BCR198.../SEMB2 PNP Silicon Digital Transistor • Switching circuit, inverter, interface circuit, driver circuit • Built in bias resistor (R1 = 47kΩ , R2 = 47kΩ ) • For 6-PIN packages: two (galvanic) internal isolated transistors with good matching in one package BCR198/F/L3 BCR198T/W BCR198S SEMB2 C C1 B2 3 6 5 E2 4 R2 R1 R1 TR2 TR1 R2 R1 R2 1 B 2 1 2 3 E E1 B1 C2 EHA07183 EHA07173 Type Marking Pin Configuration BCR198 WRs 1=B 2=E 3=C - - - SOT23 BCR198F WRs 1=B 2=E 3=C - - - TSFP-3 BCR198L3 WR 1=B 2=E 3=C - - - TSLP-3-4 BCR198S WRs 1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT363 BCR198T WRs 1=B 2=E 3=C - - - SC75 BCR198W WRs 1=B 2=E 3=C - - - SOT323 SEMB2 WR 1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT666 1 Package Jun-16-2004 BCR198.../SEMB2 Maximum Ratings Parameter Symbol Value Collector-emitter voltage VCEO 50 Collector-base voltage VCBO 50 Emitter-base voltage VEBO 10 Input on voltage Vi(on) 50 Collector current IC 70 Total power dissipation- Ptot 200 BCR198F, TS ≤ 128°C 250 BCR198L3, TS ≤ 135°C 250 BCR198S, T S ≤ 115°C 250 BCR198T, TS ≤ 109°C 250 BCR198W, TS ≤ 124°C 250 SEMB2, TS ≤ 75°C 250 Tj Storage temperature Tstg Thermal Resistance Parameter Junction - soldering point 1) Symbol RthJS V mA mW BCR198, TS ≤ 102°C Junction temperature Unit 150 °C -65 ... 150 Value Unit K/W ≤ 240 BCR198 BCR198F ≤ 90 BCR198L3 ≤ 60 BCR198S ≤ 140 BCR198T ≤ 165 BCR198W ≤ 124 SEMB2 ≤ 300 1For calculation of R thJA please refer to Application Note Thermal Resistance 2 Jun-16-2004 BCR198.../SEMB2 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. DC Characteristics Collector-emitter breakdown voltage V(BR)CEO 50 V IC = 100 µA, IB = 0 Collector-base breakdown voltage 50 - - I CBO - - 100 nA I EBO - - 164 µA h FE 70 - - - - - 0,3 V Vi(off) 0,8 - 1,5 Vi(on) 1 - 3 Input resistor R1 32 47 62 kΩ Resistor ratio R1/R 2 0,9 1 1,1 - fT - 190 - MHz Ccb - 3 - pF V(BR)CBO IC = 10 µA, IE = 0 Collector-base cutoff current VCB = 40 V, IE = 0 Emitter-base cutoff current VEB = 10 V, IC = 0 DC current gain1) IC = 5 V, VCE = 5 V Collector-emitter saturation voltage1) VCEsat IC = 10 mA, IB = 0,5 mA Input off voltage IC = 100 µA, VCE = 5 V Input on voltage IC = 2 mA, VCE = 0,3 V AC Characteristics Transition frequency IC = 10 mA, VCE = 5 V, f = 100 MHz Collector-base capacitance VCB = 10 V, f = 1 MHz 1Pulse test: t < 300µs; D < 2% 3 Jun-16-2004 BCR198.../SEMB2 DC current gain hFE = ƒ(IC) VCE = 5 V (common emitter configuration) Collector-emitter saturation voltage VCEsat = ƒ(IC), hFE = 20 10 2 10 3 - 10 2 IC h FE mA 10 1 10 1 10 0 -1 10 10 0 10 1 mA 10 10 0 0 2 0.2 0.4 0.6 V IC 1 VCEsat Input on Voltage Vi(on) = ƒ(I C) VCE = 0.3V (common emitter configuration) Input off voltage V i(off) = ƒ(IC) VCE = 5V (common emitter configuration) 10 1 10 2 mA mA 10 0 IC IC 10 1 10 -1 10 0 10 -2 10 -1 -1 10 10 0 10 1 V 10 10 -3 0 2 Vi(on) 1 2 3 V 5 Vi(off) 4 Jun-16-2004 BCR198.../SEMB2 Total power dissipation Ptot = ƒ(TS) BCR198 Total power dissipation Ptot = ƒ(TS) BCR198F 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 20 40 60 80 100 TS 150 TS Total power dissipation Ptot = ƒ(TS) BCR198L3 Total power dissipation Ptot = ƒ(TS) BCR198S 300 300 mW mW 200 Ptot Ptot 120 °C 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 TS 20 40 60 80 100 120 °C 150 TS 5 Jun-16-2004 BCR198.../SEMB2 Total power dissipation Ptot = ƒ(TS) BCR198T Total power dissipation Ptot = ƒ(TS) BCR198W 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 TS 20 40 60 80 100 120 °C 150 TS Total power dissipation Ptot = ƒ(TS) SEMB2 300 Ptot mW 200 150 100 50 0 0 20 40 60 80 100 120 °C 150 TS 6 Jun-16-2004 BCR198.../SEMB2 Permissible Pulse Load RthJS = ƒ(tp ) BCR198 Permissible Pulse Load Ptotmax/P totDC = ƒ(tp) BCR198 10 3 10 3 P totmax / P totDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 tp s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR198F Ptotmax/P totDC = ƒ(tp) BCR198F 10 3 10 3 Ptotmax /PtotDC K/W RthJS 10 2 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 1 10 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 7 Jun-16-2004 BCR198.../SEMB2 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR198L3 Ptotmax/P totDC = ƒ(tp) BCR198L3 10 3 Ptotmax/ P totDC RthJS 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 s 10 10 0 -7 10 0 10 -6 10 -5 10 -4 10 -3 10 tp -2 s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR198S Ptotmax/P totDC = ƒ(tp) BCR198S 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 8 Jun-16-2004 BCR198.../SEMB2 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR198T Ptotmax/P totDC = ƒ(tp) BCR198T 10 3 10 3 P totmax / P totDC K/W RthJS 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 1 10 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 tp s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR133W Ptotmax/P totDC = ƒ(tp) BCR198W 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 9 Jun-16-2004 BCR198.../SEMB2 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load SEMB2 Ptotmax/P totDC = ƒ(tp) SEMB2 10 3 10 3 P totmax/ P totDC K/W RthJS 10 2 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 1 10 0 10 -1 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 s 10 10 0 -7 10 0 tp 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 10 Jun-16-2004