ROHM BD6081GVW

LED Drivers for LCD Backlights
Multifunction Backlight LED Drivers
for Small LCD Panels (Charge Pump Type)
BD6081GU, BD6081GVW
No.11040EAT27
●Description
BD6081GU / BD6081GVW is compound LED Driver which is the most suitable for the cellular phone.
Main LCD Back Light LED Driver (Max 4 Light), Sub LCD Back Light LED Driver (Max 2 Light), 2 system RGB LED Drivers,
2Ch LDO (2.8V/1.8V) included. This is PMIC (Power Management IC) that is the most suitable for "the indication part" of the
cellular phone.A charge pump form is adopted, and a coil is never used for the part DC/DC. This IC achieves compact size
with the chip size package (VCSP85H3). [BD6081GU]
This IC solves a mounting problem by BGA package
(SBGA063W060). [BD6081GVW]
●Features
1) Main LCD Back Light LED Driver (Max 4 Light)
4 Lighting / 3 Lighting can be chosen (register setting)
2) Sub LCD Back Light LED Driver (Max 2 Light)
2 Lighting / 1 Lighting can be chosen (register setting)
3) RGB LED Driver (2 System)
Slope control is built in.(2 system independence can be controlled.)
LED connection (for G1LED,G2LED,B1LED,B2LED) can be set up in the battery or the DC/DC output.(register setting)
LED connection (for R1LED,R2LED) can be set up in the battery only.
4) 2ch Series Regulator
2.8V output Iomax=150mA
1.8V output Iomax=150mA(normal mode)
1.8V output low current consumption mode / normal mode Switching is possible. (The outside pin control / register setting)
5) Charge Pump DC/DC
Soft start Functions
Over voltage protection (Auto-return type)
Over current protection (Auto-return type)
6) Thermal shutdown (Auto-return type)
2
7) I C BUS Fast-mode (max 400kHz)Writing
*This chip is not designed to protect itself against radioactive rays.
*This material may be changed on its way to designing.
*This material is not the specification.
●Absolute Maximum Ratings (Ta=25 ℃)
Parameter
Symbol
Ratings
Unit
Maximum Applied voltage
VMAX
7
V
Pd
1725 note1)
mW
Power Dissipation
BD6081GU
Pd
1060 note2)
mW
Operating Temperature Range
BD6081GVW
Topr
-25 ~ +85
℃
Storage Temperature Range
Tstg
-55 ~ +150
℃
Ratings
Unit
VBAT
2.7 ~ 5.5
V
VIO
1.65 ~ 3.3
V
cote1)Power dissipation deleting is 13.8mW/ ℃, when it’s used in over 25 ℃.
(It’s deleting is on the board that is ROHM’s standard))
Note2)Power dissipation deleting is 8.48mW/ ℃, when it’s used in over 25 ℃.
(It’s deleting is on the board that is ROHM’s standard))
●Operating conditions (VBAT≥VIO, Ta=-25~85 ℃)
Parameter
VBAT input voltage
VIO pin voltage
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Symbol
1/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【Circuit Current】
VBAT Circuit current 1
IBAT1
-
0.1
3.0
μA
RESET=0V, VIO=0V
VBAT Circuit current 2
IBAT2
-
0.5
3.0
μA
RESET=0V, VIO=1.8V
VBAT Circuit current 3
IBAT3
-
6.2
9.5
μA
REG2 low current consumption mode,
Io=0mA
VBAT Circuit current 4
IBAT4
-
100
150
μA
REG2 normal mode, Io=0mA
VBAT Circuit current 5
IBAT5
-
140
210
μA
REG1, REG2 normal mode, Io=0mA
VBAT Circuit current 6
IBAT6
-
63
95
mA
DC/DC x1mode, Io=60mA,VBAT=4.0V
VBAT Circuit current 7
IBAT7
-
95
143
mA
VBAT Circuit current 8
IBAT8
-
125
188
mA
DC/DC x1.5mode,
Io=60mA,VBAT=3.6V
DC/DC x2 mode,
Io=60mA,VBAT=2.7V
【LED Driver】
LED current Step1
ILEDSTP1
32
Step
MLED1~4, SLED1~2
LED current Step2
ILEDSTP2
64
Step
R1LED, G1LED, B1LED,R2LED,
G2LED, B2LED (with 0mA setting)
LED Maximum setup current 1
IMAX1
-
-
32
mA
MLED1~4, SLED1~2, ISET=120kΩ
LED Maximum setup current 2
IMAX2
-
-
31.5
mA
R1LED, G1LED, B1LED,R2LED,
G2LED, B2LED, ISET=120kΩ
LED current accurate
ILED
18
20
22
mA
LED current Matching
ILEDMT
-
5
10
%
LED OFF Leak current
ILKLED
-
-
1.0
μA
-
V
ILED=20mA, ISET=120kΩ
Between MLED1~4
Between SLED1~2
Between R1LED, G1LED and B1LED
Between R2LED, G2LED and B2LED
【DC/DC(Charge Pump)】
Output voltage
V℃P
Current Load
IOUT
-
-
255
mA
fosc
0.8
1.0
1.2
MHz
OVP
-
6.0
6.5
V
OCP
-
250
375
mA
Oscillator frequency
Over voltage protection
detect voltage
Over current protection
detect current
【REG1】
Vf+0.15 Vf+0.2
Vf is LED forward voltage
VBAT≥3.2V, VOUT=4V
VOUT=0V
Vo1
2.716
2.80
2.884
V
Io=150mA, VBAT≥3.1V
I/O voltage difference
Vsat1
-
0.2
0.3
V
VBAT=2.5V, Io=150mA
Load stability
ΔVo11
-
10
60
mV
Io=1~150mA
Input stability
ΔVo12
-
10
60
mV
VBAT=3.2~5.5V, Io=150mA
RR1
30
40
-
dB
f=100Hz, Vin=200mVp-p
Vo=0V
Output voltage
Ripple Rejection Ratio
Short circuit current limit
Ilim01
-
225
450
mA
ROFF1
-
1.0
1.5
kΩ
Output voltage 1
Vo21
1.74
1.8
1.86
V
Output voltage 2
Vo22
1.71
1.8
1.89
V
Load stability
ΔVo21
-
10
60
mV
Io=1~150mA
Input stability
ΔVo22
-
10
60
mV
VBAT=3.2~5.5V, Io=150mA
RR2
30
40
-
dB
f=100Hz, Vin=200mVp-p
Ilim02
-
225
450
mA
Vo=0V
ROFF2
-
1.0
1.5
kΩ
Discharge resister at OFF
【REG2】
Ripple Rejection Ratio
Short circuit current limit
Discharge resister at OFF
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2/35
Io=150mA
(normal mode)
Io=100μA
(low current consumption mode)
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【I2C Input (SDA, SCL)】
LOW level input voltage
VIL
-0.3
-
0.25 ×VIO
V
HIGH level input voltage
VIH
0.75 ×VIO
-
VBAT+0.3
V
Hysteresis of Schmitt trigger input
LOW level output voltage
(SDA) at 3mA sink current
Vhys
0.05 ×VIO
-
-
V
VOL
0
-
0.3
V
lin
-10
-
10
μA
Input current each I/O pin
Input voltage =
0.1×VIO~0.9×VIO
【RESET, RGB1CNT, RGB2CNT】
LOW level input voltage
VIL
-0.3
-
0.25 ×VIO
V
HIGH level input voltage1
VIH1
0.75 ×VIO
-
VBAT+0.3
V
RESET Pin
HIGH level input voltage2
VIH2
0.75 ×VIO
-
VIO+0.3
V
RGB1CNT, RGB2CNT Pin
Input current each I/O pin1
Iin
-10
-
10
μA
Input current each I/O pin2
Iin
-
6
15
μA
LOW level input voltage
VIL
-0.3
-
0.3
V
HIGH level input voltage
VIH
1.4
-
VBAT,+0.3
V
Input current each I/O pin
Iin
-
6
15
μA
Input voltage =
0.1×VIO~0.9×VIO,RESET Pin
Input voltage = .9×VIO
,RGB1CNT, RGB2CNT Pin
