.
POWER SUPPLY REJECTION RATIO [dB]
BA10393 family
160
4
3
5mV overdrive
2
20mV overdrive
100mV overdrive
1
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 19
Response Time (Low to High)
- Ambient Temperature
Fig. 20
Response Time (High to Low)
- Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
(VCC=5[V],VRL=5[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
6/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA10339 family
BA10339 family
1000
BA10339 family
1
BA10339 family
1
BA10339FV
600
400
BA10339F
200
0
0.8
25℃
0.6
0.4
85℃
0.2
0.8
36V
0.6
5V
0.4
2V
0.2
0
-50
0
0
25
50
75
100
AMBIENT TEMPERATURE [℃] .
125
0
Fig. 21
Derating Curve
10
20
30
SUPPLY VOLTAGE [V]
40
Fig. 22
Supply Current - Supply Voltage
BA10339 family
400
85℃
300
25℃
200
100
-40℃
0
400
2V
300
200
5V
36V
100
10
20
30
SUPPLY VOLTAGE [V]
40
1.8
1.6
1.4
1.2
1.0
0.6
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
0
100
(IOL=4[mA])
5V
10
3V
-50
-25
0
25
50
75
4
2
0
-40℃
25℃
-2
-4
85℃
-6
8
10 12 14 16 18 20
Fig. 26
Low Level Output Voltage
– Output Sink Current(VCC=5[V])
BA10339 family
4
2
0
36V
5V
-2
-4
3V
-6
-8
0
100
10
20
30
40
-50
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 27
Output Sink Current - Ambient Temperature
6
6
6
-8
0
4
8
INPUT OFFSET VOLTAGE [mV]
INPUT OFFSET V OLTA GE [mV]
OUTPUT SINK CURRENT [mA]
20
BA10339 family
8
2
OUTPUT SINK CURRENT [mA]
(IOL=4[mA])
36V
-40℃
0.2
Fig. 25
Output Saturation Voltage – Ambient Temperature
30
25℃
0.4
Fig. 24
Output Saturation Voltage – Supply Voltage
40
85℃
0.8
0.0
-50
BA10339 family
100
BA10339 family
2.0
0
0
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
Fig. 23
Supply Current - Ambient Temperature
BA10339 family
500
OUTPUT SATURATION VOLTAGE [mV]
500
OUTPUT SATURATION VOLTAGE [mV]
SUPPLY CURRENT [mA]
SUPPLY CURRENT [mA]
800
LOW LEVEL OUTPUT VOLTAGE [V]
POWER DISSIPATION [mW] .
.
-40℃
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig. 28
Input Offset Voltage - Supply Voltage
Fig. 29
Input Offset Voltage – Ambient Temperature
(VOUT=1.5[V])
BA10339 family
BA10339 family
50
BA10339 family
50
.
50
25℃
30
-40℃
20
10
85℃
INPUT OFFSET CURRENT [nA]
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
40
40
40
36V
30
20
5V
10
0
0
10
20
30
40
85℃
10
0
-10
-40℃
-20
25℃
-30
-50
-50
SUPPLY VOLTAGE [V]
Fig. 30
Input Bias Current – Supply Voltage
20
-40
3V
0
30
-25
0
25
50
75
AMBIENT TEMPERAUTRE [℃]
100
Fig. 31
Input Bias Current – Ambient Temperature
0
10
20
30
SUPPLY VOLTAGE [V]
40
Fig. 32
Input Offset Current – Supply Voltage
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA10339 family
BA10339 family
30
LARGE SIGNAL VOLTAGE GAIN [dB]
36V
5V
20
10
0
-10
3V
-20
-30
-40
130
120
85℃
110
100
-50
-40℃
90
80
70
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
0
10
20
30
SUPPLY VOLTAGE [V]
Fig. 33
Input Offset Current – Ambient Temperature
120
25℃
-40℃
100
80
85℃
60
125
36V
100
75
3V
50
25
0
10
20
30
SUPPLY VOLTAGE [V]
-50
40
Fig. 36
Common Mode Rejection Ratio
– Supply Voltage
3
5mV overdrive
2
20mV overdrive
1
100mV overdrive
5V
90
3V
80
70
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
100
BA10339 family
140
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 38
Power Supply Rejection Ratio
– Ambient Temperature
BA10339 family
5
RESPONSE TIME (HIGH to LOW) [μs]
4
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
Fig. 37
Large Signal Voltage Gain
– Ambient Temperature
BA10339 family
5
100
Fig. 35
Large Signal Voltage Gain
– Ambient Temperature
5V
40
0
36V
110
40
BA10339 family
150
LARGE SIGNAL VOLTAGE GAIN [dB]
COMMON MODE REJECTION RATIO [dB]
140
120
Fig. 34
Large Signal Voltage Gain
– Supply Voltage
.
