FAIRCHILD FAN8729_NL

www.fairchildsemi.com
FAN8729
Spindle+4-CH Motor Drive IC
Features
Description
•
•
•
•
•
•
•
•
•
•
The FAN8729 is a monolithic integrated circuit built-in
4Channel BTL motor and spindle motor drivers, which can
drive tracking actuator, focus actuator, sled motor, loading
motor, 3-phase BLDC motor, and it is applicable to DVD-P/
MDP/CAR-MD/CAR-NAVIGATION systems.
Built-in Power Save Circuit
Built-in Current Limit Circuit
Built-in Thermal Shutdown Circuit (TSD)
Built-in TSD Monitor Circuit
Built-in FG Signal Output Circuit
Built-in Rotational Direction Detecting Circuit
Built-in Protection Circuit For Reverse Rotation
Built-in 4-CH Balanced Transformerless (BTL) Driver
Built-in BTL MUTE Circuit (CH123 and CH4)
Corresponds to 3.3V DSP
Typical Application
•
•
•
•
Mini Disk Player
Digital Video Disk Player
Car Mini Disk Player
Car navigation System
48-QFPH-1414
Ordering Information
Device
Package
Operating Temperature
FAN8729
48-QFPH-1414
-35°C ~ +85°C
48-QFPH-1414
-35°C ~ +85°C
FAN8729_NL*
note
*Note:
NL: Lead free Type
Rev. 1.0.0
©2003Fairchild Semiconductor Corporation
FAN8729
VM3
VM4
VREF4
44
SVCC2
45
VREF123
OUTS
46
MUTE123
INS-
47
MUTE4
INS+
48
SS
PC1
Pin Assignments
43
42
41
40
39
38
37
H1+
1
36
NC
H1-
2
35
DO4-
H2+
3
34
DO4+
H2-
4
33
DO3-
H3+
5
32
DO3+
H3-
6
31
PGND2
FAN8729
VM1
10
27
DO1+
11
26
OPOUT
12
25
OPIN-
CS1
PGND1
13
14
15
16
17
18
19
20
21
22
23
24
OPIN+
DO1-
VM2
28
IN1
9
IN2
SVCC1
IN3
DO2+
IN4
29
TSD_M
8
NC
DIR
SGND
DO2-
A1
30
A2
7
A3
FG
2
FAN8729
Pin Definitions
3
Pin Number
Pin Name
I/O
Pin Function Description
1
H1+
I
Hall1(+) Input
2
H1-
I
Hall1(-) Input
3
H2+
I
Hall2(+) Input
4
H2-
I
Hall2(-) Input
5
H3+
I
Hall3(+) Input
6
H3-
I
Hall3(-) Input
7
FG
O
FG Output
8
DIR
O
Direction
9
SVCC1
-
Signal VCC1
10
VM1
-
BLDC Motor Power Supply
11
CS1
I
Current Sensor
12
PGND1
-
Power Ground1
13
A3
O
3-Phase Output 3
14
A2
O
3-Phase Output 2
15
A1
O
3-Phase Output 1
16
SGND
-
Signal Ground
17
NC
-
NC
18
TSD_M
O
TSD Monitor
19
IN4
I
CH4 Input
20
IN3
I
CH3 Input
21
IN2
I
CH2 Input
22
IN1
I
CH1 Input
23
VM2
-
BTL CH1,2 Supply Voltage
24
OPIN+
I
Normal OP-AMP Input(+)
25
OPIN-
I
Normal OP-AMP Input(-)
26
OPOUT
O
Normal OP-AMP Output
27
DO1+
O
BTL Drive 1 Output(+)
28
DO1-
O
BTL Drive 1 Output(-)
29
DO2+
O
BTL Drive 2 Output(+)
30
DO2-
O
BTL Drive 2 Output(-)
31
PGND2
-
BTL Power Ground2
32
DO3+
O
BTL Drive 3 Output(+)
33
DO3-
O
BTL Drive 3 Output(-)
FAN8729
Pin Definitions (Continued)
Pin Number
Pin Name
I/O
Pin Function Description
34
DO4+
O
BTL Drive 4 Output(+)
35
DO4-
O
BTL Drive 4 Output(-)
36
NC
-
NC
37
VREF4
I
BTL CH4 Reference
38
VM4
-
BTL CH4 Motor Supply
39
VM3
-
BTL CH3 Motor Supply
40
SVCC2
-
BTL Signal VCC
41
VREF123
I
BTL CH1,2,3 Reference
42
MUTE123
I
BTL CH1,2,3 Mute
43
MUTE4
I
BTL CH4 Mute
44
SS
I
Spindle Start/Stop
45
OUTS
O
OP-AMP Spindle Output
46
INS-
I
OP-AMP Spindle Input(-)
47
INS+
I
OP-AMP Spindle Input(+)
48
PC1
I
Phase Compesation Cap.
