QIMONDA HYS72D128321HBR-6-C

August 2007
HYS72D 64301H B R– [ 5 / 6 ] – C
HYS72D 128300 H BR– [ 5 / 6 ] – C
HYS72D 128321 H BR– [ 5 / 6 ] – C
HYS72D256x20HBR–[5/6]–C
1 8 4 - P i n R e g i s t e r e d D o u b l e - D a t a - R a t e SD R A M M o d u l e
RDIMM
DDR SDRAM
RoHS Compliant
Internet Data Sheet
Rev. 1.22
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
HYS72D64301HBR–[5/6]–C, HYS72D128300HBR–[5/6]–C, HYS72D128321HBR–[5/6]–C, HYS72D256x20HBR–[5/6]–C
Revision History: 2007-08, Rev. 1.22
Page
Subjects (major changes since last revision)
All
Adapted internet edition
All
Tables updated
Previous Revision: 2006-03, Rev. 1.21
All
Qimonda update
Previous Revision: 2006-03, Rev. 1.2
Page
Subjects (major changes since last revision)
8
Added product types to PC2700R
Previous Revision: 2005-12, Rev. 1.1
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-08-01
03292006-6N25-8R3I
2
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
1
Overview
1.1
Features
• 184-Pin Registered 8-Byte Dual-In-Line DDR SDRAM Module for PC, Workstation and Server main memory applications
• One rank 64M ×72, 128M ×72 organization , and two ranks 256M ×72 organization
• Standard Double Data Rate Synchronous DRAMs (DDR SDRAM) with a single + 2.5 V (± 0.2 V) power supply and +2.6
(± 0.1 V) power supply for DDR400
• Built with DDR SDRAMs in FBGA 60 package
• Programmable CAS Latency, Burst Length, and Wrap Sequence (Sequential & Interleave)
• Auto Refresh (CBR) and Self Refresh
• RAS-lockout supported tRAP= tRCD
• All inputs and outputs SSTL_2 compatible
• Re-drive for all input signals using register and PLL devices.
• Serial Presence Detect with E2PROM
• Low Profile Modules form factor: 133.35 mm × 28.58 mm (1.1”) × 4.00 mm and 133.35 mm × 30.48 mm (1.2”)
• Standard reference card layout Raw Card A, B, C and F
• Gold plated contacts
• RoHS Compliant Product1)
TABLE 1
Performance
Part Number Speed Code
Speed Grade
Component
Module
max. Clock Frequency
@CL3
@CL2.5
@CL2
fCK3
fCK2.5
fCK2
–5
–6
Unit
DDR400B
DDR333B
—
PC3200–3033
PC2700–2533
—
200
166
MHz
166
166
MHz
133
133
MHz
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
3
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
1.2
Description
The HYS72D[64/128/256]xxxHBR–[5/6]–C are low-profile
versions of the standard Registered DIMM modules with 1.1inch (28.58 mm) and 1.2-inch (30.40 mm) height for Server
Applications. The low-profile DIMM versions are available as
64M ×72 (512MB), 128M ×72 (1 GB), and 256M ×72 (2 GB).
The memory array is designed with Double-Data-Rate
Synchronous DRAMs for ECC applications. All control and
address signals are re-driven on the DIMM using register
devices and a PLL for the clock distribution. This reduces
capacitive loading to the system bus, but adds one cycle to
the SDRAM timing. A variety of decoupling capacitors are
mounted on the PC board. The DIMMs feature serial
presence detect based on a serial E2PROM device using the
2-pin I2C protocol. The first 128 bytes contain factory
programmed configuration data and the second 128 bytes
are made available to the customer.
TABLE 2
Ordering Information
Product Type1)
Compliance Code2)
Description
SDRAM Technology
PC3200 (CL=3)
HYS72D64301HBR–5–C
PC3200R–30331–A0
one rank 512 MByte Reg. ECC DIMM
512 MBit (×8)
HYS72D128300HBR–5–C
PC3200R–30331–C0
one rank 1 GByte Reg. ECC DIMM
512 MBit (×4)
HYS72D128321HBR–5–C
PC3200R–30331–B0
two ranks 1 GByte Reg. ECC DIMM
512 MBit (×8)
HYS72D256320HBR–5–C
PC3200R–30331–F0
two ranks 2 GByte Reg. ECC DIMM
512 MBit (×4)
PC2700 (CL=2.5)
HYS72D64301HBR–6–C
PC2700R–25331–A0
one rank 512 MByte Reg. ECC DIMM
512 MBit (×8)
HYS72D128300HBR–6–C
PC2700R–25331–C0
one rank 1 GByte Reg. ECC DIMM
512 MBit (×4)
HYS72D128900HBR–6–C
PC2700R–25331–C0
one rank 1 GByte Reg. ECC DIMM
512 MBit (×4)
HYS72D128321HBR–6–C
PC2700R–25331–B0
two ranks 1 GByte Reg. ECC DIMM
512 MBit (×8)
HYS72D256320HBR–6–C
PC2700R–25331–F0
two ranks 2 GByte Reg. ECC DIMM
512 MBit (×4)
HYS72D256920HBR–6–C
PC2700R–25331–F0
two ranks 2 GByte Reg. ECC DIMM
512 MBit (×4)
1) All product types end with a place code designating the silicon-die revision. Reference information available on request. Example:
HYS72D256320HBR–5–C, indicating Rev.C die are used for SDRAM components.
2) The Compliance Code is printed on the module labels and describes the speed sort (for example “PC2700R”), the latencies (for example
“25331” means CAS latency of 2.5 clocks, Row-Column-Delay (RCD) latency of 3 clocks and Row Precharge latency of 3 clocks), SPD
code definition version 1, and the Raw Card used for this module.
TABLE 3
Address Format
Density
Organization
Memory
Ranks
SDRAMs
# of
SDRAMs
# of row/bank/
column bits
Refresh
Period
Interval
512 MB
64M ×72
1
64M ×8
9
13/2/11
8K
64 ms
7.8 ms
1 GB
128M ×72
1
128M ×4
18
13/2/12
8K
64 ms
7.8 ms
1 GB
128M ×72
2
64M ×8
18
13/2/11
8K
64 ms
7.8 ms
2 GB
256M ×72
2
128M ×4
36
13/2/12
8K
64 ms
7.8 ms
Rev. 1.22, 2007-08
03292006-6N25-8R3I
4
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
2
Pin Configuration
The pin configuration of the Registered DDR SDRAM DIMM is listed by function in Table 4 (184 pins). The abbreviations used
in columns Pin and Buffer Type are explained in Table 5 and Table 6 respectively. The pin numbering is depicted in Chapter 1.