BA10339 family
160
130
60
60
-50
RESPONSE TIME (LOW to HIGH) [μs]
25℃
BA10339 family
140
POWER SUPPLY REJECTION RATIO [dB]
INPUT OFFSET CURRENT [nA]
BA10339 family
140
40
LARGE SIGNAL VOLTAGE GAIN [dB]
50
4
3
5mV overdrive
2
20mV overdrive
100mV overdrive
1
0
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 39
Response Time (Low to High)
- Ambient Temperature
Fig. 40
Response Time (High to Low)
- Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
(VCC=5[V],VRL=5[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
8/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA2903S/BA2903 family,BA2903HFVM-C
BA2903S/BA2903 family,BA2903H
BA2903SF
400
BA2903FVM
BA2903HFVM
BA2903SFV
1.2
1.0
-40℃
0.8
0.6
0.4
Fig. 41
Derating Curve
10
MAXIMUM OUTPUT
OUTPUT VOLTAGE
MAXIMUM
VOLTAGE[mV]
[mV]
MAXIMUMOUTPUT
OUTPUT
VOLTAGE
[mV]
MAXIMUM
VOLTAGE
[mV]
125℃
105℃
100
25℃
-40℃
0
0
10
20
30
-50
2V
10
100
5V
36V
50
0
25
50
75
0
25
50
75
100
125
75
100 125 150
BA2903S/BA2903 family,BA2903H
1.6
1.4
25℃
1.2
125℃
1
0.8
105℃
0.6
0.4
-40℃
0
150
-40℃
2
0
25℃
-2
105℃
4
6
8
10
12
14
16
18
20
Fig. 46
Output Voltage
– Output Sink Current(VCC=5[V])
BA2903S/BA2903 family,BA2903H
4
2
OUTPUT SINK CURRENT [mA]
6
125℃
-4
-6
100 125 150
BA2903S/BA2903 family,BA2903H
8
6
4
2V
2
0
36V
5V
-2
-4
-6
-8
0
10
20
30
-50
40
-25
0
25
50
75
100 125 150
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 48
Input Offset Voltage - Supply Voltage
Fig. 49
Input Offset Voltage – Ambient Temperature
AMBIENT TEMPERATURE [℃]
Fig. 47
Output Sink Current - Ambient Temperature
50
0
-25
-8
-25
25
0.2
0
8
0
0
2
Fig. 45
Maximum Output Voltage
– Ambient Temperature(IOL=4[mA])
36V
-25
Fig. 43
Supply Current - Ambient Temperature
AMBIENT
TEMPERATURE[℃]
SUPPLY
VOLTAGE [V]
20
-50
2V
AMBIENT TEMPERATURE [℃]
2V
-50
INPUT OFFSET VOLTAGE [mV]
OUTPUT SINK CURRENT [mA]
40
150
40
BA2903S/BA2903 family,BA2903H
5V
0.4
1.8
Fig. 44
Maximum Output Voltage
– Supply Voltage(IOL=4[mA])
30
30
BA2903S/BA2903 family,BA2903H
200
SUPPLY VOLTAGE [V]
40
20
Fig. 42
Supply Current - Supply Voltage
BA2903S/BA2903 family,BA2903H
50
5V
0.6
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
150
36V
0.8
0.0
0
150
1.0
0.2
OUTPUT VOLTAGE [V]
105
25
50
75
100
125
AMBIENT TEMPERTURE [℃] .