4
FAN8729
H1+
1
H1-
2
EC
H2-
4
5
H3-
6
FIN(GND)
41
40
39
38
37
36
NC
35
DO4-
34
DO4+
33
DO3-
32
DO3+
31
PGND2
VM4
ECR
5K
Absolute Values
20K
VM3
Current
Sense Amp
23.5dB
5K
Output
Current Limit
FG1X
Generator
H3+
42
23.5dB
VM1 CS1
3
Hall Amp
H2+
VREF4
43
VM4
MUTE4
44
VM3
SS
45
SVCC2
OUTS
46
VREF123
INS-
47
MUTE123
INS+
48
FIN(GND)
PC1
Internal Block Diagram
20K
Detection
FIN(GND)
Logic
VM2
FG
17.5dB
Reverse
Rotation
7
30
DO2-
29
DO2+
28
DO1-
27
DO1+
26
OPOUT
25
OPIN-
10K
DIR
8
SVCC1
9
VM1
10
CS1
11
PGND1
12
20K
VM2
17.5dB
Distributor
10K
20K
5
A3
A2
A1
SGND
NC
TSD_M
19
20
21
22
23
24
OPIN+
18
VM2
17
IN1
16
IN2
15
IN3
14
IN4
13
FIN(GND)
TSD_M
Driver
FAN8729
Equivalent Circuits
FG Signal Output
Phase Compensation Capacitor
7
25
0.5K
48
2K
Current Detector
Start/Stop
100K
11
5K
44
25
50K
30K
BTL Drive Mute
37
42
43
BTL Bias Voltage
25
50K
41
25
50
30K
6
FAN8729
Equivalent Circuits (Continued)
3-Phase Rotational Direction Output
BTL Drive Output
8
27 28
20K
25
29 30
32 33
34 35
30K
3-Phase Output
15K
TSD_M
13
18
14
15
BTL Input(CH1,2)
BTL Input(CH3,4)
21
22
19
20
5K
25
OP-AMP Input
SVCC
2K
26
24
25
1K
2K
7
10K
OP-AMP Output
SVCC
2K
25
1K
2K
FAN8729
Absolute Maximum Ratings (Ta=25°C)
Parameter
Supply Voltage (Spindle Signal)
Supply Voltage (BTL Signal)
Supply Voltage (Spindle Motor)
Supply Voltage (BTL Motor)
Power Dissipation
Operating Temperature Range
Storge Temperature Range
Maximum Output Current (Spindle Part)
Maximum Output Current (BTL Part)
Symbol
Value
Unit
SVCC1max
SVCC2max
VM1max
VM2,3,4max
Pd
Topr
Tstg
IOMAXS
IOMAXB
7
15
15
15
2.7note
-35 ~ +85
-55 ~ +150
1.3
1
V
V
V
V
W
°C
°C
A
A
Note:
1. When mounted on the PCB (phenolic resin material) of which size is 114mm × 76mm x1.6mm.
2. Power dissipation is reduced with the rate of -21.6mW/°C for TA≥25°C.
3. Do not exceed Pd and SOA.
Pd[mW]
3,000
2,000
1,000
SOA
0
0
25
50
75
100
125
150
175
Ambient Temperature, Ta[ C]
Recommended Operating Conditions (Ta=25°C)
Parameter
Symbol
Min.
Type.
Max.
