10-FY06BIA050SG-M523E18 Maximum Ratings

10-FY06BIA050SG-M523E18
preliminary datasheet
flowSOL 1 BI
600V/50A
Features
flow1 12mm housing
● Low inductive 12mm flow1 package
● Booster:
○ Dual boost topology
○ High-speed IGBT + ultrafast FWD
○ Bypass rectifier
● Inverter:
○ H-bridge topology
○ High-speed IGBT + ultrafast FWD
● Integrated DC-capacitors
● Temperature sensor
Target Applications
Schematic
● Solar Inverter:
Transformer-less solar inverter with bipolar modulation with
high efficiency/cost ratio
Primary of a transformer based solar inverter with
resonant switching
Types
● 10-FY06BIA050SG-M523E18
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
39
53
A
370
A
370
A2s
46
69
W
Tjmax
150
°C
VCE
600
V
39
52
A
150
A
83
126
W
±20
V
5
400
µs
V
175
°C
Bypass Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
19
25
A
20
A
39
47
W
150
°C
600
V
23
27
A
120
A
Input Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Input Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
40
60
W
150
°C
600
V
39
52
A
150
A
83
126
W
±20
V
5
400
µs
V
175
°C
600
V
23
31
A
120
A
40
60
W
150
°C
630
V
H-Bridge IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
Icpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
H-Bridge Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
DC link Capacitor
Max.DC voltage
Copyright by Vincotech
VMAX
Tc=25°C
2
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
3
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,16
1,11
0,90
0,76
0,01
0,01
1,21
Bypass Diode
Forward voltage
VF
35
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
1600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
Ǒ
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,53
mA
K/W
Input Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
0,0008
VCE(sat)
15
Collector-emitter cut-off
ICES
0
Gate-emitter leakage current
IGES
20
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
50
600
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
4,1
4,9
5,7
1,94
2,22
2
0,04
100
Rgoff=4 Ǒ
Rgon=4 Ǒ
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
f=1MHz
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
±15
400
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ǒ
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
23
21
13
14
185
207
5
7
0,62
0,96
0,47
0,71
ns
mWs
3140
f=1MHz
25
0
Tj=25°C
pF
200
93
25
0
Tj=25°C
310
nC
1,15
K/W
Input Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
10
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
1,25
1,67
1,56
1,95
2,44
V
K/W
Input Boost Diode
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
±15
400
50
IRRM
Reverse recovery time
Peak rate of fall of recovery current
30
Rgon=4 Ǒ
400
±15
di(rec)max
/dt
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,34
2,01
100
47
72
15
29
0,51
1,23
0,07
0,16
15400
10220
1,76
4
2,6
V
µA
A
ns
µC
mWs
A/µs
K/W
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
4,1
4,9
5,7
1,94
2,22
2
H-Bridge IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
0
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
VGE=VCE
0,0008
50
td(on)
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=4 Ǒ
Rgon=4 Ǒ
f=1MHz
±15
400
0
50
25
±15
480
0,04
100
none
50
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
V
mA
nA
Ǒ
22
22
13
14
182
204
4
7
0,61
0,89
0,42
0,67
Tj=25°C
V
ns
ns
ns
ns
mWs
mWs
3140
pF
200
pF
93
pF
310
nC
1,15
K/W
H-Bridge Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink per chip
50
Rgon=4 Ǒ
400
±15
di(rec)max
/dt
Erec
RthJH
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,33
2,01
51
75
16
29
0,49
1,24
14960
10600
0,06
0,18
Thermal grease
thickness≤50um
λ = 1 W/mK
2,6
V
A
ns
µC
A/µs
mWs
1,76
K/W
47
nF
22000
Ǒ
DC link Capacitor
C value
C
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ǒ
T=25°C
Power dissipation constant
-5
+5
T=25°C
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
Copyright by Vincotech
%
K
B
5
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
H-Bridge
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
200
IC (A)
IC (A)
200
150
150
100
100
50
50
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
VCE (V)
0
5
1
3
4
5
VCE (V)
At
tp =
Tj =
VGE from
250
ȑs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
ȑs
250
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IC (A)
IF (A)
150
40
120
30
90
20
60
10
30
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
2
4
6
8
0
10
1
2
VGE (V)
At
tp =
VCE =
250
10
4
5
VF (V)
At
tp =
ȑs
V
Copyright by Vincotech
3
6
250
ȑs
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
H-Bridge
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
4
E (mWs)
3,5