【REG2EN, REG2MD】
Vin=1.8V
●Power dissipation (On the ROHM’s standard board)
BD6081GU
BD6081GVW
1.2
2.0
1.8
1.0
1725mW
1.6
1060mW
1.4
Power Dissipation( W)
Power Dissipation( W)
0.8
1.2
1.0
0.8
0.6
0.4
0.6
0.4
0.2
0.2
0.0
0
25
50
75
100
125
0.0
150
0
Ta( ℃)
25
50
75
100
125
150
Ta( ℃)
Fig.1
Fig.2
Information of the ROHM’s standard board
Material:
glass-epoxy
Size:
50mm×58mm×1.75mm
Information of the ROHM’s standard board
Material: glass-epoxy
(8 Layer)
Size:
114.3mm×76.2mm×1.6mm
Pattern of the board: Refer to it that goes later.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Block Diagram / Application Circuit example
C2P
C2N
C1P
C1N
CPGND
1μF (10V)
1μF (10V)
VBATCP
VOUT
Charge Pump
VBAT1
VBAT2
VOUTM
x1 / x1.5 / x2
1μF
(10V)
MLED1~4
OVP
Charge Pump
Mode Control
LED terminal voltage feedback
Main LCD
Back Light
VIO
RESET
TSD
SLED1~2
Sub LCD
Back Light
SCL
SDA
BLGND
VBAT
G1LED
RGB1CNT
2
IC
CONTROL
LEVEL
SHIFT
I/O
B1LED
Slope
Control
(RGB1)
RGB2CNT
RGB1 LED
R1LED
External Control
G2LED
Slope
Control
(RGB2)
DGND
B2LED
RGB2 LED
R2LED
External Control
ISET
IREF
RGBGND
120kΩ
VBAT
VBATREG
CREF
VREF
REG1
2.8V
Io=150mA
0.1µF
REG1O
1μF
Register control
REG2
1.8V
Io=150mA
REG2O
1μF
REGGND
REG2MD
REG2EN
TESTO2
TESTI2
TESTO1
TESTI1
T4
T3
T2
T1
REFGND
Register control
Fig.3 Block Diagram / Application Circuit example
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
●Pin Arrangement [Bottom
Technical Note
View]
BD6081GU
G
T4
VBAT1
F
REFGND
R1LED
CREF
REG1O
E
G1LED
B1LED
ISET
REG2EN RGB2CNT
D
RGBGND
R2LED
TESTI1
C
G2LED
B2LED
REG2O VBATREG REGGND
VIO
REG2MD RGB1CNT
T3
RESET
SDA
DGND
VOUTM
VOUT
TESTO2 TESTO1
C1P
C2P
TESTI2
SCL
index
B
SLED1
BLGND
MLED2
MLED4
CPGND
C1N
VBATCP
A
T1
SLED2
MLED1
MLED3
VBAT2
C2N
T2
1
2
3
4
5
6
7
Total: 48ball
There is no Ball only in C3 for index.
BD6081GVW
H
T2
C1P
C2P
G
C1N
-
-
F
CPGND
C2N
TESTI1
E
MLED3
D
MLED2
MLED1
C
-
-
VOUTM TESTO1
VOUT
DGND
MLED4 VBAT2 VBATCP
SDA
RESET
T3
SCL
RGB2CNT
VIO
RGB1CNT
TESTO2 REG2MD
-
REG2EN REGGND
-
-
-
REG1O
VBATREG
-
(index) BLGND B2LED
-
-
TESTI2
CREF
REG2O
B
SLED2
SLED1
R2LED
-
-
REFGND
-
VBAT1
A
T1
G2LED
RGBGND
R1LED
ISET
T4
1
2
3
6
7
8
-
B1LED G1LED
4
5
Total: 63ball
There is no Ball only in C1 for index.
“-“ means NC pin (Non connect to internal circuit)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Package
BD6081GU
VCSP85H3 CSP small Package
SIZE : 3.90mm×3.90mm(A difference in public: X and Y, together, ± 0.1mm) height 1.0mm max
A ball pitch : 0.5mm
BD6081
Lot No.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
6/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Package
BD6081GVW
SBGA063W060
SIZE : 6.0mm×6.0mm(A difference in public: X and Y, together, ± 0.1mm) height 0.9mm max
A ball pitch : 0.65mm
BD6081
Lot No.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Pin Functions
Pin No.
No
Pin Name
I/O
Input
Level
ESD Diode
For
For
Power
Ground
GND
Equivalent
circuit diagram
Functions
BD6081GU
BD6081GVW
1
B7
E4
VBATCP
-
-
Battery is connected
A
2
G2
B8
VBAT1
-
-
-
GND
Battery is connected
A
3
A5
E3
VBAT2
-
-
-
GND
Battery is connected
A
4
G4
D7
VBATREG
-
-
-
GND
Battery is connected
A
5
A1
A1
T1
-
-
-
GND
Test Pin (short to GND)
A
6
A7
H1
T2
-
-
-
GND
Test Pin (short to GND)
A
7
G7
H8
T3
-
-
VBAT
GND
Test Pin (short to GND)
J
8
G1
A8
T4
-
-
VBAT
GND
Test Pin (short to GND)
J
9
F3
C7
CREF
O
-
VBAT
GND
Reference voltage output
P
10
G6
G8
VIO
-
-
VBAT
GND
I/O voltage source is connected
C
11
F7
H7
RESET
I
VIO
VBAT
GND
Reset input (L: RESET, H: RESET cancel)
H
12
E6
H6
SDA
I
VIO
VBAT
GND
I2C data input
I
13
D5
G6
SCL
I
VIO
VBAT
GND
I2C clock input
H
14
B5
F1
CPGND
-
-
VBAT
-
Ground
B
15
F1
B6
REFGND
-
-
VBAT
-
Ground
B
16
G5
E7
REGGND
-
-
VBAT
-
Ground
B
17
B2
C2
BLGND
-
-
VBAT
-
Ground
B
18
D1
A3
RGBGND
-
-
VBAT
-
Ground
B
19
E7
F5
DGND
-
-
VBAT
-
Ground
B
20
B6
G1
C1N
I/O
-
VBAT
GND
Charge Pump capacitor is connected
F
21
C6
H2
C1P
I/O
-
-
GND
Charge Pump capacitor is connected
G
22
A6
C7
F2
C2N
I/O
-
VBAT
GND
Charge Pump capacitor is connected
F
23
H3
C2P
I/O
-
GND
Charge Pump capacitor is connected
G
24
D7
F4
VOUT
O
-
-
GND
Charge Pump output pin
A
25
D6
G4
VOUTM
O
-
-
GND
Charge Pump output pin output pin
A
26
E3
A7
ISET
I
-
VBAT
GND
LED standard current
O
27
F4
D6
REG1O
O
-
VBAT
GND
REG1 output pin
Q
28
G3
C8
REG2O
O
-
VBAT
GND
REG2 output pin
Q
29
A3
D3
MLED1
I
-
VBAT
GND
Main LCD Back Light LED is connected 1
D
30
B3
D1
MLED2
I
-
VBAT
GND
Main LCD Back Light LED is connected 2
D
31
A4
E1
MLED3
I
-
VBAT
GND
Main LCD Back Light LED is connected 3
D
32
B4
E2
MLED4
I
-
VBAT
GND
Main LCD Back Light LED is connected 4
D
33
B1
B2
SLED1
I
-
VBAT
GND
Sub LCD Back Light LED is connected 1
D
34
A2
B1
SLED2
I
GND
Sub LCD Back Light LED is connected 2
D
F2
A6
R1LED
I
-
VBAT
35
VBAT
GND
Red LED1 is connected
D
36
E1
A5
G1LED
I
-
VBAT
GND
Green LED1 is connected
D
D
37
E2
A4
B1LED
I
GND
Blue LED1 is connected
D2
B3
R2LED
I
-
VBAT
38
VBAT
GND
Red LED2 is connected
D
39
C1
A2
G2LED
I
-
VBAT
GND
Green LED2 is connected
D
40
C2
C3
B2LED
I
-
VBAT
GND
Blue LED2 is connected
D
41
F6
F6
RGB1CNT
I
VIO
VIO
GND
RGB1 LED external ON/OFF Synchronism Pin
K
42
E5
G7
RGB2CNT
I
VIO
VIO
GND
RGB2 LED external ON/OFF Synchronism Pin
K
43
E4
E6
REG2EN
I
(VBAT)
VBAT
GND
REG2 ON/OFF control Pin (L: OFF, H: ON)
L
GND
REG2 Mode control Pin
(L: low current consumption, H: normal)
L
44
F5
F8
REG2MD
I
(VBAT)
VBAT
45
D3
F3
TESTI1
I
-
VBAT
GND
Test input pin 1 (short to GND)
H
46
D4
C6
TESTI2
I
-
VBAT
GND
Test input pin 2 (short to GND)
H
47
C5
G5
TESTO1
O
-
VBAT
GND
Test output pin 1 (OPEN)
M
48
C4
F7
TESTO2
O
-
VBAT
GND
Test output pin 2 (OPEN)
N
49
63
-
(Other)
NC
-
-
-
-
Non connect pin
-
※ The LED pin which isn't used is to short-circuit to the ground. But, the setup of a register concerned with LED that isn’t used is prohibited.