TABLE 4
Pin Configuration of RDIMM
Pin
#
Name
Pin
Type
Buffer
Type
Function
Clock Signals
137
CK0
I
SSTL
Clock Signal
138
CK0
I
SSTL
Complement Clock
21
CKE0
I
SSTL
Clock Enable Rank 0
111
CKE1
I
SSTL
Clock Enable Rank 1
Note: 2-rank module
NC
NC
SSTL
Note: 1-rank module
S0
I
SSTL
Chip Select of Rank 0
158
S1
I
SSTL
Chip Select of Rank 1
Note: 2-ranks module
NC
NC
–
Note: 1-rank module
154
RAS
I
SSTL
Row Address Strobe
65
CAS
I
SSTL
Column Address Strobe
63
WE
I
SSTL
Write Enable
10
RESET
I
LVCMOS
Register Reset
Forces registered inputs
low
Note: For detailed description of the
Power Up and
Power
Management see
the Application
Note at the end of
data sheet
Name
Pin
Type
Buffer
Type
Function
37
A4
I
SSTL
Address Bus 11:0
32
A5
I
SSTL
125
A6
I
SSTL
29
A7
I
SSTL
122
A8
I
SSTL
27
A9
I
SSTL
141
Control Signals
157
Pin
#
A10
I
SSTL
AP
I
SSTL
118
A11
I
SSTL
115
A12
I
SSTL
Address Signal 12
Note: Module based on
256 Mbit or larger
dies
NC
NC
–
Note: 128 Mbit based
module
A13
I
SSTL
Address Signal 13
Note: 1 Gbit based
module
NC
NC
–
Note: Module based on
512 Mbit or smaller
dies
Data Bus 63:0
167
Data Signals
Address Signals
DQ0
I/O
SSTL
4
DQ1
I/O
SSTL
6
DQ2
I/O
SSTL
8
DQ3
I/O
SSTL
94
DQ4
I/O
SSTL
95
DQ5
I/O
SSTL
98
DQ6
I/O
SSTL
99
DQ7
I/O
SSTL
12
DQ8
I/O
SSTL
59
BA0
I
SSTL
52
BA1
I
SSTL
48
A0
I
SSTL
13
DQ9
I/O
SSTL
43
A1
I
SSTL
19
DQ10
I/O
SSTL
41
A2
I
SSTL
20
DQ11
I/O
SSTL
130
A3
I
SSTL
105
DQ12
I/O
SSTL
Rev. 1.22, 2007-08
03292006-6N25-8R3I
Bank Address Bus 1:0
2
Address Bus 11:0
5
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Pin
#
Name
Pin
Type
Buffer
Type
Function
Pin
#
Name
Pin
Type
Buffer
Type
Function
106
DQ13
I/O
SSTL
Data Bus 63:0
166
DQ53
I/O
SSTL
Data Bus 63:0
109
DQ14
I/O
SSTL
170
DQ54
I/O
SSTL
110
DQ15
I/O
SSTL
171
DQ55
I/O
SSTL
23
DQ16
I/O
SSTL
83
DQ56
I/O
SSTL
24
DQ17
I/O
SSTL
84
DQ57
I/O
SSTL
28
DQ18
I/O
SSTL
87
DQ58
I/O
SSTL
31
DQ19
I/O
SSTL
88
DQ59
I/O
SSTL
114
DQ20
I/O
SSTL
174
DQ60
I/O
SSTL
117
DQ21
I/O
SSTL
175
DQ61
I/O
SSTL
121
DQ22
I/O
SSTL
178
DQ62
I/O
SSTL
123
DQ23
I/O
SSTL
179
DQ63
I/O
SSTL
33
DQ24
I/O
SSTL
44
CB0
I/O
SSTL
35
DQ25
I/O
SSTL
45
CB1
I/O
SSTL
39
DQ26
I/O
SSTL
49
CB2
I/O
SSTL
40
DQ27
I/O
SSTL
51
CB3
I/O
SSTL
126
DQ28
I/O
SSTL
134
CB4
I/O
SSTL
127
DQ29
I/O
SSTL
135
CB5
I/O
SSTL
131
DQ30
I/O
SSTL
142
CB6
I/O
SSTL
133
DQ31
I/O
SSTL
144
CB7
I/O
SSTL
53
DQ32
I/O
SSTL
5
DQS0
I/O
SSTL
55
DQ33
I/O
SSTL
14
DQS1
I/O
SSTL
57
DQ34
I/O
SSTL
25
DQS2
I/O
SSTL
60
DQ35
I/O
SSTL
36
DQS3
I/O
SSTL
146
DQ36
I/O
SSTL
56
DQS4
I/O
SSTL
147
DQ37
I/O
SSTL
67
DQS5
I/O
SSTL
150
DQ38
I/O
SSTL
78
DQS6
I/O
SSTL
151
DQ39
I/O
SSTL
86
DQS7
I/O
SSTL
61
DQ40
I/O
SSTL
47
DQS8
I/O
SSTL
64
DQ41
I/O
SSTL
97
DM0
I
SSTL
68
DQ42
I/O
SSTL
Data Mask 0
Note: ×8 based module
69
DQ43
I/O
SSTL
DQS9
I/O
SSTL
153
DQ44
I/O
SSTL
Data Strobe 9
Note: ×4 based module
155
DQ45
I/O
SSTL
DM1
I
SSTL
161
DQ46
I/O
SSTL
Data Mask 1
Note: ×8 based module
162
DQ47
I/O
SSTL
DQS10
I/O
SSTL
72
DQ48
I/O
SSTL
Data Strobe 10
Note: ×4 based module
73
DQ49
I/O
SSTL
DM2
I
SSTL
79
DQ50
I/O
SSTL
Data Mask 2
Note: ×8 based module
80
DQ51
I/O
SSTL
DQS11
I/O
SSTL
165
DQ52
I/O
SSTL
Data Strobe 11
Note: ×4 based module
Rev. 1.22, 2007-08
03292006-6N25-8R3I
107
119
6
Check Bits 7:0
Data Strobes 8:0
Note: See block diagram
for corresponding
DQ signals
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Pin
#
Name
Pin
Type
Buffer
Type
Function
Pin
#
129
DM3
I
SSTL
Data Mask 3
Note: ×8 based module
DQS12
I/O
SSTL
Data Strobe 12
Note: ×4 based module
DM4
I
SSTL
Data Mask 4
Note: ×8 based module
DQS13
I/O
SSTL
Data Strobe 13
Note: ×4 based module
DM5
I
SSTL
Data Mask 5
Note: ×8 based module
DQS14
I/O
SSTL
Data Strobe 14
Note: ×4 based module
DM6
I
SSTL
Data Mask 6
Note: ×8 based module
DQS15
I/O
SSTL
Data Strobe 15
Note: ×4 based module
DM7
I
SSTL
Data Mask 7
Note: ×8 based module
DQS16
I/O
SSTL
Data Strobe 16
Note: ×4 based module
DM8
I
SSTL
Data Mask 8
Note: ×8 based module
149
159
169
177
140
DQS17
I/O
SSTL
Pin
Type
Buffer
Type
Function
15, VDDQ
22,
30,
54,
62,
77,
96,
104,
112,
128,
136,
143,
156,
164,
172,
180
PWR
–
I/O Driver Power Supply
7,
VDD
38,
46,
70,
85,
108,
120,
148,
168
PWR
–
Power Supply
3
GND
–
Ground Plane
11
Data Strobe 17
Note: ×4 based module
18
26
EEPROM
92
SCL
I
CMOS
Serial Bus Clock
34
91
SDA
I/O
OD
Serial Bus Data
42
181
SA0
I
CMOS
50
182
SA1
I
CMOS
Slave Address Select
Bus 2:0
183
SA2
I
CMOS
58
66
74
Power Supplies
1
VREF
AI
–
I/O Reference Voltage
81
184
VDDSPD
PWR
–
EEPROM Power Supply
89
93
100
Rev. 1.22, 2007-08
03292006-6N25-8R3I
7
Name
VSS
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Pin
#
Name
116
VSS
Pin
Type
Buffer
Type
Function
GND
–
Ground Plane
TABLE 5
Abbreviations for Pin Type
Abbreviation Description
124
132
I
Standard input-only pin. Digital levels.
139
O
Output. Digital levels.
145
I/O
I/O is a bidirectional input/output signal.
152
AI
Input. Analog levels.
160
PWR
Power
176
GND
Ground
Other Pins
NU
Not Usable (JEDEC Standard)
VDD Identification
Note: Pin in tristate,
indicating VDD and
VDDQ nets
connected on PCB
NC
Not Connected (JEDEC Standard)
Not connected
Pins not connected on
Qimonda RDIMM’s
Abbreviation Description
82
VDDID
9,
NC
16,
17,
71,
75,
76,
90,
101,
102,
103,
113,
163,
173
O
NC
Rev. 1.22, 2007-08
03292006-6N25-8R3I
OD
–
TABLE 6
Abbreviations for Buffer Type
8
SSTL
Serial Stub Terminalted Logic (SSTL2)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2
operational states, active low and tristate,
and allows multiple devices to share as a
wire-OR.
