IRF IRFL024ZTRPBF

PD - 95312A
IRFL024ZPbF
HEXFET® Power MOSFET
Features
l
l
l
l
l
l
D
Advanced Process Technology
Ultra Low On-Resistance
150°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
VDSS = 55V
RDS(on) = 57.5mΩ
G
ID = 5.1A
S
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low onresistance per silicon area. Additional features of
this design are a 150°C junction operating temperature,
fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in a wide variety of applications.
SOT-223
Absolute Maximum Ratings
Parameter
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited) i
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
IDM
Pulsed Drain Current
i
j
PD @TA = 25°C Power Dissipation
c
Max.
Units
5.1
i
4.1
A
41
2.8
PD @TA = 25°C Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
VGS
i
EAS (Thermally limited) Single Pulse Avalanche Energy
d
EAS (Tested )
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
c
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
h
g
1.0
W
0.02
± 20
W/°C
V
13
mJ
32
See Fig.12a, 12b, 15, 16
A
mJ
-55 to + 150
°C
Thermal Resistance
Parameter
RθJA
RθJA
www.irf.com
i
Junction-to-Ambient (PCB mount, steady state) j
Junction-to-Ambient (PCB mount, steady state)
Typ.
Max.
Units
–––
45
°C/W
–––
120
1
09/16/10
IRFL024ZPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
Min. Typ. Max. Units
55
–––
–––
V
Breakdown Voltage Temp. Coefficient
–––
Static Drain-to-Source On-Resistance
–––
0.053
–––
46.2
57.5
V/°C
mΩ
Gate Threshold Voltage
2.0
–––
4.0
V
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 3.1A
e
VDS = VGS, ID = 250µA
gfs
Forward Transconductance
6.2
–––
–––
S
VDS = 25V, ID = 3.1A
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 55V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
200
nA
VGS = 20V
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
9.1
14
Qgs
Gate-to-Source Charge
–––
1.9
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
3.9
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
7.8
–––
VDD = 28V
tr
Rise Time
–––
21
–––
td(off)
Turn-Off Delay Time
–––
30
–––
RG = 53 Ω
tf
Fall Time
–––
23
–––
VGS = 10V
Ciss
Input Capacitance
–––
340
–––
VGS = 0V
Coss
Output Capacitance
–––
68
–––
Crss
Reverse Transfer Capacitance
–––
39
–––
Coss
Output Capacitance
–––
210
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
55
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
93
–––
VGS = 0V, VDS = 0V to 44V
ID = 3.1A
nC
ns
VDS = 44V
e
ID = 3.1A
e
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
5.1
ISM
(Body Diode)
Pulsed Source Current
–––
–––
41
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 3.1A, VGS = 0V
trr
Reverse Recovery Time
–––
15
23
ns
TJ = 25°C, IF = 3.1A, VDD = 28V
Qrr
Reverse Recovery Charge
–––
9.8
15
nC
di/dt = 100A/µs
ton
Forward Turn-On Time
c
A
D
G
S
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 2.8mH
RG = 25Ω, IAS = 3.1A, VGS =10V.
Part not recommended for use above this value.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
„ Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80%
VDSS.
2
MOSFET symbol
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
repetitive avalanche performance.
† This value determined from sample failure population.
100% tested to this value in production.
‡ When mounted on 1 inch square copper board.
ˆ When mounted on FR-4 board using minimum
recommended footprint.
www.irf.com
IRFL024ZPbF
100
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
10
4.5V
30µs PULSE WIDTH
Tj = 25°C
1
0.1
1
10
10
BOTTOM
4.5V
1
30µs PULSE WIDTH
Tj = 150°C
0.1
100
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
12
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
T J = 150°C
10
TJ = 25°C
VDS = 25V
30µs PULSE WIDTH
1.0
4
5
6
7
8
9
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
T J = 25°C
10
8
T J = 150°C
6
4
2
V DS = 10V
0
10
0
2
4
6
8
10
12
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRFL024ZPbF
10000
12.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + C gd, C ds SHORTED
Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 3.1A
C, Capacitance(pF)
Coss = C ds + C gd
1000
Ciss
Coss
100
Crss
VDS= 44V
VDS= 28V
10.0
VDS= 11V
8.0
6.0
4.0
2.0
0.0
10
1
10
100
0
4
6
8
10
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
100
ISD, Reverse Drain Current (A)
2
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
TJ = 150°C
10
T J = 25°C
VGS = 0V
1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1.6
10
100µsec
1
T A = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFL024ZPbF
6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.0
ID, Drain Current (A)
5
4
3
2
1
0
ID = 3.1A
VGS = 10V
1.5
1.0
0.5
25
50
75
100
125
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
T A ,Ambient Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Ambient Temperature
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
R1
R1
0.02
1
τJ
0.01
0.1
SINGLE PULSE
( THERMAL RESPONSE )
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
5.0477
0.000463
19.9479 0.636160
20.0169
Ci= τi/Ri
Ci i/Ri
21.10000
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRFL024ZPbF
DRIVER
L
VDS
D.U.T
RG
20V
VGS
+
V
- DD
IAS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
60
15V
ID
0.77A
0.89A
BOTTOM 3.1A
TOP
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VGS(th) Gate threshold Voltage (V)
10 V
3.5
3.0
ID = 250µA
2.5
VCC
2.0
-75
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRFL024ZPbF
10
Avalanche Current (A)
Duty Cycle = Single Pulse
1
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.05
0.10
0.1
0.01
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
14
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 3.1A
EAR , Avalanche Energy (mJ)
12
10
8
6
4
2
0
25
50
75
100
125
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
150
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFL024ZPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFL024ZPbF
SOT-223 (TO-261AA) Package Outline
Dimensions are shown in milimeters (inches)
SOT-223 (TO-261AA) Part Marking Information
HEXFET PRODUCT MARKING
THIS IS AN IRFL014
INT ERNAT IONAL
RECTIF IER
LOGO
PART NUMBE R
LOT CODE
FL014
314P
T OP
AXXXX
A = ASSEMBLY SIT E
DAT E CODE
CODE
(YYWW)
YY = YEAR
WW = WEEK
P = DE SIGNATES LEAD-F REE
PRODUCT (OPTIONAL)
BOT TOM
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFL024ZPbF
SOT-223 (TO-261AA) Tape & Reel Information
Dimensions are shown in milimeters (inches)
2.05 (.080)
1.95 (.077)
TR
4.10 (.161)
3.90 (.154)
0.35 (.013)
0.25 (.010)
1.85 (.072)
1.65 (.065)
7.55 (.297)
7.45 (.294)
16.30 (.641)
15.70 (.619)
7.60 (.299)
7.40 (.292)
1.60 (.062)
1.50 (.059)
TYP.
FEED DIRECTION
2.30 (.090)
2.10 (.083)
7.10 (.279)
6.90 (.272)
12.10 (.475)
11.90 (.469)
NOTES :
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
3. EACH O330.00 (13.00) REEL CONTAINS 2,500 DEVICES.
13.20 (.519)
12.80 (.504)
15.40 (.607)
11.90 (.469)
4
330.00
(13.000)
MAX.
NOTES :
1. OUTLINE COMFORMS TO EIA-418-1.
2. CONTROLLING DIMENSION: MILLIMETER..
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
50.00 (1.969)
MIN.
18.40 (.724)
MAX.
14.40 (.566)
12.40 (.488)
4
3
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/2010
10
www.irf.com