E (mWs)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
3,0
Eon High T
3
Eon Low T
3
2,5
Eoff Low T
2
2,0
Eoff High T
Eon High T
1,5
E Low T
Eoff on
High T
2
1,0
Eoff Low T
1
0,5
1
0,0
0
0
25
50
75
100
IC(A)
0
20
30
40
RG(Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
15
V
Rgon =
4
Ǒ
Rgoff =
4
Ǒ
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
15
V
IC =
50
A
FWD
Figure 7
Typical reverse recovery energy loss
FWD
Figure 8
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
as a function of gate resistor
Erec = f(RG)
0,30
0,25
Erec High T
E (mWs)
E (mWs)
10
0,25
0,20
0,20
0,15
0,15
0,10
Erec High T
0,10
Erec Low T
0,05
0,05
Erec Low T
0,00
0,00
0
25
50
75
IC(A)
0
100
20
30
40
RG(Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
15
V
Rgon =
4
Ǒ
Copyright by Vincotech
10
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
15
V
IC =
50
A
7
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
H-Bridge
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10,00
t (ms)
t (ms)
10,00
tdoff
1,00
1,00
tdoff
0,10
0,10
tdon
tr
tf
tdon
tr
0,01
tf
0,01
0,00
0,00
0
25
50
75
100
IC(A)
0
8
16
24
32
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
15
V
Rgon =
4
Ǒ
Rgoff =
4
Ǒ
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
15
V
IC =
50
A
FWD
Figure 11
Typical reverse recovery time as a
FWD
Figure 12
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
function of IGBT turn on gate resistor
trr = f(Rgon)
0,10
trr High T
t rr(ms)
t rr(ms)
0,05
trr High T
0,04
0,08
0,03
0,06
0,02
0,04
trr Low T
trr High T
trr Low T
0,02
0,01
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
40
RG(Ω)
25
25/125
400
15
4
50
75
IC(A)
0
100
16
24
32
40
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ǒ
Copyright by Vincotech
8
8
25/125
400
50
15
°C
V
A
V
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
H-Bridge
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
2,0
Qrr (mC)
Qrr (mC)
1,5
Qrr High T
1,6
1,2
1,2
0,9
Qrr High T
0,6
0,8
Qrr Low T
0,3
0,4
Qrr Low T
0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
25
50
75
0
100
IC(A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ǒ
25/125
400
15
4
FWD
Figure 15
Typical reverse recovery current as a
10
25/125
400
50
15
20
30
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
40
Rgon(Ω)
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
60
IrrM (A)
IrrM (A)
70
IRRM Low T
80
50
60
40
30
40
20
20
IRRM High T
10
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
400
15
4
50
75
IC(A)
100
0
20
30
40
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ǒ
Copyright by Vincotech
10
9
25/125
400
50
15
°C
V
A
V
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
H-Bridge
FWD
dIorec
dI
/dt/dt
T T
18000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
16000
14000
25000
dIrec/dt T
dI0/dt T
20000
12000
15000
10000
8000
10000
6000
4000
5000
2000
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
400
15
4
50
75
IC(A)
0
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ǒ
IGBT
Figure 19
IGBT transient thermal impedance
10
25/125
400
50
15
20
30
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
Rgon(Ω)
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
tp (s)
1012
10
10-5
At
D=
RthJH =
tp / T
1,15
K/W
10-4
10-3
R (C/W)
0,09
0,33
0,51
0,16
0,05
R (C/W)
0,06
0,17
0,70
0,53
0,19
0,12
10
100
tp (s)
12
1010
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
1,76
IGBT thermal model values
Tau (s)
2,0E+00
3,2E-01
9,4E-02
1,5E-02
2,3E-03
10-2
Tau (s)
4,8E+00
7,6E-01
1,6E-01
5,1E-02
1,1E-02
1,6E-03
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
H-Bridge
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
160
Ptot (W)
IC (A)
60
50
120
40
80
30
20
40
10
0
0
0
50
At
Tj =
100
150
Th (oC)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
Th (oC)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
100
200
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
100
150
Th (oC)
0
200
At
Tj =
°C
Copyright by Vincotech
11
50
150
100
150
Th (oC)
200
°C
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
H-Bridge
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
IC (A)
VGE (V)
103
16
14
120V
100uS
102
12
480V
1mS
10mS
100mS
10
DC
8
101
100
6
4
10-1
2
0
0
100
At
D=
Th =
VGE =
Tj =
101
102
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Copyright by Vincotech
50
100
VCE(V)
12
50
150
200
250
300
Qg (nC)
350
A
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST IGBT
Figure 2
Typical output characteristics
ID = f(VDS)
200
IC(A)
IC (A)
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
VCE (V)
0
5
2
3
4
5
VCE (V)
At
tp =
Tj =
VGS from
ȑs
250
25
°C