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
FIGURE 1
Pin Configuration 184 Pins, Registered
VREF VSS DQS0 VDD NC VSS DQ09 VDDQ NC DQ10 CKE0 DQ16 DQS2 A9 A7 DQ19 DQ24 DQ25 A4 DQ26 A2 A1 CB01 DQS8 CB02 CB03 -
Pin 001
Pin 003
Pin 005
Pin 007
Pin 009
Pin 011
Pin 013
Pin 015
Pin 017
Pin 019
Pin 021
Pin 023
Pin 025
Pin 027
Pin 029
Pin 031
Pin 033
Pin 035
Pin 037
Pin 039
Pin 041
Pin 043
Pin 045
Pin 047
Pin 049
Pin 051
DQ32 DQ33 DQ34 BA0 DQ40 WE CAS DQS5 DQ43 NC DQ49 NC VDDQ DQ50 VSS DQ56 VDD DQ58 VSS SDA -
Pin 053
Pin 055
Pin 057
Pin 059
Pin 061
Pin 063
Pin 065
Pin 067
Pin 069
Pin 071
Pin 073
Pin 075
Pin 077
Pin 079
Pin 081
Pin 083
Pin 085
Pin 087
Pin 089
Pin 091
Pin 002
Pin 004
Pin 006
Pin 008
Pin 010
Pin 012
Pin 014
Pin 016
Pin 018
Pin 020
Pin 022
Pin 024
Pin 026
Pin 028
Pin 030
Pin 032
Pin 034
Pin 036
Pin 038
Pin 040
Pin 042
Pin 044
Pin 046
Pin 048
Pin 050
Pin 052
Pin 094 - DQ04
Pin 096 - VDDQ
Pin 098 - DQ06
Pin 100 - VSS
Pin 102 - NC
Pin 104 - VDDQ
Pin 106 - DQ13
Pin 108 - VDD
Pin 110 - DQ15
Pin 112 - VDDQ
Pin 114 - DQ20
Pin 116 - VSS
Pin 118 - A11
Pin 120 - VDD
VDDQ - Pin 054
DQS4 - Pin 056
VSS - Pin 058
DQ35 - Pin 060
VDDQ - Pin 062
DQ41 - Pin 064
VSS - Pin 066
DQ42 - Pin 068
VDD - Pin 070
DQ48 - Pin 072
VSS - Pin 074
NC - Pin 076
DQS6 - Pin 078
DQ51 - Pin 080
VDDID - Pin 082
DQ57 - Pin 084
DQS7 - Pin 086
DQ59 - Pin 088
NC - Pin 090
SCL - Pin 092
Pin 146 - DQ36
Pin 148 - VDD
Pin 150 - DQ38
Pin 152 - VSS
Pin 154 - RAS
Pin 156 - VDDQ
Pin 158 - S1/NC
Pin 160 - VSS
Pin 162 - DQ47
Pin 164 - VDDQ
Pin 166 - DQ53
Pin 168 - VDD
Pin 170 - DQ54
Pin 172 - VDDQ
Pin 174 - DQ60
Pin 176 - VSS
Pin 178 - DQ62
Pin 180 - VDDQ
Pin 182 - SA1
Pin 184 - VDDSPD
DQ00 DQ01 DQ02 DQ03 RESET DQ08 DQS1 NC VSS DQ11 VDDQ DQ17 VSS DQ18 VDDQ A5 VSS DQS3 VDD DQ27 VSS CB00 VDD A0 VSS BA1 -
Pin 122 Pin 124 Pin 126 Pin 128 Pin 130 Pin 132 Pin 134 Pin 136 Pin 138 Pin 140 Pin 142 Pin 144 -
A8
VSS
DQ28
VDDQ
A3
VSS
DQ04
VDDQ
CK0
DM8/DQS17
CB06
CB07
VSS
Pin 093 Pin 095 Pin 097 Pin 099 Pin 101 Pin 103 Pin 105 Pin 107 Pin 109 Pin 111 Pin 113 Pin 115 Pin 117 Pin 119 Pin 121 Pin 123 Pin 125 Pin 127 Pin 129 Pin 131 Pin 133 Pin 135 Pin 137 Pin 139 Pin 141 Pin 143 -
DQ05
DQ00/DQS9
DQ07
NC
NC
DQ15
DM1/DQS10
DQ14
CKE1/NC
NC
A12/NC
DQ21
DM2/DQS11
DQ22
DQ23
A6
DQ29
DM3/DQS12
DQ30
DQ31
CB5
CK0
VSS
A10/AP
VDDQ
Pin 145 Pin 147 Pin 149 Pin 151 Pin 153 Pin 155 Pin 157 Pin 159 Pin 161 Pin 163 Pin 165 Pin 167 Pin 169 Pin 171 Pin 173 Pin 175 Pin 177 Pin 179 Pin 181 Pin 183 -
DQ37
DM4/DQS13
DQ39
DQ44
DQ45
S0
DM5/DQS14
DQ46
NC
DQ52
A13/NC
DM6/DQS15
DQ55
NC
DQ61
DM7/DQS16
DQ63
SA0
SA2
VSS
MPPD0020
Rev. 1.22, 2007-08
03292006-6N25-8R3I
9
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
3
Electrical Characteristics
3.1
Operating Conditions
TABLE 7
Absolute Maximum Ratings
Parameter
Symbol
Values
Unit
Note/ Test
Condition
min.
typ.
max.
–0.5
–
VDDQ + 0.5
V
–
–1
–
+3.6
V
–
–1
–
+3.6
V
–
Storage temperature (plastic)
VIN, VOUT
VIN
VDD
VDDQ
TA
TSTG
Power dissipation (per SDRAM component)
Short circuit output current
Voltage on I/O pins relative to VSS
Voltage on inputs relative to VSS
Voltage on VDD supply relative to VSS
Voltage on VDDQ supply relative to VSS
Operating temperature (ambient)
–1
–
+3.6
V
–
0
–
+70
°C
–
-55
–
+150
°C
–
PD
–
1
–
W
–
IOUT
–
50
–
mA
–
Attention: Permanent damage to the device may occur if “Absolute Maximum Ratings” are exceeded. This is a stress
rating only, and functional operation should be restricted to recommended operation conditions. Exposure
to absolute maximum rating conditions for extended periods of time may affect device reliability and
exceeding only one of the values may cause irreversible damage to the integrated circuit.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
10
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
TABLE 8
Electrical Characteristics and DC Operating Conditions
Parameter
Device Supply Voltage
Device Supply Voltage
Output Supply Voltage
Output Supply Voltage
EEPROM supply voltage
Supply Voltage, I/O Supply
Voltage
Input Reference Voltage
I/O Termination Voltage
(System)
Symbol
Unit Note/Test Condition1)
Values
Min.
Typ.
Max.
VDD
VDD
VDDQ
VDDQ
VDDSPD
VSS, VSSQ
2.3
2.5
2.7
V
2.5
2.6
2.7
V
2.3
2.5
2.7
V
2.5
2.6
2.7
V
fCK ≤ 166 MHz
fCK > 166 MHz 2)
fCK ≤ 166 MHz 3)
fCK > 166 MHz 2)3)
2.3
2.5
3.6
V
—
0
V
—
VREF
VTT
0.49 × VDDQ
0.51 × VDDQ
V
4)
VREF – 0.04
VREF + 0.04
V
5)
VREF + 0.15
VDDQ + 0.3
V
6)
–0.3
VREF – 0.15
V
6)
–0.3
VDDQ + 0.3
V
6)
VIH(DC)
Input Low (Logic0) Voltage
VIL(DC)
Input Voltage Level, CK and VIN(DC)
Input High (Logic1) Voltage
0
0.5 × VDDQ
CK Inputs
Input Differential Voltage,
CK and CK Inputs
VID(DC)
0.36
VDDQ + 0.6
V
6)7)
VI-Matching Pull-up Current
to Pull-down Current
VIRatio
0.71
1.4
—
8)
Input Leakage Current
II
–2
2
µA
Any input 0 V ≤ VIN ≤ VDD; All
other pins not under test = 0 V9)
Output Leakage Current
IOZ
–5
5
µA
DQs are disabled; 0 V ≤ VOUT ≤
VDDQ 9)
Output High Current, Normal IOH
Strength Driver
—
–16.2
mA
VOUT = 1.95 V
Output Low Current, Normal IOL
Strength Driver
16.2
—
mA
VOUT = 0.35 V
1)
2)
3)
4)
5)
6)
7)
8)
9)
0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V;
DDR400 conditions apply for all clock frequencies above 166 MHz
Under all conditions, VDDQ must be less than or equal to VDD.
Peak to peak AC noise on VREF may not exceed ± 2% VREF.DC. VREF is also expected to track noise variations in VDDQ.
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and
must track variations in the DC level of VREF.
Inputs are not recognized as valid until VREF stabilizes.
VID is the magnitude of the difference between the input level on CK and the input level on CK.
The ratio of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire temperature and
voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the maximum difference between
pull-up and pull-down drivers due to process variation.
Values are shown per pin.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
11
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
TABLE 9
IDD Conditions
Parameter
Symbol
Operating Current 0
one bank; active/ precharge; DQ, DM, and DQS inputs changing once per clock cycle;
address and control inputs changing once every two clock cycles.
IDD0
Operating Current 1
one bank; active/read/precharge; Burst Length = 4; see component data sheet.