1.2
125℃
105℃
0.0
0
200
25℃
0.2
BA2903SFVM
0
1.4
SUPPLY CURRENT [mA]
600
SUPPLY CURRENT [mA]
POWER DISSIPATION [mV]
POWER
POWERDISSIPATION
DISSIPATION[mW]
[mW]
BA2903FV
BA2903S/BA2903 family,BA2903H
1.6
1.4
BA2903F
800
200
BA2903S/BA2903 family,BA2903H
1.6
INPUTOFFSET
OFFSET VOLTAGE
VOLTAGE [mV]
INPUT
[mV]
1000
(VOUT=1.5[V])
INPUT BIAS CURRENT [nA]
INPUT
BIAS
CURRENT[nA]
[nA]
INPUT BIAS
BIAS CURRENT
INPUT
CURRENT
[nA]
140
140
25℃
120
120
-40℃
-40℃
100
100
25℃
80
80
60
60
40
40
105℃
20
20
105℃
BA2903S/BA2903 family,BA2903H
160
140
120
100
36V
80
60
40
5V
20
125℃
125℃
2V
0
00
00
5
10
10
15 2020
25 30 30
35
40
SUPPLYVOLTAGE
VOLTAGE[V]
[V]
SUPPLY
Fig. 50
nput Bias Current – Supply Voltage
BA2903S/BA2903 family,BA2903H
50
INPUT
[nA]
INPUTOFFSET
OFFSET CURRENT
CURRENT[nA]
BA2903S/BA2903 family,BA2903H
160
160
40
30
20
-40℃
10
25℃
0
-10
105℃
125℃
-20
-30
-40
-50
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 51
Input Bias Current – Ambient Temperature
0
10
20
30
40
SUPPLY VOLTAGE [V]
Fig. 52
Input Offset Current – Supply Voltage
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
9/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA2903S/BA2903 family,BA2903HFVM-C
LARGE SINGAL VOLTAGE GAIN [dB]
30
20
2V
10
0
-10
36V
5V
-20
-30
-40
-50
130
110
100
25℃
-40℃
90
80
70
60
-25
0
25
50
75
100 125 150
0
10
140
120
105℃
125℃
100
80
25℃
60
-40℃
40
0
10
20
30
COMMON MODE REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
BA2903S/BA2903 family,BA2903H
160
140
120
100
80
60
-25
100
75
5V
2V
50
25
0
-25
0
25
50
75
-40℃
2
125℃
0
-2
-4
-1
0
RESPONSE TIME (HIGH TO LOW)[μs]
-40℃
1
1
2
3
4
5
INPUT VOLTAGE [V]
Fig. 58
Input Offset Voltage – Input Voltage
(VCC=5V)
5
BA2903S/BA2903 family,BA2903H
4
3
2
105℃
125℃
-40℃
25℃
1
0
-80
-60
-40
-20
0
5
100mV overdrive
4
20mV overdrive
3
5mV overdrive
2
1
0
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 61
Response Time (Low to High)
– Over Drive Voltage
Response Time (Low to High)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
BA2903S/BA2903 family,BA2903H
BA2903S/BA2903 family,BA2903H
25℃
105℃
Fig. 57
Power Supply Rejection Ratio
– Ambient Temperature
105℃
100 125 150
4
100 125 150
Fig. 60
2
75
Common Mode Rejection Ratio
– Ambient Temperature
Fig. 59
125℃
50
-6
-50
OVER DRIVE VOLTAGE [V]
4
25
BA2903S/BA2903 family,BA2903H
6
36V
-100
100 125 150
5
0
Fig. 55
Large Signal Voltage Gain
– Ambient Temperature
125
AMBIENT TEMPERATURE [℃]
3
60
-50
40
BA2903S/BA2903 family,BA2903H
RESPONSE TIME (LOW TO HIGH)[μs]
POWER SUPPLY REJECTION RATIO [dB]
160
75
70
AMBIENT TEMPERATURE [℃]
180
50
80
Fig. 54
Large Signal Voltage Gain
– Supply Voltage
BA2903S/BA2903 family,BA2903H
25
5V
15V
90
25℃
40
200
0
100
BA2903S/BA2903 family,BA2903H
Fig. 56
Common Mode Rejection Ratio
– Supply Voltage
-25
110
AMBIENT TEMPERATURE [℃]
150
SUPPLY VOLTAGE [V]
-50
30
36V
120
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 53
Input Offset Current – Ambient Temperature
20
130
INPUT OFFSET VOLTAGE [mV]
-50
RESPONSE TIME (HIGH TO LOW)[μs]
105℃
125℃