Total: Functional 48Pin
48 balls (BD6081GU)
63 balls (BD6081GVW)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Equivalent circuit diagram
A
B
E
F
VBAT
VBAT
I
VBAT
VIO
J
M
VBAT
VBAT
N
Q
VBAT
VBAT
VBAT
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
C
VBAT
G
VIO
K
VIO
VBAT
O
VBAT
9/35
VIO
D
VBAT
H
VBAT
VIO
L
VBAT
VBAT
P
VBAT
VBAT
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●I2C BUS format
The writing/reading operation is based on the I2C slave standard.
・Slave address
A7
1
A6
1
A5
1
A4
0
A3
1
A2
1
A1
0
W
0
・Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
Data line stable;
Data valid
Change of data
allowed
・START and STOP condition
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL
has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S
P
START Condition
STOP Condition
・Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and
a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT
BY TRANSMITTER
not acknowledge
DATA OUTPUT
BY RECEIVER
acknowledge
SCL from master
S
1
8
9
clock pulse for
acknowledgement
START condition
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2
10/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
・ Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is
carried out automatically. However, when a register address turns into the last address (1Ah), it is set to 00h by the next
transmission. After the transmission end, the increment of the address is carried out.
*1
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
register address
from slave to master
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
R/W=0(write)
from master to slave
*1
register address
A=acknowledge(SDA LOW)
_
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
*1: Write Timing
●Timing diagram
SDA
t BUF
t SU;DAT
t LOW
t HD;STA
SCL
t HD;STA
t SU;STA
t HD;DAT
S
t HIGH
t SU;STO
Sr
●Electrical Characteristics(Unless otherwise specified, Ta=25 ℃, VBAT=3.6V, VIO=1.8V)
Standard-mode
Parameter
Symbol
Min.
Typ.
Max.
Min.
【I2C BUS format】
SCL clock frequency
fSCL
0
100
0
LOW period of the SCL clock
tLOW
4.7
1.3
HIGH period of the SCL clock
tHIGH
4.0
0.6
Hold time (repeated) START condition
tHD;STA
4.0
0.6
After this period, the first clock is generated
Set-up time for a repeated START condition
tSU;STA
4.7
0.6
Data hold time
tHD;DAT
0
3.45
0
Data set-up time
tSU;DAT
250
100
Set-up time for STOP condition
tSU;STO
4.0
0.6
Bus free time between a STOP
4.7
1.3
tBUF
and START condition
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
11/35
P
S
Fast-mode
Typ.
Max.
Unit
-
400
-
kHz
μs
μs
-
-
μs
-
0.9
-
μs
μs
ns
μs
-
-
μs
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Register List
Address
Register data
D7
D6
00h
-
-
01h
-
-
02h
-
-
03h
-
04h
Function
D4
D3
D2
D1
-
-
-
-
-
SFTRST
REG2NML
REG2PD
-
-
-
REG1PD
Control LDO
SLEDSEL
SLEDEN
-
-
MLEDSEL
MLEDEN
Control Back Light
-
-
IMLED4
IMLED3
IMLED2
IMLED1
IMLED0
Main Back Light current value
-
-
-
ISLED4
ISLED3
ISLED2
ISLED1
ISLED0
Sub Back Light current value
05h
-
B2LEDMD
G2LEDMD
RGB2STA
-
B1LEDMD
G1LEDMD
RGB1STA
06h
RGB1MD1
RGB1MD0
B1LEDPL
G1LEDPL
R1LEDPL
B1LEDEN
G1LEDEN
R1LEDEN
07h
D5
RGB1WT2TM2
RGB1WT2TM1
RGB1SL1
RGB1SL1
RGB1SL1
RGB1SL1
RGB1SL2
RGB1SL2
RGB1SL2
RGB1SL2
STEP3
STEP2
STEP1
STEP0
STEP3
STEP2
STEP1
STEP0
09h
-
-
-
-
-
RGB1SLNUM2
RGB1SLNUM1
0Ah
-
-
I1R1LED5
I1R1LED4
I1R1LED3
I1R1LED2
I1R1LED1
I1R1LED0
0Bh
-
-
IDLTR1LED5
IDLTR1LED4
IDLTR1LED3
IDLTR1LED2
IDLTR1LED1
IDLTR1LED0
0Ch
-
-
I1G1LED5
I1G1LED4
I1G1LED3
I1G1LED2
I1G1LED1
I1G1LED0
08h
RGB1WT1TM3 RGB1WT1TM2 RGB1WT1TM1 RGB1WT1TM0 RGB1WT2TM3
D0
-
IDLTG1LED5
IDLTG1LED4
IDLTG1LED3
IDLTG1LED2
IDLTG1LED1
IDLTG1LED0
0Eh
-
-
I1B1LED5
I1B1LED4
I1B1LED3
I1B1LED2
I1B1LED1
I1B1LED0
0Fh
-
-
IDLTB1LED5
IDLTB1LED4
IDLTB1LED3
IDLTB1LED2
IDLTB1LED1
IDLTB1LED0
10h
RGB2MD1
RGB2MD0
B2LEDPL
G2LEDPL
R2LEDPL
B2LEDEN
G2LEDEN
R2LEDEN
RGB2WT2TM2
RGB2WT2TM1
RGB2SL1
RGB2SL1
RGB2SL1
RGB2SL1
RGB2SL2
RGB2SL2
RGB2SL2
RGB2SL2
STEP3
STEP2
STEP1
STEP0
STEP3
STEP2
STEP1
STEP0
13h
-
-
-
-
-
RGB2SLNUM2
RGB2SLNUM1
14h
-
-
I1R2LED5
I1R2LED4
I1R2LED3
I1R2LED2
I1R2LED1
I1R2LED0
15h
-
-
IDLTR2LED5
IDLTR2LED4
IDLTR2LED3
IDLTR2LED2
IDLTR2LED1
IDLTR2LED0
16h
-
-
I1G2LED5
I1G2LED4
I1G2LED3
I1G2LED2
I1G2LED1
I1G2LED0
17h
-
-
IDLTG2LED5
IDLTG2LED4
IDLTG2LED3
IDLTG2LED2
IDLTG2LED1
IDLTG2LED0
18h
-
-
I1B2LED5
I1B2LED4
I1B2LED3
I1B2LED2
I1B2LED1
I1B2LED0
19h
-
-
IDLTB2LED5
IDLTB2LED4
IDLTB2LED3
IDLTB2LED2
IDLTB2LED1
IDLTB2LED0
1Ah
-
-
-
-
-
-
RGB2MEL
RGB1MEL
12h
Setting GB LED connection
Control RGB1 LED
RGB1 slope
1step time setting
RGB1SLNUM0 RGB1 slope step number setting
-
RGB2WT1TM3 RGB2WT1TM2 RGB2WT1TM1 RGB2WT1TM0 RGB2WT2TM3
Control RGB1, RGB2 LED
RGB1WT2TM0 RGB1 ON time setting
0Dh
11h
Software reset
