RT9025

RT9025
2A, Ultra Low Dropout LDO
General Description
Features
The RT9025 is a high performance positive voltage regulator
designed for use in applications requiring very low Input
voltage and extremely low dropout voltage at up to
2A(Peak). It operates with a VIN as low as 1V and VDD
voltage 3V with programmable output voltage as low as
0.8V. The RT9025 features ultra low dropout that is ideal
for applications where VOUT is very close to VIN.
Additionally, it has an enable pin to further reduce power
dissipation while shutdown and provides excellent
regulation over variations in line, load and temperature.
The RT9025 provides a power good signal to indicate if
the voltage level of Vo reaches 90% of its rating value.
The RT9025 is available in the SOP-8 and SOP-8 (Exposed
Pad) package with 1.05V, 1.2V, 1.5V, 1.8V and 2.5V
internally preset outputs that are also adjustable by using
external resistors.
l
Ordering Information
RT9025Package Type
S : SOP-8
SP : SOP-8 (Exposed Pad-Option 1)
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
Z : ECO (Ecological Element with
Halogen Free and Pb free)
Output Voltage
1K : 1.05V/Adj
12 : 1.2V/Adj
15 : 1.5V/Adj
18 : 1.8V/Adj
25 : 2.5V/Adj
l
l
l
l
l
l
l
Ultra Low Dropout Voltage 230mV at 2A
Output Current up to 2A
High Accuracy Output Voltage 2%
Power Good Output
Output Voltage Pull Low Resistor when Disable
Over Current Protection
Thermal Shutdown Protection
RoHS Compliant and 100% Lead (Pb)-Free
Applications
l
l
Note Book PC Applications
Motherboard Applications
Pin Configurations
(TOP VIEW)
PGOOD
8
GND
EN
2
7
ADJ
VIN
3
6
VOUT
VDD
4
5
NC
SOP-8
PGOOD
EN
2
VIN
3
VDD
8
GND
7
ADJ
GND
9 6
4
5
VOUT
NC
SOP-8 (Exposed Pad)
Note :
Richtek products are :
}
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
}
Suitable for use in SnPb or Pb-free soldering processes.
DS9025-05 March 2011
www.richtek.com
1
RT9025
Typical Application Circuit
VIN
VIN
CIN
10µF
Chip Enable
VDD
Chip Enable
ADJ
PGOOD
VDD
VIN
CIN
10µF
COUT
10µF
RT9025
EN
VIN
VOUT
VOUT
VOUT = 0.8 × R1 + R2
R2
VDD
GND
CF
RT9025
R2
PGOOD
VDD
GND
100k
R1
COUT
10µF
ADJ
EN
1µF
VOUT
VOUT
100k
1µF
VOUT
VOUT
Figure 1. Fixed Voltage Regulator
Figure 2. Adjustable Voltage Regulator
Functional Pin Description
Pin No.
Pin Name
Pin Function
1
PGOOD
Power Good Open Drain Output.
2
EN
Chip Enable (Active High).
3
VIN
Supply Input Voltage.
4
VDD
Supply Voltage of Control Circuit.
5
NC
No Internal Connection.
6
VOUT
Output Voltage.
7
ADJ
8,
9 (Exposed Pad)
Set the output voltage by the internal feedback resistors when ADJ is grounded.
If external feedback resistors is used, VOUT = 0.8V x (R2 + R1) / R2.
Ground. The exposed pad must be soldered to a large PCB and connected to
GND
GND for maximum power dissipation.