IDD1
Precharge Power-Down Standby Current
all banks idle; power-down mode; CKE ≤ VIL,MAX
IDD2P
Precharge Floating Standby Current
CS ≥ VIH,,MIN, all banks idle; CKE ≥ VIH,MIN;
address and other control inputs changing once per clock cycle; VIN = VREF for DQ, DQS and DM.
IDD2F
Precharge Quiet Standby Current
CS ≥ VIHMIN, all banks idle; CKE ≥ VIH,MIN; VIN = VREF for DQ, DQS and DM;
address and other control inputs stable at ≥ VIH,MIN or ≤ VIL,MAX.
IDD2Q
Active Power-Down Standby Current
one bank active; power-down mode; CKE ≤ VILMAX; VIN = VREF for DQ, DQS and DM.
IDD3P
Active Standby Current
one bank active; CS ≥ VIH,MIN; CKE ≥ VIH,MIN; tRC = tRAS,MAX;
DQ, DM and DQS inputs changing twice per clock cycle;
address and control inputs changing once per clock cycle.
IDD3N
Operating Current Read
one bank active; Burst Length = 2; reads; continuous burst;
address and control inputs changing once per clock cycle;
50% of data outputs changing on every clock edge;
CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B; IOUT = 0 mA
IDD4R
Operating Current Write
one bank active; Burst Length = 2; writes; continuous burst;
address and control inputs changing once per clock cycle;
50% of data outputs changing on every clock edge;
CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B
IDD4W
Auto-Refresh Current
tRC = tRFCMIN, burst refresh
IDD5
Self-Refresh Current
CKE ≤ 0.2 V; external clock on
IDD6
Operating Current 7
four bank interleaving with Burst Length = 4; see component data sheet.
IDD7
Rev. 1.22, 2007-08
03292006-6N25-8R3I
12
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
TABLE 10
Product Type
HYS72D64301HBR–5–C
HYS72D128300HBR–5–C
HYS72D128321HBR–5–C
HYS72D256320HBR–5–C
IDD Specification for HYS72D[64/128/256]xxxHBR–5–C
Organization
512 MB
1 GB
1 GB
2 GB
×72
×72
×72
×72
1 Rank
1 Rank
2 Ranks
2 Ranks
–5
–5
–5
–5
Unit
Note 1)2)
Symbol
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
IDD0
IDD1
IDD2P
IDD2F
IDD2Q
IDD3P
IDD3N
IDD4R
IDD4W
IDD5
IDD6
IDD7
1050
1240
1890
2210
1660
1910
3120
3570
mA
3)
1270
1470
2200
2530
1880
2140
3430
3890
mA
3)4)
360
440
670
780
670
780
1290
1460
mA
5)
830
940
1360
1510
1360
1510
2410
2650
mA
5)
510
600
960
1120
960
1120
1870
2140
mA
5)
460
530
860
970
870
970
1670
1850
mA
5)
920
1050
1540
1730
1540
1730
2770
3090
mA
5)
1360
1510
2380
2620
1970
2190
3610
3980
mA
3)4)
1400
1560
2470
2710
2020
2240
3700
4070
mA
3)
1670
2120
3280
4130
2290
2800
4510
5490
mA
3)
330
390
640
740
640
740
1270
1430
mA
5)
2390
2770
4450
5140
3010
3450
5680
6500
mA
3)4)
1) Module IDD is calculated on the basis of component IDD and includes Register and PLL currents
2) Test condition for maximum values: VDD = 2.7 V, TA = 10 °C
3) The module IDDx values are calculated from the component IDDx data sheet values as: m × IDDx[component] + n × IDD3N[component] with m
and n number of components of rank 1 and 2; n=0 for 1 rank modules
4) DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions
5) The module IDDx values are calculated from the corrponent IDDx data sheet values as: (m + n) × IDDx[component]
Rev. 1.22, 2007-08
03292006-6N25-8R3I
13
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
TABLE 11
Product Type
HYS72D64301HBR–6–C
HYS72D128300HBR–6–C
HYS72D128900HBR–6–C
HYS72D128321HBR–6–C
HYS72D256320HBR–6–C
HYS72D256920HBR–6–C
IDD Specification for HYS72D[64/128/256]xxxHBR–6–C
Organization
512 MB
1 GB
1 GB
2 GB
×72
×72
×72
×72
1 Rank
1 Rank
2 Ranks
2 Ranks
–6
–6
–6
–6
Unit
Note1)2)
Symbol
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
IDD0
IDD1
IDD2P
IDD2F
IDD2Q
IDD3P
IDD3N
IDD4R
IDD4W
IDD5
IDD6
IDD7
1000
1140
1790
2020
1530
1720
2860
3180
mA
3)
1160
1360
2000
2330
1700
1940
3060
3490
mA
3)4)
340
410
600
700
600
700
1120
1280
mA
5)
740
840
1180
1310
1180
1310
2060
2260
mA
5)
470
560
860
1000
860
1000
1630
1890
mA
5)
430
500
770
880
770
880
1460
1640
mA
5)
830
940
1370
1520
1370
1520
2440
2690
mA
5)
1210
1410
2090
2420
1740
1990
3150
3580
mA
3)4)
1250
1450
2180
2510
1790
2030
3240
3670
mA
3)
1510
1950
2930
3780
2040
2530
4000
4940
mA
3)
320
390
580
680
580
680
1110
1270
mA
5)
2150
2490
3980
4580
2690
3070
5040
5750
mA
3)4)
1) Module IDD is calculated on the basis of component IDD and includes Register and PLL currents
2) Test condition for maximum values: VDD = 2.7 V, TA = 10 °C
3) The module IDDx values are calculated from the component IDDx data sheet values as: m × IDDx[component] + n × IDD3N[component] with m
and n number of components of rank 1 and 2; n=0 for 1 rank modules
4) DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions
5) The module IDDx values are calculated from the corrponent IDDx data sheet values as: (m + n) × IDDx[component]
Rev. 1.22, 2007-08
03292006-6N25-8R3I
14
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
3.2
A.C. Timing Parameters
TABLE 12
AC Timing - Absolute Specifications for PC3200 and PC2700
Parameter
Symbol
–5
–6
DDR400B
DDR333
Min.
Max.
Min.
Max.
Unit
Note/ Test
Condition 1)
DQ output access time from
CK/CK
tAC
–0.5
+0.5
–0.7
+0.7
ns
2)3)4)5)
CK high-level width
tCH
0.45
0.55
0.45
0.55
tCK
2)3)4)5)
Clock cycle time
tCK
5
8
6
12
ns
CL = 3.0 2)3)4)5)
6
12
6
12
ns
CL = 2.5 2)3)4)5)
7.5
12
7.5
12
ns
CL = 2.0 2)3)4)5)
0.55
0.45
0.55
tCK
2)3)4)5)
tCK
2)3)4)5)6)
CK low-level width
tCL
0.45
Auto precharge write recovery +
precharge time
tDAL
(tWR/tCK)+(tRP/tCK)
DQ and DM input hold time
tDH
0.4
—
0.45
—
ns
2)3)4)5)
DQ and DM input pulse width
(each input)
tDIPW
1.75
—
1.75
—
ns
2)3)4)5)6)
DQS output access time from
CK/CK
tDQSCK
–0.6
+0.6
–0.6
+0.6
ns
2)3)4)5)
DQS input low (high) pulse width tDQSL,H
(write cycle)
0.35
—
0.35
—
tCK
2)3)4)5)
DQS-DQ skew (DQS and
associated DQ signals)
tDQSQ
—
+0.40
—
+0.40
ns
TFBGA
Write command to 1 DQS
latching transition
tDQSS
0.72
1.25
0.75
1.25
tCK
2)3)4)5)
DQ and DM input setup time
tDS
0.4
—
0.45
—
ns
2)3)4)5)
DQS falling edge hold time from
CK (write cycle)
tDSH
0.2
—
0.2
—
tCK
2)3)4)5)
DQS falling edge to CK setup
time (write cycle)
tDSS
0.2
—
0.2
—
tCK
2)3)4)5)
Clock Half Period
tHP
min. (tCL, tCH)
—
min. (tCL, tCH)
—
ns
2)3)4)5)
DQ & DQS high-impedance time tHZ
from CK/CK
—
+0.7
—
+0.7
ns
2)3)4)5)7)
Address and control input hold
time
0.6
—
0.75
—
ns
fast slew rate
st
tIH
2)3)4)5)
3)4)5)6)8)
0.7
—
0.8
—
ns
slow slew rate
3)4)5)6)8)
Control and Addr. input pulse
width (each input)
Rev. 1.22, 2007-08
03292006-6N25-8R3I
tIPW
2.2
—
15
2.2
—
ns
2)3)4)5)9)
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Parameter
Address and control input setup
time
Symbol
tIS
–5
–6
DDR400B
DDR333
Min.