R1 LED current value1
Δ current value
for R1 LED current step
G1 LED current value1
Δ current value
for G1 LED current step
B1 LED current value1
Δ current value
for B1 LED current step
Control RGB2 LED
RGB2WT2TM0 RGB2 ON time setting
RGB2 slope
1step time setting
RGB2SLNUM0 RGB2 slope step number setting
R2 LED current value1
Δ current value
for R2 LED current step
G2 LED current value1
Δ current value
for G2 LED current step
B2 LED current value1
Δ current value
for B2 LED current step
RGB1, RGB2 LED
external ON/OFF control
1Dh
Reserved
For test
1Eh
Reserved
For test
1Fh
Reserved
For test
Input "0” for "-".
Prohibit to accessing the address that isn’t mentioned and the register for test.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
12/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
●Register Map
Address 00h
Technical Note
<Software reset>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
SFTRST
0
Address 01h
1
Reset
<Control LDO>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
REG2NML
REG2PD
REG1PD
0
0
0
Address 02h
Function
0
Reset cancel
Function
0
1
REG2 low current consumption mode
REG2 power OFF
REG1 power OFF
REG2 normal mode
REG2 power ON
REG1 power ON
<Control Back Light>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
SLEDSEL
SLEDEN
MLEDSEL
MLEDEN
0
0
0
0
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Function
0
2 lights ON (SLED1~2)
Sub Back Light OFF
4 lights ON (MLED1~4)
Main Back Light OFF
13/35
1
1 lights ON (SLED1)
Sub Back Light ON
3 lights ON (MLED1~3)
Main Back Light ON
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 03h
Technical Note
<Main Back Light current value>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
IMLED4
IMLED3
IMLED2
IMLED1
IMLED0
0
0
0
0
0
Function
0
1
-
-
IMLED4
0
0
0
・
IMLED3
0
0
0
・
IMLED2
0
0
0
・
IMLED1
0
0
1
・
IMLED0
0
1
0
・
Current value
1mA
2mA
3mA
・
・
・
・
・
・
・
・
・
・
1
1
1
0
1
30mA
1
1
1
1
0
31mA
1
1
1
1
1
32mA
1mA
Step
When 120kΩ is connected to ISET pin.
Address 04h
<Sub Back Light current value>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
ISLED4
ISLED3
ISLED2
ISLED1
ISLED0
0
0
0
0
0
Function
ISLED4
0
0
0
・
・
・
1
1
0
1
-
-
ISLED3
0
0
0
・
・
・
1
1
ISLED2
0
0
0
・
・
・
1
1
ISLED1
0
0
1
・
・
・
0
1
1
1
1
1
When 120kΩ is connected to ISET pin.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
14/35
ISLED0
0
1
0
・
・
・
1
0
Current value
1mA
2mA
3mA
1
32mA
1mA
Step
30mA
31mA
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 05h
Technical Note
<Control RGB1, RGB2 LED, Setting GB LED connection>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
B2LEDMD
G2LEDMD
RGB2STA
B1LEDMD
G1LEDMD
RGB1STA
0
0
0
0
0
0
Address 06h
Function
0
B2LED connection =VBAT
G2LED connection =VBAT
RGB2 LED Lighting stop
B1LED connection =VBAT
G1LED connection =VBAT
RGB1 LED Lighting stop
1
B2LED connection =VOUT
G2LED connection =VOUT
RGB2 LED Lighting start
B1LED connection =VOUT
G1LED connection =VOUT
RGB1 LED Lighting start
<Control RGB1 LED>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
RGB1MD1
RGB1MD0
B1LEDPL
G1LEDPL
R1LEDPL
B1LEDEN
G1LEDEN
R1LEDEN
0
0
0
0
0
0
0
0
Function
0
Refer to the following
Refer to the following
Refer to the following
Refer to the following
Refer to the following
B1 LED OFF
G1 LED OFF
R1 LED OFF
RGB1MD1
0
0
RGB1MD0
0
1
1
0
1
1
1
Refer to the following
Refer to the following
Refer to the following
Refer to the following
Refer to the following
B1 LED ON
G1 LED ON
R1 LED ON
*1LEDPL
0/1
0/1
0
1
0
1
Mode
Normal 1
Normal 2
Blink 1
Blink 2
Slope 1
Slope 2
*1LEDPL : R1LEDPL, G1LEDPL, B1LEDPL is shown.
Address 07h
<RGB1 ON time setting>
BIT
Name
Initial
D7
D6
D5
D4
RGB1WT1TM3
RGB1WT1TM2
RGB1WT1TM1
RGB1WT1TM0
0
0
0
0
D3
D2
D1
D0
RGB1WT2TM3
RGB1WT2TM2
RGB1WT2TM1
RGB1WT2TM0
0
0
0
0
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Function
RGB1WT1TM3 RGB1WT1TM2 RGB1WT1TM1 RGB1WT1TM0 Current light time
0
0
0
0
0
0
0
1
・
・
・
・
・
・
・
・
・
・
・
・
1
1
0
1
1
1
1
0
1
1
1
1
Lighting time depends on internal OSC frequency.
RGB1WT2TM3 RGB1WT2TM2 RGB1WT2TM1 RGB1WT2TM0
0
0
0
0
0
0
0
1
・
・
・
・
・
・
・
・
・
・
・
・
1
1
0
1
1
1
1
0
1
1
1
1
Lighting time depends on internal OSC frequency.
15/35
0.256s
0.512s
0.256s
Step
3.584s
3.84s
4.096s
Current light time
0.256s
0.512s
0.256s
Step
3.584s
3.84s
4.096s
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 08h
Technical Note
<RGB1 slope 1step time setting>
BIT
Name
Initial
D7
RGB1SL1STEP3
0
D6
RGB1SL1STEP2
0
D5
D4
RGB1SL1STEP1
RGB1SL1STEP0
0
0
Function
RGB1SL1
STEP3
0
0
・
・
・
1
1
1
RGB1SL1
STEP2
0
0
・
・
・
1
1
1
RGB1SL1
STEP1
0
0
・
・
・
0
1
1
RGB1SL1
STEP0
0
1
・
・
・
1
0
1
Current light time
4ms
8ms
4ms
Step
56ms
60ms
64ms
Lighting time depends on internal OSC frequency.