120
BA2903S/BA2903 family,BA2903H
140
RRESPONSE
TIME
(LOW
HIGH)[μs]
RESPONSE
TIME
(LOW
TOTO
HIGH)[μs]
INPUT OFFSET CURRENT [nA]
40
BA2903S/BA2903 family,BA2903H
140
LARGE SINGAL VOLTAGE GAIN [dB]
BA2903S/BA2903 family,BA2903H
50
5
4
100mV overdrive
20mV overdrive
3
5mV overdrive
2
1
0
0
0
20
40
60
80
100
-50
Fig. 62
Response Time (High to Low)– Over Drive Voltage
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
OVERDRIVE
DRIVEVOLTAGE
VOLTAGE [V]
OVER
[mV]
Fig. 63
Response Time (High to Low) – Ambient
Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
10/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA2901S/BA2901 family
BA2901S/BA2901 family
BA2901KN
BA2901F
600
BA2901SFV
400
200
1.4
25℃
1.6
-40℃
1.4
1.2
1.0
0.8
0.6
125℃
0.4
BA2901SKN
0
0
25
50
100
125
0
20
30
0.4
25℃
-40℃
0
10
20
30
25
50
75
100 125 150
BA2901S/BA2901 family
2
1.8
150
2V
100
5V
36V
50
1.6
1.4
25℃
125℃
1.2
1
0.8
105℃
0.6
0.4
0.2
-40℃
0
40
-50
-25
0
25
50
75
100
125
0
150
2
4
6
8
10
12
14
16
18
SUPPLY
VOLTAGE [V]
AMBIENT
TEMPERATURE[℃]
OUTPUT SINK CURRENT [mA]
Fig. 67
Maximum Output Voltage
– Supply Voltage
Fig. 68
Maximum Output Voltage
– Ambient Temperature
Fig. 69
Output Voltage
– Output Sink Current
(IOL=4[mA])
(IOL=4[mA])
(VCC=5[V])
SUPPLY VOLTAGE [V]
5V
INPUT OFFSET VOLTAGE [mV]
30
36V
20
2V
10
BA2901S/BA2901 family
8
0
6
4
-40℃
2
0
25℃
-2
105℃
125℃
-4
-6
6
4
2V
2
0
0
25
50
75
100 125 150
36V
-4
-6
-8
0
10
20
30
-50
40
-25
0
25
50
75
100 125 150
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 71
Input Offset Voltage - Supply Voltage
Fig. 72
Input Offset Voltage – Ambient Temperature
AMBIENT TEMPERATURE [℃]
Fig. 70
Output Sink Current - Ambient Temperature
5V
-2
-8
-25
20
BA2901S/BA2901 family
8
INPUT OFFSET VOLTAGE [mV]
BA2901S/BA2901 family
40
-50
0
Fig. 66
Supply Current - Ambient Temperature
0
0
-25
AMBIENT TEMPERATURE [℃]
OUTPUT VOLTAGE [V]
100
-50
BA2901S/BA2901 family
200
MAXIMUM OUTPUT VOLTAGE [mV]
125℃
2V
40
Fig. 65
Supply Current - Supply Voltage
105℃
OUTPUT SINK CURRENT [mA]
10
Fig. 64
Derating Curve
50
5V
0.6
0.0
150
BA2901S/BA2901 family
36V
0.8
0.0
SUPPLY VOLTAGE [V]
150
1.0
0.2
AMBIENT TEMPERATURE [℃]
200
MAXIMUM OUTPUT VOLTAGE [mV]
105
75
1.2
105℃
0.2
BA2901SF
BA2901S/BA2901 family
1.6
1.8
SUPPLY CURRENT [mA]
POWER DISSIPATION [mW]
800
BA2901S/BA2901 family
2.0
BA2901FV
SUPPLY CURRENT [mA]
1000
(VOUT=1.5[V])
INPUTBIAS
BIASCURRENT
CURRENT [nA]
INPUT
[nA]
INPUT
[nA]
INPUTBIAS
BIASCURRENT
CURRENT [nA]
INPUT
BIAS
CURRENT
[nA]
140
140
25℃
120
120
-40℃
-40℃
-40℃
100
100
25℃
25℃
80
80
60
60
40
40
105℃
105℃
20
20
105℃
125℃
125℃
125℃
BA2901S/BA2901 family
160
140
120
100
36V
80
60
40
5V
20
2V
0
00
00
5
10
10
15 2020
2530 30
SUPPLYVOLTAGE
VOLTAGE [V]
[V]
SUPPLY
VOLTAGE
[V]
SUPPLY
40
35
Fig. 73
Input Bias Current – Supply Voltage
www.rohm.com
40
30
20
-40℃
10
25℃
0
-10
105℃
125℃
-20
-30
-40
-50
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 74
Input Bias Current – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
© 2010 ROHM Co., Ltd. All rights reserved.
