IRF IRG7PSH54K10DPBF

IRG7PSH54K10DPbF
Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
VCES = 1200V
C
IC = 65A, TC =100°C
tSC 10µs, TJ(max) = 150°C
G
C
VCE(ON) typ. = 1.9V @ IC = 50A
G
E
n-channel
Applications
• Industrial Motor Drive
• UPS
• Solar Inverters
• Welding
E
IRG7PSH54K10DPbF G
Gate
C
Collector
Features
E
Emitter
Benefits
Low VCE(ON) and switching losses
10µs Short Circuit SOA
Square RBSOA
Maximum Junction Temperature 150°C
Positive VCE (ON) Temperature Coefficient
Base part number
Package Type
IRG7PSH54K10DPbF
Super-247
High efficiency in a Wide Range of Applications
Rugged Transient Performance
Increased Reliability
Excellent Current Sharing in Parallel Operation
Standard Pack
Form
Quantity
Tube
25
Orderable Part Number
IRG7PSH54K10DPbF
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 25°C
IF @ TC = 100°C
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current, VGE=20V
Clamped Inductive Load Current, VGE=20V 
Diode Continuous Forward Current
Diode Continuous Forward Current
Continuous Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw
Max.
Units
1200
120
65
200
200
50
25
±30
520
210
-40 to +150
V
A V
W
300 (0.063 in. (1.6mm) from case)
10 lbf·in (1.1 N·m)
C
Thermal Resistance
RJC (IGBT)
RJC (Diode)
RCS
RJA
1
Parameter
Thermal Resistance Junction-to-Case-(each IGBT) 
Thermal Resistance Junction-to-Case-(each Diode) 
Thermal Resistance, Case-to-Sink (flat, greased surface)
Thermal Resistance, Junction-to-Ambient (typical socket mount)
www.irf.com
© 2013 International Rectifier
Min.
–––
–––
–––
–––
Typ.
–––
–––
0.24
–––
Max.
0.24
0.70
–––
40
Units
°C/W
April 16, 2013
IRG7PSH54K10DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
V(BR)CES/TJ
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
VGE(th)
VGE(th)/TJ
gfe
Gate Threshold Voltage
Threshold Voltage Temperature Coeff.
Forward Transconductance
ICES
Collector-to-Emitter Leakage Current
IGES
VF Gate-to-Emitter Leakage Current
Diode Forward Voltage Drop
Min.
1200
—
Typ.
—
1.3
Max.
—
—
—
—
5.0
—
—
—
—
—
—
—
1.9
2.4
—
-15
36
1.0
1800
—
2.5
2.1
2.4
IC = 50A, VGE = 15V, TJ = 25°C
V
—
IC = 50A, VGE = 15V, TJ = 150°C
7.5
V
VCE = VGE, IC = 2.4mA
—
mV/°C VCE = VGE, IC = 2.4mA (25°C-150°C)
—
S
VCE = 50V, IC = 50A, PW = 20µs
45
VGE = 0V, VCE = 1200V
µA
—
VGE = 0V, VCE = 1200V, TJ = 150°C
±200
nA VGE = ±30V
3.5
IF = 16A
V
—
IF = 16A, TJ = 150°C
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Total Gate Charge (turn-on)
—
290
Qg
Gate-to-Emitter Charge (turn-on)
—
60
Qge
Qgc
Gate-to-Collector Charge (turn-on)
—
130
Eon
Turn-On Switching Loss
—
4.8
Eoff
Turn-Off Switching Loss
2.8
Etotal
Total Switching Loss
7.6 td(on)
Turn-On delay time
—
110
tr
Rise time
—
80
Turn-Off delay time
—
490
td(off)
Fall time
—
70
tf
Turn-On Switching Loss
—
6.8
Eon
Max Units
Conditions
435
IC = 50A
90
nC VGE = 15V
VCC = 600V
195
5.7
3.7
mJ IC = 50A, VCC = 600V, VGE=15V
9.4 RG = 5, TJ = 25°C
130
Energy losses include tail & diode
105
ns reverse recovery 
520
90
—
Eoff
Etotal
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operating Area
SCSOA Short Circuit Safe Operating Area 10 — — Erec
trr
Irr
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
—
—
—
640
170
25
—
—
—
—
4.7
11.5
85
90
490
290
5700
290
150
—
—
—
—
—
—
—
Units
Conditions
V
VGE = 0V, IC = 250µA 
V/°C VGE = 0V, IC = 5mA (25°C-150°C)
—
—
—
—
—
—
—
—
FULL SQUARE
mJ ns
IC = 50A, VCC = 600V, VGE=15V
RG = 5, TJ = 150°C
Energy losses include tail & diode
reverse recovery  VGE = 0V
VCC = 30V
f = 1.0Mhz
TJ = 150°C, IC = 200A
VCC = 960V, Vp ≤ 1200V
VGE = +20V to 0V
TJ = 150°C,VCC = 600V, Vp ≤ 1200V
µs V = +15V to 0V
GE
pF
µJ
ns
A
TJ = 150°C
VCC = 600V, IF = 16A
VGE = 15V, Rg = 5
Notes:






VCC = 80% (VCES), VGE = 20V
R is measured at TJ of approximately 90°C.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Maximum limits are based on statistical sample size characterization.
Pulse width limited by max. junction temperature.
Values influenced by parasitic L and C in measurement.
2
www.irf.com
© 2013 International Rectifier
April 16, 2013
IRG7PSH54K10DPbF
120
For both:
Duty cycle : 50%
Tj = 150°C
Tcase = 100°C
Gate drive as specified
Power Dissipation = 213W
Load Current ( A )
100
80
60
Square Wave:
VCC
40
I
20
Diode as specified
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
125
600
100
500
400
IC (A)
Ptot (W)
75
50
300
200
25
100
0
25
50
75
100
125
0
150
25
50
75
100
125
150
TC (°C)
TC (°C)
Fig. 3 - Power Dissipation vs.
Case Temperature
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
1000
1000
100
100
10
100µsec
10
1msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
DC
1
0.1
1
10
100
1000
10000
VCE (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ  150°C, VGE =15V
3
IC (A)
IC (A)
10µsec
www.irf.com
© 2013 International Rectifier
10
100
1000
10000
VCE (V)
Fig. 5- Reverse Bias SOA
TJ = 150°C; VGE = 20V
April 16, 2013
IRG7PSH54K10DPbF
200
200
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 9.0V
VGE = 8.0V
120
160
ICE (A)
ICE (A)
160
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 9.0V
VGE = 8.0V
80
120
80
40
40
0
0
0
1
2
3
4
5
6
7
8
9
0
10
8
10
200
200
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 9.0V
VGE = 8.0V
160
120
160
TJ =150°C
TJ = 25°C
120
IF (A)
ICE (A)
6
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 20µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 20µs
TJ = -40°C
80
80
40
40
0
0
0
1
2
3
4
5
6
7
8
9
0.0
10
V CE (V)
4.0
6.0
8.0
10.0
Fig. 9 - Typ. Diode Forward Characteristics
tp = 20µs
10
10
8
8
VCE (V)
ICE = 25A
6
2.0
V F (V)
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 20µs
VCE (V)
4
V CE (V)
V CE (V)
ICE = 50A
ICE = 100A
4
2
ICE = 25A
6
ICE = 50A
ICE = 100A
4
2
0
0
6
8
10
12
14
16
18
20
V GE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = -40°C
4
2
www.irf.com
© 2013 International Rectifier
6
8
10
12
14
16
18
20
V GE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 25°C
April 16, 2013
IRG7PSH54K10DPbF
10
IC, Collector-to-Emitter Current (A)
200
VCE (V)
8
ICE = 25A
6
ICE = 50A
ICE = 100A
4
2
TJ = 25°C
TJ = 150°C
160
120
80
40
0
0
6
8
10
12
14
16
18
4
20
6
8
10
V GE (V)
Fig. 12 - Typical VCE vs. VGE
TJ = 150°C
19
14
Fig. 13 - Typ. Transfer Characteristics
VCE = 50V; tp = 20µs
1000
tdOFF
17
Swiching Time (ns)
15
13
Energy (mJ)
12
V GE, Gate-to-Emitter Voltage (V)
11
EON
9
7
tF
tdON
100
tR
EOFF
5
3
1
10
0
25
50
75
100
0
25
50
75
100
IC (A)
IC (A)
Fig. 14 - Typ. Energy Loss vs. IC
TJ = 150°C; VCE = 600V, RG = 5; VGE = 15V
Fig. 15 - Typ. Switching Time vs. IC
TJ = 150°C; VCE = 600V, RG = 5; VGE = 15V
10000
18
16
tdOFF
1000
Swiching Time (ns)
Energy (mJ)
14
EON
12
10
EOFF
8
tdON
tR
tF
100
10
6
1
4
0
20
40
60
80
100
120
RG ()
Fig. 16 - Typ. Energy Loss vs. RG
TJ = 150°C; VCE = 600V, ICE = 50A; VGE = 15V
5
www.irf.com
© 2013 International Rectifier
0
20
40
60
80
100
RG ()
Fig. 17 - Typ. Switching Time vs. RG
TJ = 150°C; VCE = 600V, ICE = 50A; VGE = 15V
April 16, 2013
IRG7PSH54K10DPbF
IRG7PH50K10DPbF/IRG7PH50K10D-EPbF
30
28
RG = 
25
24
20
IRR (A)
IRR (A)
RG = 10
RG = 47
15
20
16
RG = 100
10
12
5
8
8
12
16
20
24
28
32
0
25
50
3400
3000
24
32A
QRR (nC)
2600
IRR (A)
125
Fig. 19 - Typ. Diode IRR vs. RG
TJ = 150°C
28
20
16