Unit
Operating Supply Voltage (Spindle Signal)
SVCC1
4.5
-
5.5
V
Operating Supply Voltage (BTL Signal)
SVCC2
4.5
-
13.2
V
VM1
4.5
-
13.2
V
VM2,3,4
4.5
-
SVCC2
V
Operating Supply Voltage (Spindle Motor)
Operating Supply Voltage (BTL Motor)
8
FAN8729
Electrical Characteristics
(Unless otherwise specified, Ta=25°C, SVCC1=5V, VM1=8V, BTL driver part: SVcc2=9V, VM2=5V, RL1=8Ω,
VM3=8V, VM4=9V, RL2=15Ω)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
ICC2
Start/Stop =5V
-
4.5
-
mA
SS On Voltage Range
VSSON
L-H Circuit On
2.5
-
-
V
SS Off Voltage Range
VSSOFF
H-L Circuit Off
-
-
1.0
V
1
5
uA
Circuit Current 2
START/STOP
HALL AMP
IHA
-
-
Common Mode Voltage Range
VHAR
-
1.5
-
4.0
V
Minimum In Level
VINH
-
60
-
-
mVpp
0.5
-
3.3
V
Hall Bias Current
TORQUE CONTROL
EC Input Voltage Range
EC
Offset Voltage (-)
ECOFF-
ECR=1.65V
-100
-50
-20
mV
Offset Voltage (+)
ECOFF+
ECR=1.65V
20
50
100
mV
Input Current
ECIN
EC=ECR=1.65V
-5
-1
-
uA
In/Output Gain
GEC
ECR=1.65V, RCS=0.5Ω
0.56
0.71
0.84
A/V
FG Output Voltage (L)
VFHL
IFG=10uA
-
-
0.5
V
Input Voltage Range
VFGR
Hn+, Hn- Input D-range
1.5
-
4.0
V
Saturation Voltage (Upper TR)
VOH
IO= -300mA
-
0.9
1.6
V
Saturation Voltage (Lower TR)
VOL
IO=300mA
-
0.2
0.6
V
Torque Limit Current
ITL
RCS=0.5Ω
560
700
840
mA
VDIRL
IDIR=10uA
-
-
0.5
V
FG
OUTPUT BLOCK
DIRECTION DETECTOR
DIR Output Voltage (L)
9
FAN8729
Electrical Characteristics (continued)
(Unless otherwise specified, Ta=25°C, SVCC1=5V, VM1=8V, BTL driver part: SVcc2=9V, VM2=5V, RL1=8Ω,
VM3=8V, VM4=9V, RL2=15Ω)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
BTL DRIVE PART
Quiescent Circuit Current
ICC3
-
16.5
-
mA
CH MUTE123 Off Voltage
VMOFF123
Pin42 = Variation
-
2.5
-
-
V
CH MUTE123 On Voltage
VMON123
Pin42 = Variation
-
-
1.0
V
CH MUTE4 Off Voltage
VMOFF4
Pin43 = Variation
2.5
-
-
V
CH MUTE4 On Voltage
VMON4
Pin43 = Variation
-
-
1.0
V
CH1,2 Actuator Driver (SVCC2=9V VM2=5V,RL1=8Ω)
Output Offset Voltage
VOF1,2
VIN = 1.65V
-50
-
+50
mV
Maximum Output Voltage1,2
VOM1,2
VIN = 1.65V
3.6
4.0
-
V
Close Loop Voltage Gain
GVC1,2
f=1kHz, VIN= -0.1Vrms
15.5
17.5
19.5
dB
RR1,2
f=120Hz, VIN= -20dB
-
60
-
dB
SR1,2
f=120Hz, 2Vp-p
-
1.0
-
V/us
Ripple Rejection
Slew Rate
Ratio*note
1,2*note
CH3 BTL Driver (SVCC2=9V, VM3=8V, RL2=15Ω)
Output Offset Voltage3
VOF3
VIN = 1.65V
-100
-
+100
mV
Maximum Output Voltage3
VOM3
VIN = 1.65V
6.5
7.0
-
V
Close Loop Voltage Gain
GVC3
f= 1kHz, VIN= -0.1Vrms
21.5
23.5
25.5
dB
RR3
f= 120Hz, VIN= -20dB
-
60
-
dB
SR3
f= 120Hz, 2Vp-p
-
1.0
-
V/us
Ripple Rejection
Ratio3*note
Slew Rate 3*note
CH4 BTL Driver (SVCC2=9V, VM4=9V, RL2=15Ω)
Output Offset Voltage4
VOF4
VIN = 1.65V
-100
-
+100
mV
Maximum Output Voltage4
VOM4
VIN = 1.65V
7.0
7.5
-
V
Close Loop Voltage Gain
GVC4
f= 1kHz, VIN= -0.1Vrms
21.5
23.5
25.5
dB
Ripple Rejection Ratio4*note
RR4
f= 120Hz, VIN= -20dB
-
60
-
dB
Slew Rate 4*note
SR4
f= 120Hz, 2Vp-p
-
1.0
-
V/us
-20
-
+20
mV
OP- AMP
Input Offset Voltage
VOF
-
IB1
-
-
-
300
nA
High Level Output Voltage
VOHOP
-
8
-
-
V
Low Level Output Voltage
VOLOP
-
-
-
0.1
V
ISINK
-
-
5.5
-
mA
ISOURCE
-
-
4.5
-
mA
Input Bias Current
Output Sink Current
Output Source Current
Gain*note
f= 1kHz, VIN= -75dB
-
75
-
dB
Ripple Rejection Ratio*note
RROP
f= 120Hz, VIN= -20dB
-
65
-
dB
note
SROP
f= 120Hz, 2Vp-p
-
1
-
V/us
Common Mode Rejection
Ratio*note
CMRROP
f= 1kHz, VIN= -20dB
-
80
-
dB
Open Loop Voltage
Slew Rate*
GVOOP
Note: Guaranteed field.(No EDS/Final test)
10
FAN8729
Application Information
1. MUTE Function
• MUTE circuit turns BTL output ON/OFF.