Max.
Min.
Max.
0.6
—
0.75
—
Unit
Note/ Test
Condition 1)
ns
fast slew rate
3)4)5)6)8)
0.7
—
0.8
—
ns
slow slew rate
3)4)5)6)8)
DQ & DQS low-impedance time
from CK/CK
tLZ
–0.7
+0.7
–0.7
+0.7
ns
2)3)4)5)7)
Mode register set command
cycle time
tMRD
2
—
2
—
tCK
2)3)4)5)
DQ/DQS output hold time from
DQS
tQH
tHP –tQHS
—
tHP –tQHS
—
ns
2)3)4)5)
Data hold skew factor
tQHS
—
+0.50
—
+0.50
ns
TFBGA 2)3)4)5)
Active to Autoprecharge delay
tRAP
tRCD
—
tRCD
—
ns
2)3)4)5)
Active to Precharge command
tRAS
40
70E+3
42
70E+3
ns
2)3)4)5)
Active to Active/Auto-refresh
command period
tRC
55
—
60
—
ns
2)3)4)5)
Active to Read or Write delay
tRCD
15
—
18
—
ns
2)3)4)5)
Average Periodic Refresh
Interval
tREFI
—
7.8
—
7.8
µs
2)3)4)5)10)
Auto-refresh to Active/Autorefresh command period
tRFC
65
—
72
—
ns
2)3)4)5)
Precharge command period
tRP
15
—
18
—
ns
2)3)4)5)
Read preamble
tRPRE
0.9
1.1
0.9
1.1
tCK
2)3)4)5)
Read postamble
tRPST
0.40
0.60
0.40
0.60
tCK
2)3)4)5)
2)3)4)5)
Active bank A to Active bank B
command
tRRD
10
—
12
—
ns
Write preamble
tWPRE
0.25
—
0.25
—
tCK
2)3)4)5)
Write preamble setup time
tWPRES
0
—
0
—
ns
2)3)4)5)11)
Write postamble
tWPST
0.40
0.60
0.40
0.60
tCK
2)3)4)5)12)
Write recovery time
tWR
15
—
15
—
ns
2)3)4)5)
Internal write to read command
delay
tWTR
2
—
1
—
tCK
2)3)4)5)
Exit self-refresh to non-read
command
tXSNR
75
—
75
—
ns
2)3)4)5)
Exit self-refresh to read
command
tXSRD
200
—
200
—
tCK
2)3)4)5)
1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR333); DDQ = 2.6 V ± 0.1 V, DD = +2.6 V ± 0.1 V (DDR400)
2) Input slew rate ≥ 1 V/ns for DDR400, DDR333
3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals
other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns.
4) Inputs are not recognized as valid until VREF stabilizes.
5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT.
6) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
16
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific
voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).
8) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured
between VIH(ac) and VIL(ac).
9) These parameters guarantee device timing, but they are not necessarily tested on each device.
10) A maximun of eight Autorefresh commands can be posted to any given DDR SDRAM device
11) The specific requirement is that DQS be valid (HIGH,LOW, or some point on a valid transition) on or before this CK edge. A valid transition
is defined as monotonic and meeting the input slew rate specificationsof the device. When no writes were previously in progress on the
bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW at this time, depending
on tDQSS.
12) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
17
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
4
SPD Codes
TABLE 13
Product Type
HYS72D64301HBR–5–C
HYS72D128321HBR–5–C
HYS72D128300HBR–5–C
HYS72D256320HBR–5–C
SPD Codes for HYS72D[64/128/256]3[00/01/20/21]HBR–5–C
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC3200R–
30331
PC3200R–30331 PC3200R–
30331
PC3200R–
30331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Description
HEX
HEX
HEX
HEX
0
Programmed SPD Bytes in E2PROM
80
80
80
80
1
Total number of Bytes in E2PROM
08
08
08
08
2
Memory Type (DDR = 07h)
07
07
07
07
3
Number of Row Addresses
0D
0D
0D
0D
4
Number of Column Addresses
0B
0B
0C
0C
Label Code
Byte#
5
Number of DIMM Ranks
01
02
01
02
6
Data Width (LSB)
48
48
48
48
7
Data Width (MSB)
00
00
00
00
8
Interface Voltage Levels
04
04
04
04
9
tCK @ CLmax (Byte 18) [ns]
50
50
50
50
10
tAC SDRAM @ CLmax (Byte 18) [ns]
70
70
70
70
11
Error Correction Support
02
02
02
02
12
Refresh Rate
82
82
82
82
13
Primary SDRAM Width
08
08
04
04
14
Error Checking SDRAM Width
08
08
04
04
15
tCCD [cycles]
01
01
01
01
16
Burst Length Supported
0E
0E
0E
0E
17
Number of Banks on SDRAM Device
04
04
04
04
Rev. 1.22, 2007-08
03292006-6N25-8R3I
18
Internet Data Sheet
Product Type
HYS72D64301HBR–5–C
HYS72D128321HBR–5–C
HYS72D128300HBR–5–C
HYS72D256320HBR–5–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC3200R–
30331
PC3200R–30331 PC3200R–
30331
PC3200R–
30331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
HEX
HEX
18
CAS Latency
1C
1C
1C
1C
19
CS Latency
01
01
01
01
20
Write Latency
02
02
02
02
21
DIMM Attributes
26
26
26
26
22
Component Attributes
C1
C1
C1
C1
23
tCK @ CLmax -0.5 (Byte 18) [ns]
60
60
60
60
24
tAC SDRAM @ CLmax -0.5 [ns]
70
70
70
70
25
tCK @ CLmax -1 (Byte 18) [ns]
75
75
75
75
26
tAC SDRAM @ CLmax -1 [ns]
70
70
70
70
27
tRPmin [ns]
3C
3C
3C
3C
Label Code
28
tRRDmin [ns]
28
28
28
28
29
tRCDmin [ns]
3C
3C
3C
3C
30
tRASmin [ns]
28
28
28
28
31
Module Density per Rank
80
80
01
01
32
tAS, tCS [ns]
60
60
60
60
33
tAH, tCH [ns]
60
60
60
60
34
tDS [ns]
40
40
40
40
35
tDH [ns]
40
40
40
40
36 - 40
not used
00
00
00
00
41
tRCmin [ns]
37
37
37
37
42
tRFCmin [ns]
41
41
41
41
43
tCKmax [ns]
28
28
28
28
44
tDQSQmax [ns]
28
28
28
28
45
tQHSmax [ns]
50
50
50
50
46
not used
00
00
00
00
47
DIMM PCB Height
01
01
01
01
Rev. 1.22, 2007-08
03292006-6N25-8R3I
19
Internet Data Sheet
Product Type
HYS72D64301HBR–5–C
HYS72D128321HBR–5–C
HYS72D128300HBR–5–C
HYS72D256320HBR–5–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC3200R–
30331
PC3200R–30331 PC3200R–
30331
PC3200R–
30331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
HEX
HEX
48 - 61
not used
00
00
00
00
62
SPD Revision
10
10
10
10
Label Code
63
Checksum of Byte 0-62
C7
C8
41
42
64
Manufacturer’s JEDEC ID Code (1)
7F
7F
7F
7F
65
Manufacturer’s JEDEC ID Code (2)
7F
7F
7F
7F
66
Manufacturer’s JEDEC ID Code (3)
7F
7F
7F
7F
67
Manufacturer’s JEDEC ID Code (4)
7F
7F
7F
7F
68
Manufacturer’s JEDEC ID Code (5)
7F
7F
7F
7F
69
Manufacturer’s JEDEC ID Code (6)
51
51
51
51
70
Manufacturer’s JEDEC ID Code (7)
00
00
00
00
71
Manufacturer’s JEDEC ID Code (8)
00
00
00
00
72
Module Manufacturer Location
xx
xx
xx
xx
73
Part Number, Char 1
37
37
37
37
74
Part Number, Char 2
32
32
32
32
75
Part Number, Char 3
44
44
44
44
76
Part Number, Char 4
36
31
31
32
77
Part Number, Char 5
34
32
32
35
78
Part Number, Char 6
33
38
38
36
79
Part Number, Char 7
30
33
33
33
80
Part Number, Char 8
31
32
30
32
81
Part Number, Char 9
48
31
30
30
82
Part Number, Char 10
42