Function Block Diagram
VOUT
VIN
SD
OTP
VDD
POR
0.8V
Error
Amplifier
-
EN
+
OCP
Mode
ADJ
PGOOD
0.72V
+
GND
www.richtek.com
2
DS9025-05 March 2011
RT9025
Absolute Maximum Ratings
l
l
l
l
l
l
l
l
l
(Note 1)
Supply Input Voltage, VIN ------------------------------------------------------------------------------------------ 6V
Control Voltage ------------------------------------------------------------------------------------------------------- 6V
Output Voltage ------------------------------------------------------------------------------------------------------- 6V
Power Dissipation, PD @ TA = 25°C
SOP-8 ------------------------------------------------------------------------------------------------------------------ 0.833W
SOP-8 (Exposed Pad) ---------------------------------------------------------------------------------------------- 1.333W
Package Thermal Resistance (Note 2)
SOP-8, θJA ------------------------------------------------------------------------------------------------------------ 120°C/W
SOP-8, θJC ------------------------------------------------------------------------------------------------------------ 60°C/W
SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------- 75°C/W
SOP-8 (Exposed Pad), θJC ---------------------------------------------------------------------------------------- 15°C/W
Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------- 260°C
Junction Temperature ----------------------------------------------------------------------------------------------- 150°C
Storage Temperature Range --------------------------------------------------------------------------------------- −65°C to 150°C
ESD Susceptibility (Note 3)
HBM (Human Body Mode) ----------------------------------------------------------------------------------------- 2kV
MM (Machine Mode) ------------------------------------------------------------------------------------------------ 200V
Recommended Operating Conditions
l
l
l
l
(Note 4)
Supply Input Voltage, VIN ------------------------------------------------------------------------------------------ 1.4V to 5.5V
Control Voltage, VDD ------------------------------------------------------------------------------------------------- 4.5V to 5.5V
Junction Temperature Range -------------------------------------------------------------------------------------- −40°C to 125°C
Ambient Temperature Range -------------------------------------------------------------------------------------- −40°C to 85°C
Electrical Characteristics
(VIN = VOUT + 500mV, VEN = VDD = 5V, CIN = COUT = 10µF, TA = 25°C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
--
0.6
1.2
mA
VIN
Quiescent Current (GND Current)
(Note 5)
IQ
VDD = 5V
VDD
VDD Input Range
4.5
--
5.5
V
VDD = 5V
−2
0
2
%
∆VLOAD
VDD = 5V, I OUT = 2A,
VIN = VOUT + 1V
--
0.2
1
%
VOUT Line Regulation (VIN)
∆VLINE_IN
VDD = 5V, VIN = VOUT + 1V to 5V
IOUT = 1mA
--
0.2
0.6
%
Dropout Voltage
VDROP
VDD = 5V, I OUT = 2A
--
230
300
VDD = 5V, I OUT = 1A
--
115
150
VDD
VDD Operation Range
VOUT
Fixed Output Voltage
VOUT Load Regulation
(Note 6)
(Note 7)
mV
To be Continued
DS9025-05 March 2011
www.richtek.com
3
RT9025
Min
Typ
Max
Unit
VDD = 5V, V IN = 3.6V
--
3.5
--
A
Short Circuit Current
VDD = 5V , VOUT < 0.2V
--
1.8
--
A
In-rush Current
VDD = 5V, COU T = 10µF, Enable
Start-up, ILOAD = 2A
--
0.5
--
A
VEN = 0V
--
150
--
Ω
10% to 90%, VOUT = 1.8V
--
200
600
µs
0.788
0.8
0.812
V
--
0.2
--
V
POR Threshold
2.4
2.7
3.0
V
POR Falling Hysteresis
0.15
0.2
--
V
Parameter
Current Limit
Symbol
ILIM
V OUT Pull Low Resistance
V OUT Rising Time
Test Conditions
ADJ
Reference Voltage
VREF
VDD = 5V, V OUT = 2.5V
ADJ Pin Threshold
Power-On Reset
Power Good
Power Good Rising Threshold
VDD = 5V
--
90
--
%
Power Good Hysteresis
VDD = 5V
--
10
--
%
Power Good Sink Capability
VDD = 5V, IOUT = 10mA
--
0.2
0.4
V
Chip Enable
Logic-High
VEN _H
VDD = 5V
1.2
--
--
V
Logic-Low
VEN _L
VDD = 5V
--
--
0.6
V
EN Pin Bias Current
IEN
VEN = 5V
--
12
--
µA
V DD Shutdown Current
ISHDN
VDD = 5V, V EN = 0V
--
--
1
µA
--
160
--
°C
--
90
--
°C
EN Threshold
Voltage
Over Temperature Protection
Thermal Shutdown Temperature
TSD
Thermal Shutdown Returned
Temperature
Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
periods may remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a 4-layers high effective thermal conductivity test board of
JEDEC 51-7 thermal measurement standard. The case point of θJC is on the expose pad for SOP-8 (Exposed Pad)
package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under
no load condition (IOUT = 0mA).