BA2901S/BA2901 family
50
INPUT OFFSET CURRENT[nA]
BA2901S/BA2901 family
160
160
11/19
0
10
20
30
40
SUPPLY VOLTAGE [V]
Fig. 75
Input Offset Current – Supply Voltage
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
○BA2901S/BA2901 family
LARGE SINGAL VOLTAGE GAIN [dB]
30
20
2V
10
0
-10
5V
-20
36V
-30
-40
-50
130
110
100
25℃
-40℃
90
80
70
60
-25
0
25
50
75
100 125 150
0
10
140
120
105℃
100
80
25℃
-40℃
60
40
0
10
20
30
40
110
100
5V
15V
90
80
70
60
-50
40
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 77
Large Signal Voltage Gain
– Supply Voltage
Fig. 78
Large Signal Voltage Gain
– Ambient Temperature
BA2901S/BA2901 family
150
BA2901S/BA2901 family
6
25℃
125
36V
100
75
5V
2V
50
25
0
105℃
4
-40℃
2
125℃
0
-2
-4
-6
-50
-25
0
25
50
75
100 125 150
-1
0
1
2
3
4
5
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
INPUT VOLTAGE [V]
Fig. 79
Common Mode Rejection Ratio
– Supply Voltage
Fig. 80
Common Mode Rejection Ratio
– Ambient Temperature
Fig. 81
Input Offset Voltage - Input Voltage
BA2901S/BA2901 family
RESPONSE TIME (LOW TO HIGH)[μs]
200
180
160
140
120
100
80
60
-50
-25
0
25
50
75
(VCC=5V)
BA2901S/BA2901 family
5
4
3
2
105℃
125℃
-40℃
25℃
1
0
-100
100 125 150
-80
-60
-40
-20
0
BA2901S/BA2901 family
5
4
100mV overdrive
20mV overdrive
3
2
5mV overdrive
1
0
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
OVER DRIVE VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 82
Power Supply Rejection Ratio
– Ambient Temperature
Fig. 83
Response Time (Low to High)
– Over Drive Voltage
Fig. 84
Response Time (Low to High)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
BA2901S/BA2901 family
5
RESPONSE TIME (HIGH TO LOW)[μs]
POWER SUPPLY REJECTION RATIO [dB]
125℃
COMMON MODE REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
BA2901S/BA2901 family
160
30
36V
120
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 76
Input Offset Current – Ambient Temperature
20
130
INPUT OFFSET VOLTAGE [mV]
-50
RESPONSE TIME (HIGH TO LOW)[μs]
105℃
125℃
120
BA2901S/BA2901 family
140
RRESPONSETIME
TIME(LOW
(LOWTO
TO HIGH)[μs]
HIGH)[μs]
RESPONSE
INPUT OFFSET CURRENT [nA]
40
BA2901S/BA2901 family
140
LARGE SINGAL VOLTAGE GAIN [dB]
BA2901S/BA2901 family
50
4
3
125℃
105℃
2
25℃
-40℃
1
BA2901S/BA2901 family
5
4
100mV overdrive
20mV overdrive
3
5mV overdrive
2
1
0
0
0
20
40
60
80
OVER
[mV]
OVERDRIVE
DRIVEVOLTAGE
VOLTAGE [V]
100
Fig. 85
Response Time (High to Low)
– Over Drive Voltage
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 86
Response Time (High to Low)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
12/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Circuit Diagram
VCC
VOUT
+IN
-IN
VEE
Fig.87 Circuit Diagram (one channel only )
●Test Circuit1 Null Method
VCC,VEE,EK,Vicm Unit : [V], VRL=VCC
Parameter
BA2903S/BA2901S family
BA2903/BA2901 family
Calculation
BA2903HFVM-C
Vicm VCC GND EK
Vicm
BA10393/BA10339 family
VF
S1
S2
S3
Input Offset Voltage
VF1
ON
ON
ON
5
0
-1.4
0
5~36
0
-1.4
Input Offset Current
Input Bias Current
VF2
OFF
OFF
ON
5
0
-1.4
0
5
0
VF3
OFF
ON
5
0
-1.4
0
5
0
VF4
ON
OFF
5
0
-1.4
0
5
ON
ON
15
0
-1.4
0
15
0
-11.4
0
VCC GND
Large Signal Voltage Gain