D3
RGB1SL2STEP3
0
D2
RGB1SL2STEP2
0
D1
D0
RGB1SL2STEP1
RGB1SL2STEP0
0
0
RGB1SL2
STEP3
0
0
RGB1SL2
STEP2
0
0
RGB1SL2
STEP1
0
0
RGB1SL2
STEP0
0
1
・
・
・
・
・
・
・
・
・
・
・
・
4ms
Step
1
1
1
1
0
1
1
0
56ms
60ms
1
1
1
1
64ms
Current light time
4ms
8ms
Lighting time depends on internal OSC frequency.
Address 09h
<RGB1 slope step number setting>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
RGB1SLNUM2
RGB1SLNUM1
RGB1SLNUM0
0
0
0
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Function
0
-
1
-
RGB1SLNUM2
0
0
0
0
1
1
RGB1SLNUM1
0
0
1
1
0
0
RGB1SLNUM0
0
1
0
1
0
1
Step
1 Step
2 Step
4 Step
8 Step
16 Step
32 Step
1
1
0
64 Step
1
1
1
(Prohibited)
16/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 0Ah
Technical Note
<R1 LED current value 1>
BIT
Name
Initial
D7
D6
D5
I1R1LED5
0
D4
I1R1LED4
0
D3
D2
D1
D0
I1R1LED3
I1R1LED2
I1R1LED1
I1R1LED0
0
0
0
0
Function
0
-
1
-
I1R1
LED5
0
0
0
・
・
・
・
1
1
I1R1
LED4
0
0
0
・
・
・
・
1
1
I1R1
LED3
0
0
0
・
・
・
・
1
1
I1R1
LED2
0
0
0
・
・
・
・
1
1
I1R1
LED1
0
0
1
・
・
・
・
0
1
I1R1
LED0
0
1
0
・
・
・
・
1
0
1
1
1
1
1
1
Current value
0mA
0.5mA
1mA
0.5mA
Step
30.5mA
31mA
31.5mA
When 120kΩ is connected to ISET pin.
Address 0Bh
<Δ current value for R1 LED current step>
BIT
Name
Initial
D7
D6
D5
IDLTR1LED5
0
D4
IDLTR1LED4
0
D3
D2
D1
D0
IDLTR1LED3
IDLTR1LED2
IDLTR1LED1
IDLTR1LED0
0
0
0
0
Function
0
-
1
-
IDLTR1
LED5
0
0
0
・
・
・
・
1
1
IDLTR1
LED4
0
0
0
・
・
・
・
1
1
IDLTR1
LED3
0
0
0
・
・
・
・
1
1
IDLTR1
LED2
0
0
0
・
・
・
・
1
1
IDLTR1
LED1
0
0
1
・
・
・
・
0
1
IDLTR1
LED0
0
1
0
・
・
・
・
1
0
1
1
1
1
1
1
Current value
0mA
0.5mA
1mA
0.5mA
Step
30.5mA
31mA
31.5mA
When 120kΩ is connected to ISET pin.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
17/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 0Ch
<G1 LED current value1>
BIT
Name
Initial
D7
D6
D5
D4
I1G1LED5
0
I1G1LED4
0
I1G1LED3
I1G1LED2
I1G1LED1
I1G1LED0
0
0
0
0
D3
D2
D1
D0
Technical Note
Function
0
I1G1
LED5
0
0
0
・
・
・
・
1
1
1
-
I1G1
LED4
0
0
0
・
・
・
・
1
1
I1G1
LED3
0
0
0
・
・
・
・
1
1
I1G1
LED2
0
0
0
・
・
・
・
1
1
1
1
1
1
When 120kΩ is connected to ISET pin.
Address 0Dh
I1G1
LED0
0
1
0
・
・
・
・
1
0
Current
value
0mA
0.5mA
1mA
30.5mA
31mA
1
1
31.5mA
0.5mA
Step
<Δ current value for G1 LED current step >
BIT
Name
Initial
D7
D6
D5
D4
IDLTG1LED5
0
IDLTG1LED4
0
IDLTG1LED3
IDLTG1LED2
IDLTG1LED1
IDLTG1LED0
0
0
0
0
D3
D2
D1
D0
I1G1
LED1
0
0
1
・
・
・
・
0
1
Function
0
IDLTG1
LED5
0
0
0
・
・
・
・
1
1
1
-
IDLTG1
LED4
0
0
0
・
・
・
・
1
1
IDLTG1
LED3
0
0
0
・
・
・
・
1
1
IDLTG1
LED2
0
0
0
・
・
・
・
1
1
1
1
1
1
When 120kΩ is connected to ISET pin.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
18/35
IDLTG1
LED1
0
0
1
・
・
・
・
0
1
IDLTG1
LED0
0
1
0
・
・
・
・
1
0
1
1
Current value
0mA
0.5mA
1mA
0.5mAStep
30.5mA
31mA
31.5mA
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 0Eh
<B1 LED Current value1>
BIT
Name
Initial
D7
D6
D5
D4
I1B1LED5
0
I1B1LED4
0
I1B1LED3
I1B1LED2
I1B1LED1
I1B1LED0
0
0
0
0
D3
D2
D1
D0
Technical Note
Function
0
I1B1
LED5
0
0
0
・
・
・
・
1
1
1
-
I1B1
LED4
0
0
0
・
・
・
・
1
1
I1B1
LED3
0
0
0
・
・
・
・
1
1
I1B1
LED2
0
0
0
・
・
・
・
1
1
1
1
1
1
When 120kΩ is connected to ISET pin.
Address 0Fh
I1B1
LED1
0
0
1
・
・
・
・
0
1
I1B1
LED0
0
1
0
・
・
・
・
1
0
1
1
Current value
0mA
0.5mA
1mA
0.5mA
Step
30.5mA
31mA
31.5mA
<Δ current value for B1 LED current step >
BIT
Name
Initial
D7
D6
D5
D4
IDLTB1LED5
0
IDLTB1LED4
0
D3
D2
D1
D0
IDLTB1LED3
IDLTB1LED2
IDLTB1LED1
IDLTB1LED0
0
0
0
0
Function
0
IDLTB1
LED5
0
0
0
・
・
・
・
1
1
1
-
IDLTB1
LED4
0
0
0
・
・
・
・
1
1
IDLTB1
LED3
0
0
0
・
・
・
・
1
1
IDLTB1
LED2
0
0
0
・
・
・
・
1
1
1
1
1
1
When 120kΩ is connected to ISET pin.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
19/35
IDLTB1
LED1
0
0
1
・
・
・
・
0
1
IDLTB1
LED0
0
1
0
・
・
・
・
1
0
1
1
Current value
0mA
0.5mA
1mA
0.5mA
Step
30.5mA
31mA
31.5mA
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 10h
Technical Note
<Control RGB2 LED>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
RGB2MD1
RGB2MD0
B2LEDPL
G2LEDPL
R2LEDPL
B2LEDEN
G2LEDEN
R2LEDEN
0
0
0
0
0
0
0
0
Function
0
Refer to following
Refer to following
Refer to following
Refer to following
Refer to following
B2 LED OFF
G2 LED OFF
R2 LED OFF
RGB2MD1
0
0
1
Refer to following
Refer to following
Refer to following
Refer to following
Refer to following
B2 LED ON
G2 LED ON
R2 LED ON
*2LEDPL
Mode
0/1
Normal 1
0/1
Normal 2
0
Blink 1
1
0
1
Blink 2
0
Slope 1
1
1
1
Slope 2
*2LEDPL : R2LEDPL, G2LEDPL, B2LEDPL is shown.