Note 6. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load
regulation in the load range from 1mA to 2A.
Note 7. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) − 100mV.
www.richtek.com
4
DS9025-05 March 2011
RT9025
Typical Operating Characteristics
Load Transient Response
Load Transient Response
VOUT
(20mV/Div)
VOUT
(20mV/Div)
IOUT
(1A/Div)
IOUT
(1A/Div)
VDD = 5V, VIN = 1.8V, VOUT = 1.2V ADJ
VDD = 5V, VIN = 3.3V, VOUT = 2.5V FIX
Time (2.5ms/Div)
Time (2.5ms/Div)
VIN Line Transient Response
VIN
(1V/Div)
VIN Line Transient Response
VIN
(1V/Div)
3
4
3
2
VOUT
(50mV/Div)
VOUT
(50mV/Div)
VDD = 5V, VOUT = 1.2V ADJ, IOUT = 0A
VDD = 5V, VOUT = 2.5V FIX, IOUT = 0A
Time (250μs/Div)
Time (250μs/Div)
VDD Line Transient Response
VDD Line Transient Response
5
5
VDD
(1V/Div) 4
VDD
(1V/Div) 4
VOUT
(20mV/Div)
VOUT
(20mV/Div)
VIN = 1.8V, VOUT = 1.2V ADJ, IOUT = 0A
Time (250μs/Div)
DS9025-05 March 2011
VIN = 3.3V, VOUT = 2.5V FIX, IOUT = 0A
Time (250μs/Div)
www.richtek.com
5
RT9025
Dropout Voltage vs. Load Current
Start Up from Enable and PGOOD Delay
350
125°C
Dropout Voltage (mV)
300
VEN
(5V/Div)
25°C
250
VOUT
(1V/Div)
200
150
PGOOD
(1V/Div)
-40°C
100
I IN
(1A/Div)
50
VDD = VEN = 5V, VIN = 1.8V,
VOUT = 1.2V ADJ, IOUT = 2A
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Time (1ms/Div)
Load Current (A)
Start Up from VDD
Start Up from VIN
VDD
(5V/Div)
VIN
(1V/Div)
VOUT
(1V/Div)
VOUT
(1V/Div)
I IN
(1A/Div)
VDD = 5V, VIN = VEN = 1.8V,
VOUT = 1.2V ADJ, IOUT = 2A
I IN
(1A/Div)
VDD = 5V, VIN = VEN = 1.8V,
VOUT = 1.2V ADJ, IOUT = 2A
Time (1ms/Div)
Time (1ms/Div)
Short Circuit Current vs. Temperature
Short Circuit Protection
Short Circuit Current (A) 1
2.6
VOUT
(1V/Div)
IOUT
(1A/Div)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
Time (500μs/Div)
-50
-25
0
25
50
75
100
Temperature (°C)
www.richtek.com
6
DS9025-05 March 2011
RT9025
Quiescent Current vs. Temperature
1200
1.15
1100
1.10
1000
1.05
Quiescent Current (µA) 1
Enable Threshold Voltage (V) 1
Enable Threshold Voltage vs. Temperature
1.20
Rising
1.00
0.95
0.90
Falling
0.85
0.80
0.75
0.70
0.65
VIN = 3.3V, VOUT = 2.5V, IOUT = 0A
900
800
700
600
VIN = 1.8V, VOUT = 1.2V, IOUT = 0A
500
400
300
200
100
0.60
0
-50
-25
0
25
50
75
100
-50
-25
0
Temperature (°C)
25
50
75
100
125
Temperature (°C)
Fixed Output Voltage Range vs. Temperature
Reference Voltage vs. Temperature
2.60
0.84
VIN = 3.3V, VADJ = 0V, VOUT = 2.5V, IOUT = 0A
0.83
Reference Voltage (V) 1
Fixed Output Voltage (V)
2.58
2.56
2.54
2.52
2.50
2.48
2.46
2.44
0.82
0.81
0.80
0.79
0.78
0.77
2.42
0.76
2.40
-50
-25
0
25
50
75
100
125
-50
-25
Temperature (°C)
0.28
ADJ Threshold Voltage (V)
0.30
2.95
2.90
POR Voltage (V) 1
50
75
100
125
ADJ Threshold Voltage Range vs. Temperature
VDD POR Threshold Voltage vs. Temperature
Rising
2.80
2.75
2.70
Falling
2.65
25
Temperature (°C)
3.00
2.85
0
2.60
2.55
2.50
0.26
0.24
0.22
0.20
0.18
0.16
0.14
0.12
2.45
0.10
2.40
-50
-25
0
25
50
Temperature (°C)
DS9025-05 March 2011
75
100
-50
-25
0
25
50
75
100
Temperature (°C)
www.richtek.com
7
RT9025
Application information
Adjustable Mode Operation
Enable
The RT9025 goes into shutdown mode when the EN pin
is in the logic low condition. During this condition, the
pass transistor, error amplifier, and band gap are turned
off, reducing the supply current to 10µA typical. The
RT9025 goes into operation mode when the EN pin is in
the logic high condition. If the EN pin is floating, please
notice the RT9025 internal initial logic level. For RT9025,
the EN pin function pulls low level internally. So the
regulator will be turn off when EN pin is floating.