• When MUTE terminal (pin42, pin43) is OPEN, or terminal voltage is
lower than 1V, BTL is disable.
• When MUTE terminal (pin42, pin43) is voltage is higher than 1.5V,
BTL output operates normally.
• Feature Table.
MUTE circuit voltage
MUTE status
Above 1.5V
OFF
Below 1V or Open
ON
42
43
2. TSD Function
SVCC
• TSD circuit intercepts all IC output to protect the IC against high
temperatures.
• When chip temperature rises above 165°C, BTL and spindle output is
IREF
disable.
Q0
• When chip temperature falls below 140°C, BTL and spindle output
R2
operates normally.
• TSD has hysteresis of 25°C.
Output driver
Bias
R1
Hysteresis
Ihys
R3
3. TSD Monitor Function
•
•
•
•
TSD monitor circuit displays TSD status.
When TSD is ON, pin18 is HIGH.
When TSD is OFF, pin18 is LOW.
Since output pin(PIN18) is open-collector, pull-up resistance should be
attached outside.
• Feature Table.
11
TSD
Pin18
TSD On
High
TSD Off
Low
VCC
SVCC
R(external)
TSD
20k
18
Q6
Q5
FAN8729
4. CH1,2,3,4 Balanced Transformerless (BTL) Drive
R3
Pref
R3
DO+ 34 32
R2
29 27
Vin
19 20
R1
LEVEL
SHIFT
21 22
37 41
M
Vref123,4
35 33
DO- 30 28
Pref
R3
R3
• Diagram above shows each input/output BTL channel structure.
• When BTL input voltage is Vref, the output voltage is Pref. Pref has the value of VM/2.
• BTL Channel’s output voltage is found as follows;
R2
R3
× (1 + ) × (Vin − Vref )
R1
R3
R2
R3
Do− = Pr ef −
× (1 + ) × (Vin − Vref )
R1
R3
Do+ = Pr ef +
• BTL gain value is found as follows;
Gain = 4 ×
R2
R1
12
FAN8729
5. Spindle
VM1
Rcs
VM1
VRCS
Io
VAMP
ECR
+
+
-
Gain
Controller
-
Driver
M
TSD
EC
Torque sense amp
Current sense amp
Power Driver
• The spindle driver circuit consists of 3 section: Torque sense amp, Current sense amp, and Power driver.
• Torque sense amp compares and amplifies EC and ECR signals from SERVO, and sends them to current sense amp. With
voltage comparison, it determines the signal as forward or reverse.
• Current sense amp limits the current in Motor(Io) by comparing output current signal from torque sense amp with the
current of RCS.
• Power driver output the current to the motor based on the current generated form current sense amp.
• Feature Table
VRNF[V]
Reverse
Forward
Ecoff-
Ecoff+
Rotation
EC < ECR
Forward rotation
EC > ECR
Stop after detecting
reverse rotation
3mV
-50
13
0
+50
ECR-EC[mV]
FAN8729
6. Calculation of Gain & Torque Current
VM1
Io
Rcs
VM1
Current / Voltage
Convertor
CS1(Pin11)
-
ECR
+
Negative
Feedback loop
-
Vin
ER
Output
Vs
Current sense
+
R1
+
+ Driver
Gm
U
Power
Transistors
+
Absolute
Values
+
Vmax
VM1
Max. output
current limiting
Io
V
W
Commutation
Distributor
H1
H2
H3
• Toque limit circuit limits the current of spindle motor.
• Driver amp circuit limits the current of spindle motor by comparing the voltage detected from RCS and the voltage output
from torque sense map.