Address 11h
RGB2MD0
0
1
<RGB2 ON time setting>
BIT
Name
Initial
D7
RGB2WT1TM3
0
D6
RGB2WT1TM2
0
D5
D4
RGB2WT1TM1
RGB2WT1TM0
0
0
D3
RGB2WT2TM3
0
D2
RGB2WT2TM2
0
D1
D0
RGB2WT2TM1
RGB2WT2TM0
0
0
Function
RGB2WT1
TM3
0
0
・
・
・
1
1
1
RGB2WT1 RGB2WT1 RGB2WT1
Current ON time
TM2
TM1
TM0
setting
0
0
0
0.256s
0
0
1
0.512s
・
・
・
0.256s
・
・
・
Step
・
・
・
1
0
1
3.584s
1
1
0
3.845s
1
1
1
4.096s
Lighting time depends on internal OSC frequency.
RGB2WT2
TM3
0
0
RGB2WT2
TM2
0
0
RGB2WT2
TM1
0
0
RGB2WT2
TM0
0
1
Current ON time
setting
0.256s
0.512s
・
・
・
・
・
・
・
・
・
・
・
・
0.256s
Step
1
1
1
1
0
1
1
0
3.584s
3.845s
1
1
1
1
4.096s
Lighting time depends on internal OSC frequency.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
20/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 12h
Technical Note
<RGB2 slope 1step time setting>
BIT
Name
Initial
D7
D6
D5
D4
RGB2SL1STEP3
RGB2SL1STEP2
0
0
0
0
RGB2SL1STEP1
RGB2SL1STEP0
D3
RGB2SL2STEP3
0
D2
D1
D0
RGB2SL2STEP2
0
0
0
RGB2SL2STEP1
RGB2SL2STEP0
Function
RGB2SL1STEP3 RGB2SL1STEP2 RGB2SL1STEP1 RGB2SL1STEP0
Current ON time setting
0
0
0
0
0
0
0
1
・
・
・
・
・
・
・
・
・
・
・
・
1
1
0
1
1
1
1
0
1
1
1
1
Lighting time depends on internal OSC frequency.
RGB2SL2STEP3 RGB2SL2STEP2 RGB2SL2STEP1 RGB2SL2STEP0
4ms
8ms
4ms
Step
56ms
60ms
64ms
Current ON time setting
0
0
0
0
0
0
0
1
4ms
8ms
・
・
・
・
・
・
・
・
・
・
・
・
4ms
Step
1
1
1
1
0
1
1
0
56ms
60ms
1
1
1
1
64ms
Lighting time depends on internal OSC frequency.
Address 13h
<RGB2 slope step number setting>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
RGB2SLNUM2
RGB2SLNUM1
RGB2SLNUM0
0
0
0
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Function
0
-
1
-
RGB2SLNUM2
0
0
0
0
1
1
RGB2SLNUM1
0
0
1
1
0
0
RGB2SLNUM0
0
1
0
1
0
1
1
1
0
64 Step
1
1
1
(Prohibited)
21/35
Step
1 Step
2 Step
4 Step
8 Step
16 Step
32 Step
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 14h
Technical Note
<R2 LED current value1>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
I1R2LED5
I1R2LED4
I1R2LED3
I1R2LED2
I1R2LED1
I1R2LED0
0
0
0
0
0
0
Function
0
-
1
-
I1R2LED5
I1R2LED4
I1R2LED3
I1R2LED2
I1R2LED1
I1R2LED0
Current value
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
1
・
・
・
・
0
1
0
1
0
・
・
・
・
1
0
0mA
0.5mA
1mA
30.5mA
31mA
1
1
31.5mA
1
1
1
1
When 120kΩ is connected to ISET pin.
Address 15h
0.5mA
Step
<Δ current value for R2 LED current step >
BIT
Name
Initial
D7
D6
D5
IDLTR2LED5
0
D4
IDLTR2LED4
0
D3
D2
D1
D0
IDLTR2LED3
IDLTR2LED2
IDLTR2LED1
IDLTR2LED0
0
0
0
0
Function
0
IDLTR2
LED5
0
0
0
・
・
・
・
1
1
1
-
IDLTR2
LED4
0
0
0
・
・
・
・
1
1
IDLTR2
LED3
0
0
0
・
・
・
・
1
1
IDLTR2
LED2
0
0
0
・
・
・
・
1
1
1
1
1
1
When 120kΩ is connected to ISET pin.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
22/35
IDLTR2
LED1
0
0
1
・
・
・
・
0
1
IDLTR2
LED0
0
1
0
・
・
・
・
1
0
Current
value
0mA
0.5mA
1mA
30.5mA
31mA
1
1
31.5mA
0.5mA
Step
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 16h
<G2 LED current value1>
BIT
Name
Initial
D7
D6
D5
I1G2LED5
0
D4
I1G2LED4
0
D3
D2
D1
D0
I1G2LED3
I1G2LED2
I1G2LED1
I1G2LED0
0
0
0
0
Address 17h
Technical Note
Function
0
-
1
-
I1G2LED
I1G2LED
I1G2LED
I1G2LED
I1G2LED
I1G2LED
5
4
3
2
1
0
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
1
・
・
・
・
0
1
0
1
0
・
・
・
・
1
0
1
1
1
1
1
1
When 120kΩ is connected to ISET pin.
Current value
0mA
0.5mA
1mA
0.5mA
Step
30.5mA
31mA
31.5mA
<Δ current value for G2 LED current step >
BIT
Name
Initial
D7
D6
D5
IDLTG2LED5
0
D4
IDLTG2LED4
0
D3
D2
D1
D0
IDLTG2LED3
IDLTG2LED2
IDLTG2LED1
IDLTG2LED0
0
0
0
0
Function
0
-
1
-
IDLTG2
LED5
0
0
0
・
・
・
・
1
1
IDLTG2
LED4
0
0
0
・
・
・
・
1
1
IDLTG2
LED3
0
0
0
・
・
・
・
1
1
IDLTG2
LED2
0
0
0
・
・
・
・
1
1
IDLTG2
LED1
0
0
1
・
・
・
・
0
1
IDLTG2
LED0
0
1
0
・
・
・
・
1
0
Current
value
0mA
0.5mA
1mA
30.5mA
31mA
1
1
1
1
1
1
31.5mA
0.5mA
Step
When 120kΩ is connected to ISET pin.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
23/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Address 18h
Technical Note
<B2 LED current value1>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
I1B2LED5
I1B2LED4
I1B2LED3
I1B2LED2
I1B2LED1
I1B2LED0
0
0
0
0
0
0
Address 19h
1
-
I1B2LED5
I1B2LED4
I1B2LED3
I1B2LED2
I1B2LED1
I1B2LED0
Current value
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
0
・
・
・
・
1
1
0
0
1
・
・
・
・
0
1
0
1
0
・
・
・
・
1
0
0mA
0.5mA
1mA
1
1
1
1
1
1
When 120kΩ is connected to ISET pin.