2200


16A

1800
12
1400
8
1000
0
100
200
300
400
8A
50
500
100 150 200 250 300 350 400 450
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 21 - Typ. Diode QRR vs. diF/dt
VCC = 600V; VGE = 15V; TJ = 150°C
Fig. 20 - Typ. Diode IRR vs. diF/dt
VCC = 600V; VGE = 15V; IF = 16A; TJ = 150°C
1000
900
800
RG = 
700
Time (µs)
RG = 47
600
RG = 100
500
RG =10
400
300
200
100
4
12
20
28
36
IF (A)
Fig. 22 - Typ. Diode ERR vs. IF
TJ = 150°C
www.irf.com
© 2013 International Rectifier
40
450
35
400
30
350
300
25
Tsc
20
Isc
250
15
200
10
150
Current (A)
Energy (µJ)
100
RG ()
IF (A)
Fig. 18 - Typ. Diode IRR vs. IF
TJ = 150°C
6
75
100
5
9
10
11
12
13
14
15
16
VGE (V)
Fig. 23 - VCE vs. Short Circuit Time
Vcc= 600V; TC= 150°C
April 16, 2013
IRG7PSH54K10DPbF
10000
16
1000
100
Coes
Cres
VCES = 600V
14
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
Cies
VCES = 400V
12
10
8
6
4
2
10
0
0
100
200
300
400
500
600
0
VCE (V)
50
100
150
200
250
300
Q G, Total Gate Charge (nC)
Fig. 25 - Typical Gate Charge vs. VGE
ICE = 50A
Fig. 24 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( ZthJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
0.001
J
R1
R1
J
1
1E-005
R3
R3
R4
R4
C
2
1
2
3
4
3
C
4
Ci= iRi
Ci= iRi
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
R2
R2
Ri(°C/W)
i (sec) 0.0030
0.00001
0.0606
0.00026
0.1091
0.00472
0.0667
0.02724
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26 Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( ZthJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
J
R1
R1
J
1
R2
R2
R3
R3
R4
R4
C
2
1
2
3
4
3
Ci= iRi
Ci= iRi
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
4
C
Ri(°C/W)
i (sec) 0.0259
0.00009
0.2435
0.00038
0.2877
0.00539
0.1431
0.03019
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 27 Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
7
www.irf.com
© 2013 International Rectifier
April 16, 2013
IRG7PSH54K10DPbF
L
L
VCC
DUT
0
80 V +
-
DUT
1K
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
4X
DC
VCC
-5V
DUT /
DRIVER
DUT
VCC
Rg
RSH
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
R=
VCC
ICM
100K
D1
22K
C sense
DUT
VCC
G force
DUT
0.0075µF
Rg
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
© 2013 International Rectifier
Fig.C.T.6 - BVCES Filter Circuit
April 16, 2013
IRG7PSH54K10DPbF
600
80
400
60
300
90% ICE
40
10% VCE
100
60
200
100
20
10% ICE
0
0
-100
-20
1
-20
-0.8 -0.6 -0.4 -0.2
1.5
0
0.2
0.4
time (µs)
time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
20
700
tRR
Vce (V)
IF (A)
0
-10
Peak
IRR
-20
VC
600
QRR
10
700
600
500
500
400
400
ICE
300
300
200
200
100
100
0
-30
-0.20 -0.05 0.10 0.25 0.40 0.55
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
9
www.irf.com
© 2013 International Rectifier
Ice (A)
0.5
0
Eon Loss
Eoff Loss
0
20
10% VCE
0
-100
40
90% ICE
10%ICE
100
80
TEST
CURRENT
ICE (A)
500
VCE (V)
300
100
ICE (A)
VCE (V)
400
-0.5
120
tr
tf
500
200
600
120
0
-100
-20.00
-10.00
0.00
-100
10.00
Time (uS)
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 150°C using Fig. CT.3
April 16, 2013
IRG7PSH54K10DPbF
Super -247(TO-274AA) Package Outline
Dimensions are shown in millimeters (inches)
Super -247 (TO-274AA)Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
PART NUMBER
INTERNATIONAL RECTIFIER
LOGO
IRFPS37N50A
719C
17
89
ASSEMBLY LOT CODE
Note: "P" in assembly line position
indicates "Lead-Free"
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TOP
Super -247 package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
© 2013 International Rectifier
April 16, 2013
IRG7PSH54K10DPbF
Qualification Information†
Industrial
(per JEDEC JESD47F) ††
Qualification Level
Moisture Sensitivity Level Super-247
N/A
Yes
RoHS Compliant
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
††
Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101N Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
11
www.irf.com
© 2013 International Rectifier
April 16, 2013