• Output current of the motor can be limited by adjusting the RCS value.
• Maximum output current of motor is found as follows;
Io[mA] =
V max 350mV
=
Rcs
Rcs
• VMAX within IC is fixed at 350mV.
• Gm of torque sense amp is set to 0.71.
14
FAN8729
7. Rotational Direction Detecting Function
• Rotation detection circuit gives the result to DIR pin by
detecting the MD’s rotational direction.
• Detects the MD’s rotational direction using hall signals H2 and
H3.
• Feature Table.
Rotation
DIR
EC < ECR
Forward
Low
EC > ECR
Reverse
High
H2+
+
H2-
-
8
DIR
R
D
Q
CK
H3+
+
H3-
-
D-F/F
• In case of forward rotational detection, the phase of hall signal shows as H3→ H2→ H1 as follows;
H1
H2
H3
(b)
• In case of reverse rotational detection, the phase of hall signal shows as H1→ H2→ H3 as follows;
H1
H2
H3
(a)
• Forward/Reverse rotational direction is decided as follows. When hall signal H3 is falling edge, if H2 shows "High", the
rotational direction is "Forward", and if H2 shows "Low", rotational direction is "Reverse".
15
FAN8729
8 Reverse Rotation Preventing Function
Current
S ens e
Amp
ECR
+
EC
-
H2+
+
H2-
-
D
H3+
+
CK
H3-
-
R
Q
Gain
controller
D-F/F
Driver
M
•
•
•
•
Reverse rotation prevention circuit has a function for intercepting the reverse rotation of MD.
When SERVO control input is EC<ECR, MD rotates forward and Q which is the output of D-F/F goes "High".
When SERVO control input is EC>ECR, motor puts on reverse brake and MD speed is rapidly reduced.
When SERVO control input remains EC>ECR, MD rotates reverse and Q which is the output of D-F/F goes "Low", in
result current sense amp is interrupted. Accordingly gain controller goes OFF and motor is stopped.
• Feature Table.
Rotation
H2
H3
D-F/F
DIR
Forward
H
H→L
H
Reverse
L
H→L
L
Reverse Rotation Preventer
EC<ECR
EC>ECR
L
Forward
Brake and Stop
H
–
Stop
16
FAN8729
8. FG Output Function
• FG circuit outputs the number of motor rotation.
• One pulse per rotation is output of FG.
• FG uses hall signal H1 as its input, and creates output using hysteresis
comparator.
• Input/Output wavelength is shown below;
H1
FG
17
7
FG Output
H1+
+
H1-
-
FAN8729
9. Hall Input Output Timing Chart
• Output voltage and current wavelength of each of the 3-phase hall input is shown below.
• The following diagram is the motor’s output wavelength in the forward rotation direction.
H1+
H2+
H3+
A1 output current
A1 output voltage
A2 output current
A2 output voltage
A3 output current
A3 output voltage
18
FAN8729
Typical Performance Characteristics
SVCC2 vs ICC3
6.00
15.0
5.50
14.0
5.00
ICC3(mA)
ICC2(mA)
SVCC1 vs ICC2
4.50
4.00
13.0
12.0
11.0
3.50
3.00
10.0
4.5
4.6
4.7
4.8
4.9 5.0 5.1
SVCC1(V)
5.2
5.3
5.4
5.5
4.5
6.0
6.0
4.0
4.0
2.0
2.0
0.0
-2.0
-4.0
0.0
8.5 9.5
SVCC2(V)
10.5 11.5 12.5 13.5
0.0
-2.0