48
48
48
83
Part Number, Char 11
52
42
42
42
84
Part Number, Char 12
35
52
52
52
85
Part Number, Char 13
43
35
35
35
86
Part Number, Char 14
20
43
43
43
Rev. 1.22, 2007-08
03292006-6N25-8R3I
20
Internet Data Sheet
Product Type
HYS72D64301HBR–5–C
HYS72D128321HBR–5–C
HYS72D128300HBR–5–C
HYS72D256320HBR–5–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC3200R–
30331
PC3200R–30331 PC3200R–
30331
PC3200R–
30331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
HEX
HEX
87
Part Number, Char 15
20
20
20
20
88
Part Number, Char 16
20
20
20
20
89
Part Number, Char 17
20
20
20
20
90
Part Number, Char 18
20
20
20
20
91
Module Revision Code
1x
1x
1x
1x
Label Code
92
Test Program Revision Code
xx
xx
xx
xx
93
Module Manufacturing Date Year
xx
xx
xx
xx
94
Module Manufacturing Date Week
xx
xx
xx
xx
95 - 98
Module Serial Number (1 - 4)
xx
xx
xx
xx
00
00
00
00
99 - 127 not used
Rev. 1.22, 2007-08
03292006-6N25-8R3I
21
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
TABLE 14
Product Type
HYS72D64301HBR–6–C
HYS72D128321HBR–6–C
HYS72D128300HBR–6–C
HYS72D256320HBR–6–C
SPD Codes for HYS72D[64/128/256]3[00/01/20/21]HBR–6–C
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
HEX
HEX
0
Programmed SPD Bytes in E2PROM
80
80
80
80
1
Total number of Bytes in E2PROM
08
08
08
08
2
Memory Type (DDR = 07h)
07
07
07
07
Label Code
3
Number of Row Addresses
0D
0D
0D
0D
4
Number of Column Addresses
0B
0B
0C
0C
5
Number of DIMM Ranks
01
02
01
02
6
Data Width (LSB)
48
48
48
48
7
Data Width (MSB)
00
00
00
00
8
Interface Voltage Levels
04
04
04
04
9
tCK @ CLmax (Byte 18) [ns]
60
60
60
60
10
tAC SDRAM @ CLmax (Byte 18) [ns]
70
70
70
70
11
Error Correction Support
02
02
02
02
12
Refresh Rate
82
82
82
82
13
Primary SDRAM Width
08
08
04
04
14
Error Checking SDRAM Width
08
08
04
04
15
tCCD [cycles]
01
01
01
01
16
Burst Length Supported
0E
0E
0E
0E
17
Number of Banks on SDRAM Device
04
04
04
04
18
CAS Latency
0C
0C
0C
0C
19
CS Latency
01
01
01
01
20
Write Latency
02
02
02
02
21
DIMM Attributes
26
26
26
26
22
Component Attributes
C1
C1
C1
C1
Rev. 1.22, 2007-08
03292006-6N25-8R3I
22
Internet Data Sheet
Product Type
HYS72D64301HBR–6–C
HYS72D128321HBR–6–C
HYS72D128300HBR–6–C
HYS72D256320HBR–6–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
HEX
HEX
23
tCK @ CLmax -0.5 (Byte 18) [ns]
75
75
75
75
24
tAC SDRAM @ CLmax -0.5 [ns]
70
70
70
70
25
tCK @ CLmax -1 (Byte 18) [ns]
00
00
00
00
26
tAC SDRAM @ CLmax -1 [ns]
00
00
00
00
27
tRPmin [ns]
48
48
48
48
28
tRRDmin [ns]
30
30
30
30
29
tRCDmin [ns]
48
48
48
48
30
tRASmin [ns]
2A
2A
2A
2A
Label Code
31
Module Density per Rank
80
80
01
01
32
tAS, tCS [ns]
75
75
75
75
33
tAH, tCH [ns]
75
75
75
75
34
tDS [ns]
45
45
45
45
35
tDH [ns]
45
45
45
45
36 - 40
not used
00
00
00
00
41
tRCmin [ns]
3C
3C
3C
3C
42
tRFCmin [ns]
48
48
48
48
43
tCKmax [ns]
30
30
30
30
44
tDQSQmax [ns]
28
28
28
28
45
tQHSmax [ns]
50
50
50
50
46
not used
00
00
00
00
47
DIMM PCB Height
01
01
01
01
48 - 61
not used
00
00
00
00
62
SPD Revision
10
10
10
10
63
Checksum of Byte 0-62
61
62
DB
DC
64
Manufacturer’s JEDEC ID Code (1)
7F
7F
7F
7F
65
Manufacturer’s JEDEC ID Code (2)
7F
7F
7F
7F
Rev. 1.22, 2007-08
03292006-6N25-8R3I
23
Internet Data Sheet
Product Type
HYS72D64301HBR–6–C
HYS72D128321HBR–6–C
HYS72D128300HBR–6–C
HYS72D256320HBR–6–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
HEX
HEX
66
Manufacturer’s JEDEC ID Code (3)
7F
7F
7F
7F
67
Manufacturer’s JEDEC ID Code (4)
7F
7F
7F
7F
68
Manufacturer’s JEDEC ID Code (5)
7F
7F
7F
7F
69
Manufacturer’s JEDEC ID Code (6)
51
51
51
51
70
Manufacturer’s JEDEC ID Code (7)
00
00
00
00
71
Manufacturer’s JEDEC ID Code (8)
00
00
00
00
72
Module Manufacturer Location
xx
xx
xx
xx
73
Part Number, Char 1
37
37
37
37
74
Part Number, Char 2
32
32
32
32
75
Part Number, Char 3
44
44
44
44
76
Part Number, Char 4
36
31
31
32
77
Part Number, Char 5
34
32
32
35
78
Part Number, Char 6
33
38
38
36
79
Part Number, Char 7
30
33
33
33
80
Part Number, Char 8
31
32
30
32
81
Part Number, Char 9
48
31
30
30
82
Part Number, Char 10
42
48
48
48
83
Part Number, Char 11
52
42
42
42
84
Part Number, Char 12
36
52
52
52
85
Part Number, Char 13
43
36
36
36
86
Part Number, Char 14
20
43
43
43
87
Part Number, Char 15
20
20
20
20
88
Part Number, Char 16
20
20
20
20
89
Part Number, Char 17
20
20
20
20
90
Part Number, Char 18
20
20
20
20
91
Module Revision Code
1x
1x
1x
1x
Label Code
Rev. 1.22, 2007-08
03292006-6N25-8R3I
24
Internet Data Sheet
Product Type
HYS72D64301HBR–6–C
HYS72D128321HBR–6–C
HYS72D128300HBR–6–C
HYS72D256320HBR–6–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
512 MB
1 GByte
1 GByte
2 GByte
×72
×72
×72
×72
1 Rank (×8)
2 Ranks (×8)
1 Rank (×4)
2 Ranks (×4)
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
PC2700R–
25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Rev 1.0
Rev 1.0
Description
HEX
HEX
HEX
HEX
Label Code
Byte#
92
Test Program Revision Code
xx
xx
xx
xx
93
Module Manufacturing Date Year
xx
xx
xx
xx
94
Module Manufacturing Date Week
xx
xx
xx
xx
95 - 98
Module Serial Number (1 - 4)
xx
xx
xx
xx
00
00
00
00
99 - 127 not used
Rev. 1.22, 2007-08
03292006-6N25-8R3I
25
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
TABLE 15
Product Type
HYS72D128900HBR–6–C
HYS72D256920HBR–6–C
SPD Codes for HYS72D[128/256]90x0HBR–6–C
Organization
1 GByte
2 GByte
×72
×72
1 Rank (×4)
2 Ranks (×4)
PC2700R–25331
PC2700R–25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
0
Programmed SPD Bytes in E2PROM
80
80
Label Code
1
Total number of Bytes in E2PROM
08
08
2
Memory Type (DDR = 07h)
07
07
3
Number of Row Addresses
0D
0D
4
Number of Column Addresses
0C
0C
5
Number of DIMM Ranks
01
02
6
Data Width (LSB)
48
48
7
Data Width (MSB)
00
00
8
Interface Voltage Levels
04
04
9
tCK @ CLmax (Byte 18) [ns]
60
60
10
tAC SDRAM @ CLmax (Byte 18) [ns]
70
70
11
Error Correction Support
02
02
12
Refresh Rate
82
82
13
Primary SDRAM Width
04
04
14
Error Checking SDRAM Width
04
04
15
tCCD [cycles]
01
01
16
Burst Length Supported
0E
0E
17
Number of Banks on SDRAM Device
04
04
18
CAS Latency
0C
0C
19
CS Latency
01
01
20
Write Latency
02
02
21
DIMM Attributes
26
26
22
Component Attributes
C1
C1
23
tCK @ CLmax -0.5 (Byte 18) [ns]
75
75
Rev. 1.22, 2007-08