Input Capacitor
Good bypassing is recommended from input to ground to
improve AC performance. A 10µF input capacitor or greater
located as close as possible to the IC is recommended.
Region of Stable COUT ESR vs. Output Current
10
RegionofofStable
StableCCOUT
Region
ESR (Ω)
(Ω)
OUT ESR
The output voltage of RT9025 is adjustable from 0.8V to
VIN by external voltage divider resisters as shown in Typical
Application Circuit (Figure 2). The value of resisters R1
and R2 should be more than 10kΩ to reduce the power
loss. The output voltage can be calculated by the following
equation :
R1 

VOUT = VREF ×  1 +

 R2 
where VREF is the reference voltage (0.8V typical).
Unstable Region
1
0.1
Stable Region
0.01
Unstable Region (Simulation Verity)
VDD = 5V, VIN = 1.8V, VOUT = 1.2V
R1 = R2 = 100kΩ, CIN = COUT = 10µF/X5R
0.001
0
0.5
1
1.5
2
2.5
3
Output Current (A)
Figure 3. Region of Stable COUT ESR vs. Output Current
Current Limit
The RT9025 contains an independent current limit and
the short circuit current protection to prevent unexpected
applications. The current limit monitors and controls the
pass transistor's gate voltage, limiting the output current
to higher than 3.5A typical. When the output voltage is
less than 0.2V, the short circuit current protection starts
the current fold back function and maintains the loading
current 1.8A. The output can be shorted to ground
indefinitely without damaging the part.
Output Capacitor
The output capacitor must meet both requirements for
Power Good
minimum amount of capacitance and ESR in all LDOs
application. The RT9025 is designed specifically to work
The power good function is an open-drain output. Connects
100kΩ pull up resistor to VOUT to obtain an output voltage.
with low ESR ceramic output capacitor in space-saving
and performance consideration. Using a ceramic capacitor
The PGOOD pin will output high immediately after the
output voltage arrives 90% of normal output voltage.
which value is at least 10µF with ESR is > 15mΩ on the
RT9025 output ensures stability. The RT9025 still works
Thermal Shutdown Protection
well with output capacitor of other types due to the wide
stable ESR range. Figure 3 shows the curves of allowable
ESR range as a function of load current for various output
capacitor values. Output capacitor of larger capacitance
can reduce noise and improve load transient response,
stability, and PSRR. The output capacitor should be located
not more than 0.5 inch from the VOUT pin of the RT9025
and returned to a clean analog ground.
www.richtek.com
8
Thermal protection limits power dissipation to prevent IC
over temperature in RT9025. When the operation junction
temperature exceeds 160°C, the over temperature
protection circuit starts the thermal shutdown function
and turns the pass transistor off. The pass transistor turns
on again after the junction temperature cools by 30°C.
RT9025 lowers its OTP trip level from 160°C to 90°C
when output short circuit occurs (VOUT < 0.2V). It limits
DS9025-05 March 2011
RT9025
IC case temperature under 100°C and provides maximum
safety to customer while output short circuit occurring.