1.0
2.0
V IN1(V )
-6.0
3.0
0.0
0.5
1.0
1.5
2.0
V IN2(V )
2.5
3.0
V IN3 vs V OUT3 (V REF=1.65V , V M3=12V )
V IN4 vs V OUT4 (V REF=1.65V , V M4=12V )
12.0
12.0
8.0
8.0
4.0
0.0
-4.0
4.0
0.0
-4.0
-8.0
-8.0
-12.0
-12.0
0.0
0.5
1.0
1.5
2.0
V IN3(V )
19
7.5
-4.0
VOUT4(V)
VOUT3(V)
-6.0
6.5
V IN2 vs V OUT2 (V REF=1.65V , V M2=5V )
VOUT2
VOUT1(V)
V IN1 vs V OUT1 (V REF=1.65V , V M2=5V )
5.5
2.5
3.0
0.0
0.5
1.0
1.5
2.0
V IN4(V )
2.5
3.0
FAN8729
Typical Performance Characteristics
SVCC2 vs GVC2
19.5
19.5
19.0
19.0
18.5
18.5
GVC2(dB)
GCV1(dB)
SVCC2 vs GVC1
18.0
17.5
17.0
17.5
17.0
16.5
16.5
16.0
16.0
15.5
4.5
5.5
6.5
7.5
8.5
9.5
15.5
4.5
10.5 11.5 12.5 13.5
8.5
9.5
SVCC2 vs GVC4
25.5
25.0
24.5
24.5
24.0
23.5
23.0
23.5
23.0
22.5
22.0
22.0
7.5
8.5
9.5
10.5 11.5 12.5 13.5
SVCC2(V)
10.5 11.5 12.5 13.5
24.0
22.5
6.5
7.5
SVCC2 vs GVC3
25.0
5.5
6.5
SVCC2(V)
25.5
21.5
4.5
5.5
SVCC(V)
GVC4(dB)
GVC3(dB)
18.0
21.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5 11.5 12.5 13.5
SVCC2(V)
INS+ vs ITL (V REF=1.65V )
ITL(mA)
800
600
400
200
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
INS+(V )
20
FAN8729
OPIN-
OPOUT
A
A
47
46
45
44
43
42
41
40
39
38
INS+
INS-
OUTS
SS
2
MUTE4
MUTE123
VREF123
SVCC2
VM3
A
H1+
H1-
A
3
H2+
DO4+ 34
A
4
H2-
DO3-
A
5
H3+
DO3+ 32
A
6
H3-
V
A
37
VREF4
Hall Signal
Generation
VM4
OPIN+
A
48
1
PC1
Test Circuits
NC
DO4-
PGND2
36
2
35
V
V
RL1
RL2
RL1
RL2
RL1
RL2
31
FG
DO2- 30
8
DIR
DO2+ 29
9
SVCC1
DO1- 28
2
V
A
10 VM1
A3
SGND
NC
TSD_M
IN4
IN3
IN2
IN1
VM2
15
16
17
18
19
20
21
22
23
V
V
V
c
b
a
c
b
b
RL
RL
300mA
RL
a
OPIN-
a
OPIN+
c
24
A
V
OPIN+
A2
A1
13
OPOUT 26
OPIN25
14
PGND1
12
1
DO1+ 27
11 CS1
V
1
2
V
SVCC1
300mA
1
OPOUT
7
OPIN+
OPIN-
10uF
V
1M
V
21
RL2
2
33
10uA
VM1
RL1
FAN8729
V
V
1
OPOUT
VCC
V
50
1M
V
FAN8729
CH4
Mute
CH123
Mute
46
45
44
43
42
41
40
39
INS-
OUTS
SS
MUTE4
MUTE123
VREF123
SVCC2
VM3
VREF4
System
Control
47
INS+
Servo
Torque
Control
Typical Application Circuits
0.1uF
H1+
VM4
1
HALL1
38
37
VREF4
PC1
48
NC
36
2
H1-
DO4-
35
3
H2+
D04+
34
4
H2-
DO3-
33
5
H3+
DO3+
32
6
H3-
PGND2
31
M
Loadng
M
Sled
Motor
HALL2
HALL3
FAN8729
FG
Signal
Rotate
Direction
7
FG
DO2-
30
8
DIR
DO2+
29
9
SVCC1
DO1-
28
10
VM1
DO1+
27
11
CS1
OPOUT
26
Focus
Tracking
IN1
VM2
19
20
21
22
23
OPIN+
IN2
18
OPIN25
24
VREF
IN3
17
Tracking
IN4
16
Sled
TSD_M
15
Focus
NC
14
Loading
SGND
13
A3
PGND1
A1
12
A2
VM1
Servo Amp
Notes:
Radiation pin is connected to the internal GND of the package.
22
FAN8729
Package Dimensions
48-QFPH-1414
17.20 ±0.30
(4.85)
14.00 ±0.20
17.20 ±0.30
14.00 ±0.20
#48
#1
(0.825)
0.10MAX
°
0~8
+0.10
0.20 -0.05
2.60 ±0.10
3.00MAX
0.65
+0.10
0.30 -0.05
0.00~0.25
0.10MAX
23
0.80 ±0.20
FAN8729
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
11/4/03 0.0m 001
Stock#DSxxxxxxxx
 2003 Fairchild Semiconductor Corporation