VF5
VF6
ON
ON
EK
0
1
-1.4
0
2
-1.4
0
0
-1.4
0
15
0
-1.4
0
15
0
-11.4
0
3
4
-Calculation1. Input Offset Voltage (Vio)
Vio 
VF1
[V]
1+ R f /Rs
Rf
50[kΩ]
2. Input Offset Current (Iio)
S1
Iio 
VF2 - VF1
[A]
Ri (1+ R f / Rs)
3. Input Bias Current (Ib)
Ib 
VF4 - VF3
0.1[μF]
50[Ω]
Ri 10[kΩ]
50[Ω]
Ri 10[kΩ]
Rs
0.1[μF]
Vicm
[A]
S2
50k
2× R i (1+ R f / Rs)
4. Large Signal Voltage Gain (AV)
Av = 20×Log
Rs
EK
RK
500[kΩ]
C1
0.01[μF]
VCC
+15[V]
RK 500[kΩ]
DUT
NULL
S3
VEE
V VF
RL
VRL
-15[V]
Fig.88 Measurement circuit1 (one channel only)
ΔEK×(1+Rf /Rs)
|VF5-VF6|
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
[dB]
13/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Measurement Circuit 2: Switch Condition
SW No.
Supply Current
SW
1
OFF
SW
2
OFF
SW
3
OFF
SW
4
OFF
SW
5
OFF
SW
6
OFF
SW
7
OFF
Output Sink Current
VOL=1.5[V]
OFF
ON
ON
OFF
OFF
OFF
ON
Saturation Voltage
IOL=4[mA]
OFF
ON
ON
OFF
ON
ON
OFF
Output Leakage Current
VOH=36[V]
OFF
ON
ON
OFF
OFF
OFF
ON
Response Time
RL=5.1[kΩ],VRL=5[V]
ON
OFF
ON
ON
OFF
OFF
OFF
VCC
A
-
+
SW1
SW2
SW3
SW4
SW6
SW7
RL
VEE
VIN-
SW5
V
A
VRL
VIN+
VOL/VOH
Fig.89 Measurement Circuit 2 (one channel only)
VIN
Input wave
入力電圧波形
VIN
Input wave
入力電圧波形
+100mV
0V
overdrive voltage
overdrive voltage
0V
-100mV
VOUT
出力電圧波形
Output wave
VOUT
VCC
出力電圧波形
Output wave
VCC
VCC/2
VCC/2
0V
0V
Tre (LOW to HIGH)
Tre (HIGH to LOW)
Fig.90 Response Time
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
14/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Description of electrical characteristics
Described below are descriptions of the relevant electrical terms.
Please note that item names, symbols, and their meanings may differ from those on another manufacturer’s documents.
1. Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of
electrical characteristics or damage to the part itself as well as peripheral components.
1.1 Power supply voltage (VCC/VEE)
Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without
causing deterioration of the electrical characteristics or destruction of the internal circuitry.
1.2 Differential input voltage (Vid)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.
1.3 Input common-mode voltage range (Vicm)
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of
the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode
voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.
1.4 Power dissipation (Pd)
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C).
For packaged products, Pd is determined by maximum junction temperature and the thermal resistance.
2. Electrical characteristics
2.1 Input offset voltage (Vio)
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage
difference required for setting the output voltage to 0V.
2.2 Input offset current (Iio)
Indicates the difference of the input bias current between the non-inverting and inverting terminals.
2.3 Input bias current (Ib)
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the
non-inverting terminal and the input bias current at the inverting terminal.
2.4 Input common-mode voltage range (Vicm)
Indicates the input voltage range under which the IC operates normally.