0.5mA
Step
30.5mA
31mA
31.5mA
<Δ current value for B2 LED current step >
BIT
Name
Initial
D7
D6
D5
IDLTB2LED5
0
D4
IDLTB2LED4
0
D3
D2
D1
D0
IDLTB2LED3
IDLTB2LED2
IDLTB2LED1
IDLTB2LED0
0
0
0
0
Address 1Ah
Function
0
-
Function
0
-
1
-
IDLTB2
LED5
0
0
0
・
・
・
・
1
1
IDLTB2
LED4
0
0
0
・
・
・
・
1
1
1
1
IDLTB2
LED3
0
0
0
・
・
・
・
1
1
IDLTB2
LED2
0
0
0
・
・
・
・
1
1
IDLTB2
LED1
0
0
1
・
・
・
・
0
1
IDLTB2
LED0
0
1
0
・
・
・
・
1
0
1
1
1
1
When 120kΩ is connected to ISET pin.
Current value
0mA
0.5mA
1mA
0.5mA
Step
30.5mA
31mA
31.5mA
<RGB1, RGB2 LED external ON/OFF control>
BIT
Name
Initial
D7
D6
D5
D4
D3
D2
D1
D0
RGB2MEL
RGB1MEL
0
0
Function
0
RGB*MEL
1
RGB*CNT (external pin)
RGB* LED Lighting
0
L
ON
0
H
ON
1
L
OFF
1
H
ON
But, a state of lighting depends on the setup of other registers.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
24/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●RGB LED operating
1. Operating mode
RGB LED can set up the following operating mode by the setup of the register.
<Setup register>
I1**LED : (register) Initial electric current value [mA]
IDLT**LED : (register) The electric current Δ value of around 1Step [mA]
RGB*SLNUM : (register) slope step number (1,2,4,8,16,32,64 Step)
RGB*SL1STEP : (register) The first half slope 1Step time [ms]
RGB*SL2STEP : (register) The latter half slope 1Step time [ms]
RGB*WT1TM : (register) The first half lighting time [ms]
RGB*WT2TM : (register) The latter half lighting time [ms]
As for the following setup, calculate it from the above setup.
I2**LED : At the time of middle lighting current value [mA] = I1**LED + IDLT**LED x RGB*SLNUM
(In case of the value that a calculation exceeds maximum value, the current value is at the limit with maximum.)
RGB*SL1TM : The first half slope time [ms] = RGB*SL1STEP x RGB*SLNUM
RGB*SL2TM : The latter half slope time [ms] = RGB*SL2STEP x RGB*SLNUM
Each setup is necessary for DC current (at Normal mode or Blink mode).
(* : 1/ 2 channels is shown. ** : R1/G1/B1/R2 /G2/B2 is shown.)
Note) The current value in the table, it is value when 120kΩ is connected to ISET pin.
Normal mode 1
31.5mA
I1**LED
0mA
Time
RGB*STA=1
RGB*STA=0
Normal mode 2
31.5mA
I2**LED is a calculation.
I2**LED
Time
0mA
RGB*STA=1
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
RGB*STA=0
25/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
Blink mode 1
RGB*WT1TM
RGB*WT1TM/RGB*WT2TM is repeated.
RGB*WT2TM
31.5mA
I2**LED
I1**LED
0mA
Time
RGB*STA=1
RGB*STA=0
I2**LED is a calculation.
RGB*WT1TM/RGB*WT2TM is repeated.
Blink mode 2
RGB*WT1TM
RGB*WT2TM
31.5mA
I2**LED
I1**LED
0mA
Time
RGB*STA=0
RGB*STA=1
Slope mode 1
I2**LED,RGB*SL1TM,RGB*SL2TM is a calculation.
Until it becomes RGB*STA=0, Slope control is repeated.
RGB*SL1TM
RGB*WT1TM
RGB*SL2TM
RGB*WT2TM
31.5mA
I2**LED
RGB*SL1STEP
IDLT**LED
IDLT**LED
RGB*SL2STEP
I1**LED
Time
0mA
RGB*STA=1
RGB*SLNUM Step
RGB*STA=0
RGB*SLNUM Step
Slope mode 2
I2**LED,RGB*SL1TM,RGB*SL2TM is a calculation.
Until it becomes RGB*STA=0, Slope control is repeated.
RGB*SL1TM
RGB*WT1TM
RGB*SL2TM
RGB*WT2TM
31.5mA
IDLT**LED
I2**LED
RGB*SL1STEP
IDLT**LED
I1**LED
RGB*SL2STEP
0mA
RGB*STA=1
RGB*SLNUM Step
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Time
RGB*SLNUM Step
26/35
RGB*STA=0
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
External pin control
31.5mA
RGB*WT2TM
RGB*WT1TM
0mA
I1**LED
RGB*STA=1
Time
I2**LED
RGB*STA=0
RGB*MEL
(register)
RGB*CNT
(External pin)
RGB*MEL=1 and RGB*CNT=H,
When RGB*MEL =0,
Lighting.
lighting
When RGB*MEL=0,
lighting
2. Slope control
The slope control that this LSI is equipped processes step time inside as follows.
It is made to have electric current by the log curve that is a simple target as to the slope.
RGB*STA
IDLT**LED
LED current
I1**LED
T2
T1
T3
T4 T5
T7
T6
(A)
(B)
T8
(C)
(A)Section : It transits at the step time of two times when it was set up with RGB*SL1STEP
(B)Section : It transits at the step time when it was set up with RGB*SL1STEP.
(C)Section : It transits at the step time of a half times when it was set up with RGB*SL1STEP.
The time of the total (RGB*SL1TM) is calculated with RGB*SL1STEP x RGB*SLNUM.
A similar movement is done on the descent (RGB*SL2TM) side as well.
The acceptance of the setup of a register concerned with LED working during the slope movement stops.
But, a RGB*STA signal interrupts even during the slope movement, and it is possible that LED is turned off.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
27/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Explanation for operate
1. Reset
There are two kinds of reset, software reset and hardware reset.
(1) Software reset
・All the registers are initialized more than making a register (SFTRST) setup "1".
・The register of software resetting is an automatic return (Auto Return 0).
(2) Hardware reset
・It shifts to hardware reset by changing RESET pin “H” → “L”.
・The condition of all the registers under hardware reset pin is returned to the initial value,
and it stops accepting all address.
・It’s possible to release from a state of hardware reset by setting register “L” → “H”.
・RESET pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
(3) Reset Sequence
・When hardware reset was done during software reset, software reset is canceled when
hardware reset is canceled. (Because the initial value of software reset is “0”)
2. Thermal shutdown
The blocks which thermal shutdown function is effective in the following.
Charge pump
LED Driver
REG1
REG2 is not shut down by thermal shutdown function, because REG2 can be used for I/O voltage.
A thermal shutdown function works in about 195 ℃.
Detection temperature has a hysteresis, and detection release temperature is about 175 ℃.
(Design reference value)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
28/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
3. DC/DC
Start up
DC/DC circuit operates when either LED turns ON.
(But, when LED connection is set to DC/DC output (VOUT) only.)
DC/DC circuit has soft start function to prevent a rush current.
VBAT and VIO sequence is as follow.
VBAT
T VBATON
T VBATOFF
VIO
T VIOON=min 0.1ms
T VIOOFF=min 1ms
RESET
T RSTB=min 0.1ms
T RST=min 0ms
EN (*)
T SOFT
VOUT
LED Current
(*) An EN signal means the following in the upper figure.
EN = “MLEDEN” or “SLEDEN” or “RGB1STA” or “RGB2STA”
(= LED The LED lighting control of a setup of connection VOUT)
But, as for VBAT < 2.2V (typ) or Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective.
Mode transition
The transition of boosts multiple transits automatically by the VBAT voltage and the voltage of the LED electric current
inflow pin.