03292006-6N25-8R3I
26
Internet Data Sheet
Product Type
HYS72D128900HBR–6–C
HYS72D256920HBR–6–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
1 GByte
2 GByte
×72
×72
1 Rank (×4)
2 Ranks (×4)
PC2700R–25331
PC2700R–25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Description
HEX
HEX
Label Code
Byte#
24
tAC SDRAM @ CLmax -0.5 [ns]
70
70
25
tCK @ CLmax -1 (Byte 18) [ns]
00
00
26
tAC SDRAM @ CLmax -1 [ns]
00
00
27
tRPmin [ns]
48
48
28
tRRDmin [ns]
30
30
29
tRCDmin [ns]
48
48
30
tRASmin [ns]
2A
2A
31
Module Density per Rank
01
01
32
tAS, tCS [ns]
75
75
33
tAH, tCH [ns]
75
75
34
tDS [ns]
45
45
35
tDH [ns]
45
45
36 - 40
not used
00
00
41
tRCmin [ns]
3C
3C
42
tRFCmin [ns]
48
48
43
tCKmax [ns]
30
30
44
tDQSQmax [ns]
28
28
45
tQHSmax [ns]
50
50
46
not used
00
00
47
DIMM PCB Height
01
01
48 - 61
not used
00
00
62
SPD Revision
10
10
63
Checksum of Byte 0-62
DB
DC
64
Manufacturer’s JEDEC ID Code (1)
7F
7F
65
Manufacturer’s JEDEC ID Code (2)
7F
7F
66
Manufacturer’s JEDEC ID Code (3)
7F
7F
Rev. 1.22, 2007-08
03292006-6N25-8R3I
27
Internet Data Sheet
Product Type
HYS72D128900HBR–6–C
HYS72D256920HBR–6–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
1 GByte
2 GByte
×72
×72
1 Rank (×4)
2 Ranks (×4)
PC2700R–25331
PC2700R–25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Byte#
Description
HEX
HEX
67
Manufacturer’s JEDEC ID Code (4)
7F
7F
68
Manufacturer’s JEDEC ID Code (5)
7F
7F
69
Manufacturer’s JEDEC ID Code (6)
51
51
70
Manufacturer’s JEDEC ID Code (7)
00
00
71
Manufacturer’s JEDEC ID Code (8)
00
00
Label Code
72
Module Manufacturer Location
xx
xx
73
Part Number, Char 1
37
37
74
Part Number, Char 2
32
32
75
Part Number, Char 3
44
44
76
Part Number, Char 4
31
32
77
Part Number, Char 5
32
35
78
Part Number, Char 6
38
36
79
Part Number, Char 7
39
39
80
Part Number, Char 8
30
32
81
Part Number, Char 9
30
30
82
Part Number, Char 10
48
48
83
Part Number, Char 11
42
42
84
Part Number, Char 12
52
52
85
Part Number, Char 13
36
36
86
Part Number, Char 14
43
43
87
Part Number, Char 15
20
20
88
Part Number, Char 16
20
20
89
Part Number, Char 17
20
20
90
Part Number, Char 18
20
20
91
Module Revision Code
1x
1x
92
Test Program Revision Code
xx
xx
Rev. 1.22, 2007-08
03292006-6N25-8R3I
28
Internet Data Sheet
Product Type
HYS72D128900HBR–6–C
HYS72D256920HBR–6–C
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Organization
1 GByte
2 GByte
×72
×72
1 Rank (×4)
2 Ranks (×4)
PC2700R–25331
PC2700R–25331
JEDEC SPD Revision
Rev 1.0
Rev 1.0
Description
HEX
HEX
93
Module Manufacturing Date Year
xx
xx
94
Module Manufacturing Date Week
xx
xx
95 - 98
Module Serial Number (1 - 4)
xx
xx
99 - 127
not used
00
00
Label Code
Byte#
Rev. 1.22, 2007-08
03292006-6N25-8R3I
29
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
5
Package Outlines
FIGURE 2
!
"#
Package Outline Raw Card A - L-DIM-184-21
!"#
!8
›
› !
› ’
!
"#
" #
›
›
!
"#
).
›
$ETAILOFCONTAC TS
›
!
"#
"URR MA X ALLOW
ED Notes
1. General tolerances +/- 0.15
2. Drawing according to ISO 8015
Rev. 1.22, 2007-08
03292006-6N25-8R3I
30
›
X Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
FIGURE 3
! " #
Package Outline Raw Card C - L-DIM-184-22
! " #
-!
8
› ›
!
›
’!"#
" #
›
›
!" #
).
›
$ETAILO
FCONTAC TS
› !"#
"URRMA
X ALLOWE
D
Notes
1. General tolerances +/- 0.15
2. Drawing according to ISO 8015
Rev. 1.22, 2007-08
03292006-6N25-8R3I
31
›
X Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
FIGURE 4
!
"#
Package Outline Raw Card B - L-DIM-184-23
!"
#
!
8 ›
›
!
›
’!"
#
" #
›
›
!
"#
).
›
$ETAILO
FCONTAC TS
›
!
"#
"UR RMA
X ALLOW
ED
Notes
1. General tolerances +/- 0.15
2. Drawing according to ISO 8015
Rev. 1.22, 2007-08
03292006-6N25-8R3I
32
› X
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
FIGURE 5
Package Outline Raw Card F – L-DIM-184-25
! " #
!"#
!8
› ›
!
’!" #
" #
›
! " #
› ).
›
$ETAILOFCONTACTS
› !"#
,$
) "URR MA
X ALLOW
ED
Notes
1. General tolerances +/- 0.15
2. Drawing according to ISO 8015
Rev. 1.22, 2007-08
03292006-6N25-8R3I
›
33
›
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
6
Application Note
Power Up and Power Management on DDR Registered DIMMs
(according to JEDEC ballot JC-42.5 Item 1173)
184-pin Double Data Rate (DDR) Registered DIMMs include two new features to facilitate controlled power-up and to minimize
power consumption during low power mode. One feature is externally controlled via a system-generated RESET signal; the
second is based on module detection of the input clocks. These enhancements permit the modules to power up with SDRAM
outputs in a High-Z state (eliminating risk of high current dissipations and/or dotted I/Os), and result in the powering-down of
module support devices (registers and Phase-Locked Loop) when the memory is in Self-Refresh mode.
The new RESET pin controls power dissipation on the module’s registers and ensures that CKE and other SDRAM inputs are
maintained at a valid ‘low’ level during power-up and self refresh. When RESET is at a low level, all the register outputs are
forced to a low level, and all differential register input receivers are powered down, resulting in very low register power
consumption. The RESET pin, located on DIMM tab #10, is driven from the system as an asynchronous signal according to
the attached details. Using this function also permits the system and DIMM clocks to be stopped during memory Self Refresh
operation, while ensuring that the SDRAMs stay in Self Refresh mode.
TABLE 16
Function for RESET
Register Outputs1)
Register Inputs
RESET
CK
CK
Data in (D)
Data out (Q)
H
Rising
Falling
H
H
H
Rising
Falling
L
L
H
L or H
L or H
X
Qo
H
High Z
High Z
X
Illegal input conditions
L
X or Hi-Z
X or Hi-Z
X or Hi-Z
L
1) X : Don’t care, Hi-Z : High Impedance, Qo: Data latched at the previous of CK risning and CK falling
As described in the table above, a low on the RESET input ensures that the Clock Enable (CKE) signal(s) are maintained low
at the SDRAM pins (CKE being one of the 'Q' signals at the register output). Holding CKE low maintains a high impedance
state on the SDRAM DQ, DQS and DM outputs — where they will remain until activated by a valid ‘read’ cycle. CKE low also
maintains SDRAMs in Self Refresh mode when applicable.