2.5 Large signal voltage gain (AV)
The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting
terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.
AVD = (output voltage fluctuation) / (input offset fluctuation)
2.6 Circuit current (ICC)
Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.
2.7 Output sink current (IOL)
Denotes the maximum current that can be output under specific output conditions.
2.8 Output saturation voltage low level output voltage (VOL)
Signifies the voltage range that can be output under specific output conditions.
2.9 Output leakage current (ILeak)
Indicates the current that flows into the IC under specific input and output conditions.
2.10 Response time (tre)
The interval between the application of input and output conditions.
2.11 Common-mode rejection ratio (CMRR)
Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).
CMRR = (change of input common-mode voltage) / (input offset fluctuation)
2.12 Power supply rejection ratio (PSRR)
Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation).
PSRR = (change in power supply voltage) / (input offset fluctuation)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
15/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Derating curves
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature).IC is heated
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature.The temperature that
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.
Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance
of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the
storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the
package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called thermal resistance,
represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance.
Fig.91(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction
temperature Tj, and power dissipation Pd can be calculated by the equation below:
θja = (Tj-Ta) / Pd
[℃/W]
・・・・・ (Ⅰ)
Derating curve in Fig.91(b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can
be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja.
Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package condition, wind
velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a
specified condition. Fig.92(a)~(d) show a derating curve for an example of BA10393, BA10339, BA2903S, BA2903,
LSIの 消 費
力 [W]
Power dissipation
of電
LSI
BA2903HFVM-C,BA2901S, BA2901.
Pd (max)
θja2 < θja1
P2
θja = ( Tj ー Ta ) / Pd [℃/W]
周囲温度 Ta [℃]
Ambient temperature
θ' ja2
P1
θ ja2
Tj ' (max)
θ' ja1
0
表面温度 Tj [℃]
Chip surfaceチップ
temperature
25
50
Tj (max)
θ ja1
75
100
125
150
周 囲 温 度 Ta [℃ ]
Ambient temperature
Power dissipation
消費電力 P [W]
(b) Derating curve
(a) Thermal resistance
Fig.91 Thermal resistance and derating curve
1000
POWER DISSIPATION Pd [mW]
POWER
DISSIPATION
Pd [mW]
許容損失
Pd [mW]
1000
800
BA10393F
620mW(★5)
600
400
200
800
700mW(★6)
600
490mW(★7)
BA10339F
400
200
0
0
0
25
50
75
100
125
0
25
(a)BA10393 family
75
100
125
(b)BA10339 family
1000
1000
POWER
DISSIPATION
Pd [mW]
許容損失
Pd [mW]
800
50
Ambient temperature :Ta [℃]
Ambient
temperature
:Ta [℃]
Ta [°C]
周囲温度
POWER
DISSIPATION
Pd [mW]
許容損失
Pd [mW]
BA10339FV
780mW(★8)
BA2903FV
690mW(★9)
BA2903FVM
600
BA2903HFVM-C
590mW(★10)
BA2903SF
400
200
BA2903SFV
870mW(★11)
BA2901FV
800
660mW(★12)
600
610mW(★13)
BA2901F
BA2901SFV
400
200
BA2901SKN
BA2901SF
BA2903SFVM
0
0
105
0
25
50
75
100
125
105
0
150
Ambient
temperature
:Ta [℃]
Ta [°C]
周囲温度
25
50
75
100
125
150
Ambient
temperature
:Ta [℃]
Ta [°C]
周囲温度
(d)BA2901 family
(c)BA2903 family
(*5)
(*6)
(*7)
(*8)
(*9)
(*10)
(*11)
(*12)
(*13)
Unit
6.2
7.0
4.9
6.2
5.5
4.7
7.0
5.3
4.9
[mW/℃]
When using the unit above Ta=25[℃], subtract the value above per degree[℃]. Permissible dissipation is the value
when glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted.
Fig.92 Derating curve
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
16/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Precautions
1) Unused circuits
When there are unused circuits it is recommended that they beconnected as
in Fig.93, setting the non-inverting input terminal to a potential within the in-phase
input voltage range (VICR).
2) Input terminal voltage
(BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C)Applying
VEE + 36Vto the input terminal is possible without causing deterioration of
the electrical characteristics or destruction, irrespective of the supply voltage.