STANDBY
1
Condition:○
1
○
ALL off
MLEDEN=”1” or SLEDEN=”1” or RGB*STA=”1”
(But, LED connection= It is limited to the LED lighting control of a setup of VOUT.)
and
VBAT>2.2V(typ) and Ta<TTSD
SOFT
CP x1.0 mode
VOUT>1.5V(typ) After it is detected, 128us(typ) wait
X1.0
CP x1.0 mode
mode up=”H”
mode down=”H”
X1.5
CP x1.5mode
mode up=”H”
mode down=”H”
X2.0
CP x2.0mode
Over voltage protection / Over current protection
DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function.
A VOUT over-voltage detection voltage is about 6.0V.(VOUT at the time of rise in a voltage)
A detection voltage has a hysteresis, and a detection release voltage is about 5.75V. (Design reference value)
And, when VOUT output short-circuits in GND, drain electric current is controlled by an over current protection function.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
29/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
4. LED Driver
LED current value setting
LED maximum current value (White LED driver and RGB LED Driver common) can be established in the resistance
value RISET that it is connected to the ISET Pin.
A setting is shown in the following.
ILEDmax = 6.4 x 0.6 [V] / RISET [kΩ] [A] (Typ)
ILEDmax = 6.3 x 0.6 [V] / RISET [kΩ] [A] (Typ)
MLED1to4, SLED1to2
All RGB LED
The maximum setting of LED current is 32mA (MLED and SLED), 31.5mA (RGB) on the D range of the internal circuit.
LED current overload protection
ISET Pin is mount with the GND short detection function. LED current value prevents excessive LED current from
flowing when ISET Pin becomes low impedance because it is shown with a formula of the former extension.
White LED Driver
The number of lighting of white LED can be set up by the register MLEDSEL and SLEDSEL (address02h).
The settlement of the number of lighting can be setup with follow.
Main LCD Back light ・・・3 Light (MLED1 ~ 3) or 4 Light (MLED1 ~ 4)
Sub LCD Back light ・・・1 Light (SLED1) or 2 Light (SLED1 ~ 2)
Connect the LED pin that isn't used to the ground.
RGB LED Driver
By register B*LEDMD and G*LEDMD (address05h), a place of connection of Green LED and Blue LED It can be set up
in VBAT or VOUT. When Vf is low, it is connected to VBAT, and it is possible that efficiency is raised.
When a VBAT connection is chosen, a feedback route to the DC/DC circuit is interrupted, and it works as a simple
constant current driver.
A write protect is given in the following address when "1" is written in the RGB*STA register.
Register
RGB1STA
RGB2STA
A protected address
06h ~ 0Fh
10h ~ 19h
VBAT connection a start in the setup Sequence
RGB*STA
Ton
(Max:6ms)
VOUT
LED current
When the connection of LED is VBAT, only a LED driver turns it on, and a DC/DC circuit is turned off.
The LED pin which isn't used is to short to the ground.
But, the setup of a register concerned with LED that isn’t used is prohibited.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
30/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
5. I/O
CPU interface control input is possible low voltage interface. Interface peripheral block diagram is as follows.
VIO voltage or interface voltage is possible the setting range of 1.65~3.3V. (But, VBAT voltage ≥ VIO voltage)
Also, I/O of with enable is being used for SCL, SDA input as a prevention of clock propagation to the inside when other LSI
shared the SCL, SDA line.
RESET=L, Output "H"
SCL
(SDA)
Level shift
EN
Logic
RESET
An equivalent circuit around the part I/O becomes p.8. By rising turn of the I/O power supply and the input level be careful
enough because an electric current route may occur through the protection Diode of the pin.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
31/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
6. About the start of REG2 (the voltage for I/O)
It must start as follows when REG2 output is used as VIO voltage.
VBAT (force)
RESET
(external pin control)
REG2EN
(external pin control)
Min:7.5ms (*2)
Min:0ms (*4)
REG2MD
(external pin control)
REG2O(output)
(=VIO voltage)
Low current
Stand By
consumption mode
Normal mode
Stand By
ド
Register access is possible (*3)
Min:2ms(*2)
(*1) This sequence is when REG2O is used as an I/O voltage.
Take the specifications of the outside power supply into consideration when the I/O voltage is applied from outside.
(*2) When the low consumption mode is unnecessary, REG2EN=REG2MD (simultaneous control) is possible.
But, at that case as well, REG2 rising time in the normal mode Take a (Min : 2ms) into consideration.
(*3) REG2 should go for a release of RESET at the time of the normal mode.
(*4) REG2EN= Though "L" and RESET= "L" don't care even about the simultaneous timing,
It is prohibition to take REG2EN= "L" in front of RESET= "L".
It must start as follows when external power supply is used as VIO voltage.
VBAT(force)
VIO(force)
RESET(external pin control)
Register control
Impossible
Possible
Impossible
VIO should go for a release of RESET after the time of the rising mode.
And it is forbid to fall VIO before RESET=”L”.
7. About the pin management of the function that isn't used and test pins
Please connect the pin that isn’t used and test pin referred to equivalent circuit (P.8).
TESTI1, TESTI2 ▪ ▪ ▪ ▪ ▪ ▪ Short to GND (Must) because input pin for test
TESTO1, TESTO2 ▪ ▪ ▪ ▪ ▪ ▪ Be OPEN because output for test
T1~T4
▪ ▪ ▪ ▪ ▪ ▪ Short to GND (Must) because input pin for test
Non-used LED Pin ▪ ▪ ▪ ▪ Short to GND
But, the setup of a register concerned with LED that isn’t used is prohibited.
REG2EN, REG2MD, RGB1CNT, RGB2CNT ▪ ▪ ▪ ▪ ▪ ▪ Pull-Down resistance is built in.
Short to GND
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
32/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
10. BD6081GU PCB pattern of the Power dissipation measuring board
1st layer(component)
3rd laye
2nd layer
4th layer
r
5th layer
6th layer
7th layer
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8th layer(solder)
33/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Notes for use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety
measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention
to the interference by common impedance of layout pattern when there are plural power supplies and ground lines.
Especially, when there are ground pattern for small signal and ground pattern for large current included the external
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low
temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric
transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin
and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal shutdown circuit (TSD)
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating
the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do
not continuously use the LSI with this circuit operating or use the LSI assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in
actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it
has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our
company person in charge.
(12) About the function description or application note or more.
The function manual and the application notebook are the design materials to design a set. So, the contents of the
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the
external elements.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
34/35
2011.04 - Rev.A
BD6081GU,BD6081GVW
Technical Note
●Ordering part number
B
D
6
Part No.
0
8
1
G
Part No.
6081
U
-
Package
E
2
Packaging and forming specification
E2: Embossed tape and reel
GU : VCSP85H3
GVW : SBGA063W060
VCSP85H3 (BD6081GU)
1PIN MARK
0.08 S
48- φ 0.30±0.05
(φ0.15)INDEX POST
A
G
F
E
D
C
B
A
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
S
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
B
1 2 3 4 5 6 7
0.45±0.1
)
P=0.5 × 6
0.05 A B
Tape
0.45± 0.1
3.90±0.1
1.0MAX
0.25± 0.1
3.90 ± 0.1
<Tape and Reel information>
1pin
P=0.5×6
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SBGA063W060
<Tape and Reel information>
6.0 ± 0.1
6.0±0.1
0.1 S
63- φ 0.33±0.05
φ 0.08 M S AB
P=0.65×7
0.65
0.08
0.9MAX
1PIN MARK
Tape
Embossed carrier tape (with dry pack)
Quantity
2000pcs
Direction
of feed
S
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
0.725±0.1
0.65
12345678
0.725± 0.1
B
P=0.65× 7
A
H
G
F
E
D
C
B
A
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
1pin
(Unit : mm)
Reel
35/35
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.04 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
R1120A