Power Dissipation
For continuous operation, do not exceed absolute
maximum operation junction temperature 125°C. The
power dissipation definition in device is:
(a) Copper Area = (2.3 x 2.3) mm2, θJA = 75°C/W
PD = (VIN − VOUT ) x IOUT + VIN x IQ
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junctions to ambient. The maximum power dissipation can
be calculated by following formula :
PD(MAX) = (TJ(MAX) − TA) / θJA
(b) Copper Area = 10mm2, θJA = 64°C/W
Where T J(MAX) is the maximum operation junction
temperature, TA is the ambient temperature and the θJA is
the junction to ambient thermal resistance.
For recommended operating conditions specification of
RT9025,the maximum junction temperature is 125°C. The
junction to ambient thermal resistance for SOP-8 (Exposed
Pad) package is 75°C/W on the standard JEDEC 51-7 (4
layers, 2S2P) thermal test board. The copper thickness
is 2oz. The maximum power dissipation at TA = 25°C can
be calculated by following formula :
(c) Copper Area = 30mm2, θJA = 54°C/W
PD(MAX) = (125°C − 25°C) / (75°C/W) = 1.33W (SOP-8
Exposed Pad on the minimum layout)
Layout Considerations
The thermal resistance θJA of SOP-8 (Exposed Pad) is
determined by the package design and the PCB design.
However, the package design had been designed. If
(d) Copper Area = 50mm2, θJA = 51°C/W
possible, it's useful to increase thermal performance by
the PCB design. The thermal resistance θJA can be
decreased by adding a copper under the exposed pad of
SOP-8 (Exposed Pad) package.
As shown in Figure 4, the amount of copper area to which
the SOP-8 (Exposed Pad) is mounted affects thermal
performance. When mounted to the standard SOP-8
(Exposed Pad) pad (Figure 4.a), θJA is 75°C/W. Adding
copper area of pad under the SOP-8 (Exposed Pad) (Figure
4.b) reduces the θJA to 64°C/W. Even further, increasing
the copper area of pad to 70mm2 (Figure 4.e) reduces the
θJA to 49°C/W.
DS9025-05 March 2011
(e) Copper Area = 70mm2, θJA = 49°C/W
Figure 4. Thermal Resistance vs. Copper Area Layout
Thermal Design
www.richtek.com
9
RT9025
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. For RT9025 packages, the Figure 5 of derating curves allows the designer to see the effect of rising
ambient temperature on the maximum power allowed.
2.2
Power Dissipation (W)
2.0
Copper Area
70mm2
50mm2
30mm2
10mm2
Min. layout
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
JEDEC 4-Layers PCB
0.0
0
20
40
60
80
100
120
140
Ambient Temperature (°C)
Figure 5. Derating Curve for Package
www.richtek.com
10
DS9025-05 March 2011
RT9025
Outline Dimension
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
4.801
5.004
0.189
0.197
B
3.810
3.988
0.150
0.157
C
1.346
1.753
0.053
0.069
D
0.330
0.508
0.013
0.020
F
1.194
1.346
0.047
0.053
H
0.170
0.254
0.007
0.010
I
0.050
0.254
0.002
0.010
J
5.791
6.200
0.228
0.244
M
0.400
1.270
0.016
0.050
8-Lead SOP Plastic Package
DS9025-05 March 2011
www.richtek.com
11
RT9025
H
A
M
EXPOSED THERMAL PAD
(Bottom of Package)
Y
J
X
B
F
C
I
D
Dimensions In Millimeters
Symbol
Dimensions In Inches
Min
Max
Min
Max
A
4.801
5.004
0.189
0.197
B
3.810
4.000
0.150
0.157
C
1.346
1.753
0.053
0.069
D
0.330
0.510
0.013
0.020
F
1.194
1.346
0.047
0.053
H
0.170
0.254
0.007
0.010
I
0.000
0.152
0.000
0.006
J
5.791
6.200
0.228
0.244
M
0.406
1.270
0.016
0.050
X
2.000
2.300
0.079
0.091
Y
2.000
2.300
0.079
0.091
X
2.100
2.500
0.083
0.098
Y
3.000
3.500
0.118
0.138
Option 1
Option 2
8-Lead SOP (Exposed Pad) Plastic Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: [email protected]
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
www.richtek.com
12
DS9025-05 March 2011