The DDR PLL devices automatically detect clock activity above 20MHz. When an input clock frequency of 20MHz or greater
is detected, the PLL begins operation and initiates clock frequency lock (the minimum operating frequency at which all
specifications will be met is 95MHz). If the clock input frequency drops below 20MHz (actual detect frequency will vary by
vendor), the PLL VCO (Voltage Controlled Oscillator) is stopped, outputs are made High-Z, and the differential inputs are
powered down — resulting in a total PLL current consumption of less than 1mA. Use of this low power PLL function makes the
use of the PLL RESET (or G pin) unnecessary, and it is tied inactive on the DIMM.
This application note describes the required and optional system sequences associated with the DDR Registered DIMM
'RESET' function. It is important to note that all references to CKE refer to both CKE0 and CKE1 for a 2-bank DIMM. Because
RESET applies to all DIMM register devices, it is therefore not possible to uniquely control CKE to one physical DIMM bank
through the use of the RESET pin.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
34
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Power-Up Sequence with RESET — Required
1. The system sets RESET at a valid low level. This is the preferred default state during power-up. This input condition forces
all register outputs to a low state independent of the condition on the register inputs (data and clock), ensuring that CKE is
at a stable low-level at the DDR SDRAMs.
2. The power supplies should be initialized according to the JEDEC-approved initialization sequence for DDR SDRAMs.
3. Stabilization of Clocks to the SDRAM The system must drive clocks to the application frequency (PLL operation is not
assured until the input clock reaches 20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system
clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM
PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. When a stable clock
is present at the SDRAM input (driven from the PLL), the DDR SDRAM requires 200 µsec prior to SDRAM operation.
4. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE
must be maintained low and all other inputs should be driven to a known state. In general these commands can be
determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first
command defined by the JEDEC initialization sequence (ideally this would be a ‘NOP Deselect’ command). A second option
is to apply low levels on all of the register inputs to be consistent with the state of the register outputs.
5. The system switches RESET to a logic ‘high’ level. The SDRAM is now functional and prepared to receive commands.
Since the RESET signal is asynchronous, setting the RESET timing in relation to a specific clock edge is not required
(during this period, register inputs must remain stable).
6. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation
time that allows their clock receivers, data input receivers, and output drivers sufficient time to be turned on and become
stable. During this time the system must maintain the valid logic levels described in step 5. It is also a functional requirement
that the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low
level on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers
are stable and ready to accept an input signal, is specified in the register and DIMM do-umentation.
7. The system can begin the JEDEC-defined DDR SDRAM power-up sequence (according to the JEDEC-pproved
initialization sequence).
Self Refresh Entry (RESET low, clocks powered off) — Optional
Self Refresh can be used to retain data in DDR SDRAM DIMMs even if the rest of the system is powered down and the clocks
are off. This mode allows the DDR SDRAMs on the DIMM to retain data without external clocking. Self Refresh mode is an
ideal time to utilize the RESET pin, as this can reduce register power consumption (RESET low deactivates register CK and
CK, data input receivers, and data output drivers).
• The system applies Self Refresh entry command. (CKE→Low, CS→Low, RAS → Low, CAS→ Low, WE→ High)
Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM.
After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are
Don’t Cares— with the exception of CKE.
• The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of
the condition on the registerm inputs (data and clock), and ensures that CKE, and all other control and address signals, are
a stable low-level at the DDR SDRAMs. Since the RESET signal is asynchronous, setting the RESET timing in relation to a
specific clock edge is not required.
• The system turns off clock inputs to the DIMM. (Optional) a. In order to reduce DIMM PLL current, the clock inputs to the
DIMM are turned off, resulting in High-Z clock inputs to both the SDRAMs and the registers. This must be done after the
RESET deactivate time of the register (t (INACT) ). The deactivate time defines the time in which the clocks and the control
and address signals must maintain valid levels after RESET low has been applied and is specified in the register and DIMM
documentation. b. The system may release DIMM address and control inputs to High-Z. This can be done after the RESET
deactivate time of the register. The deactivate time defines the time in which the clocks and the control and the address
signals must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain
low during this operation.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
35
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
• The DIMM is in lowest power Self Refresh mode.
Self Refresh Exit (RESET low, clocks powered off) — Optional
1. Stabilization of Clocks to the SDRAM. The system must drive clocks to the application frequency (PLL operation is not
assured until the input clock reaches ~20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system
clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM
PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds.
2. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE
must be maintained low and all other inputs should be driven to a known state. In general these commands can be
determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first
command defined by the JEDEC Self Refresh Exit sequence (ideally this would be a ‘NOP Deselect’ command). A second
option is to apply low levels on all of the register inputs, to be consistent with the state of the register outputs.
3. The system switches RESET to a logic ‘high’ level. The SDRAM is now functional and prepared to receive commands.
Since the RESET signal is asynchronous, RESET timing relationship to a specific clock edge is not required (during this
period, register inputs must remain stable).
4. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation
time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable.
During this time the system must maintain the valid logic levels described in Step 2. It is also a functional requirement that
the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low level
on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers are
stable and ready to accept an input signal, is specified in the register and DIMM do-umentation.
5. System can begin the JEDEC-defined DDR SDRAM Self Refresh Exit Procedure.
Self Refresh Entry (RESET low, clocks running) — Optional
Although keeping the clocks running increases power consumption from the on-DIMM PLL during self refresh, this is an
alternate operating mode for these DIMMs.
1. System enters Self Refresh entry command. (CKE→ Low, CS→ Low, RAS→ Low, CAS→ Low, WE→ High)
Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM.
After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are
Don’t Cares — with the exception of CKE.
• The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of
the condition on the data and clock register inputs, and ensures that CKE is a stable low-level at the DDR SDRAMs.
• The system may release DIMM address and control inputs to High-Z. This can be done after the RESET deactivate time of
the register (t (INACT) ). The deactivate time describes the time in which the clocks and the control and the address signals
must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain low
during the operation.
• The DIMM is in a low power, Self Refresh mode.
Self Refresh Exit (RESET low, clocks running) — Optional
1. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE
must be maintained low and all other inputs should be driven to a known state. In general these commands can be
determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first
command defined by the Self Refresh Exit sequence (ideally this would be a ‘NOP Deselect’ command). A second option
is to apply low levels on all of the register inputs to be consistent with the state of the register outputs.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
36
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
2. The system switches RESET to a logic 'high' level. The SDRAM is now functional and prepared to receive commands.
Since the RESET signal is asynchronous, it does not need to be tied to a particular clock edge (during this period, register
inputs must continue to remain stable).
3. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation
time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable.
During this time the system must maintain the valid logic levels described in Step 1. It is also a functional requirement that
the registers maintain a low state at the CKE outputs in order to guarantee that the DDR SDRAMs continue to receive a
low level on CKE. This activation time, from asynchronous switching of RESET from low to high, until the registers are
stable and ready to accept an input signal, is t (ACT ) as specified in the register and DIMM documentation.
4. The system can begin JEDEC defined DDR SDRAM Self Refresh Exit Procedure.
Self Refresh Entry/Exit (RESET high, clocks running) — Optional
As this sequence does not involve the use of the RESET function, the JEDEC standard SDRAM specification
explains in detail the method for entering and exiting Self Refresh for this case.
Self Refresh Entry (RESET high, clocks powered off) — Not Permissible
In order to maintain a valid low level on the register output, it is required that either the clocks be running and the system drive
a low level on CKE, or the clocks are powered off and RESET is asserted low according to the sequence defined in this
application note. In the case where RESET remains high and the clocks are powered off, the PLL drives a High-Z clock input
into the register clock input. Without the low level on RESET an unknown DIMM state will result.
Rev. 1.22, 2007-08
03292006-6N25-8R3I
37
Internet Data Sheet
HYS72D[64/128/256]xxxHBR–[5/6]–C
Registered Double-Data-Rate SDRAM Module
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
3.1
3.2
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A.C. Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6
Application Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Rev. 1.22, 2007-08
03292006-6N25-8R3I
38
Internet Data Sheet
Edition 2007-08
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2007.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com