However,this does not ensure normal circuit operation.
Please note that the circuit operates normally only when the input voltage is
within the common mode input voltage range of the electric characteristics.
VCC
+
Please
keep this
同相入力電圧
potencial in Vicm
範囲内の電位
OPEN
-
VEE
Fig.93 Disable circuit example
図1 未使用回路の処理例
3) Power supply (single / dual)
The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply op-amp
can be used as a dual supply op-amp as well.
4) Power dissipation Pd
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in
chip temperature, including reduced current capability.
Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a
sufficient margin in thermal design. Refer to the thermal derating curves for more information.
5) Short-circuit between pins and erroneous mounting
Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and
the power supply, or the output and GND may result in IC destruction.
6) Terminal short-circuits
When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation
and, subsequently, destruction.
7) Operation in a strong electromagnetic field
Operation in a strong electromagnetic field may cause malfunctions.
8) Radiation
This IC is not designed to withstand radiation.
9) IC handing
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical
characteristics due to piezoelectric (piezo) effects.
10) Board inspection
Connecting a capacitor to a pin with low impedance may stress the IC.
Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching
the jig during the inspection phase, ensure that the power is turned off before inspection and removal .
Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
17/19
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
●Ordering part number
B
A
2
Part No.
9
0
3
F
V
-
E
2
Part No.
Package
Packaging and forming specification
10393,1033
2903S,2903
2901S,2901
2903H
F: SOP8
SOP14
FV: SSOP-B8
SSOP-B14
FVM: MSOP8
KN:VQFN16
E2: Embossed tape and reel
(SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16)
TR: Embossed tape and reel
(MSOP8)
SOP8
<Tape and Reel information>
7
5
6
6.2±0.3
4.4±0.2
0.3MIN
8
+6°
4° −4°
1 2
3
0.9±0.15
5.0±0.2
(MAX 5.35 include BURR)
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
4
0.595
1.5±0.1
+0.1
0.17 -0.05
0.11
S
1.27
0.42±0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SOP14
<Tape and Reel information>
8.7 ± 0.2
(MAX 9.05 include BURR)
8
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3MIN
4.4±0.2
6.2±0.3
14
Tape
1
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
1.5±0.1
0.15 ± 0.1
0.11
1.27
0.4 ± 0.1
0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SSOP-B8
<Tape and Reel information>
3.0 ± 0.2
(MAX 3.35 include BURR)
0.3MIN
4.4±0.2
6.4±0.3
8 76 5
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1.15±0.1
1 23 4
0.15 ± 0.1
0.1
S
0.1
+0.06
0.22 -0.04
(0.52)
0.08
M
0.65
1pin
Reel
(Unit : mm)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
18/19
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2010.05 - Rev.B
BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM,
BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN
Technical Note
SSOP-B14
<Tape and Reel information>
5.0 ± 0.2
8
1
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3Min.
4.4 ± 0.2
6.4 ± 0.3
14
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
0.10
1.15 ± 0.1
0.15 ± 0.1
0.1
0.65
0.22 ± 0.1
Direction of feed
1pin
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
MSOP8
<Tape and Reel information>
2.8±0.1
4.0±0.2
8 7 6 5
0.6±0.2
+6°
4° −4°
0.29±0.15
2.9±0.1
(MAX 3.25 include BURR)
Tape
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1 2 3 4
1PIN MARK
1pin
+0.05
0.145 –0.03
0.475
+0.05
0.22 –0.04
0.08±0.05
0.75±0.05
0.9MAX
S
0.08 S
Direction of feed
0.65
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
VQFN16
<Tape and Reel information>
4.2±0.1
4.0±0.1
(1.35)
4.0±0.1
9
1
4
0.05
M
+0.03
0.02 −0.02
0.22±0.05
2500pcs
Direction
of feed
5
16
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
0.05
(0
.2
2
)
0.5
Embossed carrier tape (with dry pack)
Quantity
8
13
0.22±0.05
Tape
0.95MAX
4.2±0.1
12
)
.5
(0
)
5
.3
(0
3-
+0.1
0.6 −0.3
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
Notice :
Do not use the dotted line area
for soldering
1pin
Reel
(Unit : mm)
19/19
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2010.05 - Rev.B
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
R1010A
Similar pages