7 V to 17 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
ȑs
250
125
°C
7 V to 17 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IF (A)
ID (A)
60
50
120
40
90
30
60
20
30
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VDS =
2
250
10
4
6
8
VGS (V)
0
10
2
3
4
5
VF (V)
At
tp =
ȑs
V
Copyright by Vincotech
1
13
250
ȑs
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INPUT BOOST
BOOST IGBT
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
5
2
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
Eon High T
1,8
4
1,6
Eon High T
Eoff
E
on High
Low T
1,4
Eon Low T
3
1,2
Eoff Low T
1
Eoff Low T
2
0,8
Eoff High T
0,6
1
0,4
0,2
0
0
0
25
50
75
IC(A)
0
100
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
15
V
Rgon =
4
Ǒ
Rgoff =
4
Ǒ
10
20
30
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
15
V
ID =
50
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,25
E (mWs)
E (mWs)
0,25
0,2
0,2
0,15
0,15
0,1
0,1
Erec High T
Erec Low T
0,05
0,05
0
0
Erec Low T
0
25
50
75
IC(A)
0
100
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
15
V
Rgon =
4
Ǒ
Rgoff =
4
Ǒ
Copyright by Vincotech
10
20
30
RG(Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
15
V
ID =
50
A
14
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t (µs)
t (µs)
10
tdoff
1
1
tdoff
0,1
0,1
tdon
tdon
0,01
tf
tr
0,01
tr
tf
0,001
0,001
0
25
50
75
ID (A)
0
100
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
15
V
Rgon =
4
Ǒ
Rgoff =
4
Ǒ
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
15
V
IC =
50
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
function of IGBT turn on gate resistor
trr = f(Rgon)
0,08
trr High T
t rr(µs)
t rr(µs)
0,1
0,08
0,06
0,06
0,04
trr High T
0,04
0,02
0,02
trr Low T
trr Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
400
15
4
50
75
IC (A)
0
100
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ǒ
Copyright by Vincotech
15
10
25/125
400
50
15
20
30
RGon(Ω )
40
°C
V
A
V
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1,5
Qrr (µC)
Qrr (µC)
2
Qrr High T
1,6
1,2
1,2
0,9
0,8
0,6
Qrr High T
Qrr Low T
0,3
0,4
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
25
50
75
0
100
IC (A)
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ǒ
25/125
400
15
4
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
25/125
400
50
15
20
30
RGon(Ω)
40
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IRRM High T
100
IrrM (A)
90
IrrM (A)
Qrr Low T
80
80
70
60
IRRM Low T
60
50
40
40
30
IRRM High T
20
20
IRRM Low T
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
400
15
4
50
75
IC (A)
0
100
16
24
32
40
RG on(Ω )
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ǒ
Copyright by Vincotech
8
16
25/125
400
50
15
°C
V
A
V
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INPUT BOOST
BOOST FWD
18000
30000
dI0/dt
dIrec/dt
16000
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/µs)
direc / dt (A/µs)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
14000
12000
dI0/dt
dIrec/dt
25000
20000
10000
15000
8000
6000
10000
4000
5000
2000
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
400
15
4
50
75
IC (A)
0
100
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ǒ
BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
25/125
400
50
15
20
30
40
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
RGon(Ω)
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
tp (s)
1012
10
10-5
At
D=
RthJH =
tp / T
1,15
K/W
10-4
10-3
R (C/W)
9,49E-02
3,34E-01
5,08E-01
1,62E-01
4,63E-02
0,00E+00
R (C/W)
5,96E-02
1,66E-01
6,99E-01
5,26E-01
1,89E-01
1,23E-01
17
100
tp (s)
1012
10
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
1,76
IGBT thermal model values
Tau (s)
2,03E+00
3,24E-01
9,38E-02
1,49E-02
2,34E-03
0,00E+00
10-2
Tau (s)
4,76E+00
7,60E-01
1,60E-01
5,15E-02
1,12E-02
1,64E-03
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
160
Ptot (W)
IC (A)
60
50
120
40
80
30
20
40
10
0
0
0
At
Tj =
50
100
150
Th (oC)
200
0
At
Tj =
VGS =
ºC
175
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
Ptot (W)
IF (A)
100
Th (oC)
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
100
150
Th (oC)
200
0
At
Tj =
ºC
Copyright by Vincotech
18
50
150
100
150
Th (oC)
200
ºC
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
ID (A)
UGS (V)
103
1
16
14
120V
100uS
102
12
480V
10mS
10
1mS
100mS
8
101
6
DC
4
100
2
0
10-1
100
At
D=
Th =
VGS =
Tj =
101
102
103
0
100
150
200
250
300
350
Qg (nC)
At
ID =
single pulse
ºC
80
V
15
Tjmax
ºC
Copyright by Vincotech
50
VDS (V)
19
50
A
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
70
60
50
100
40
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,3
0,6
0,9
1,2
1,5
10-2
10-5
VF (V)
At
tp =
At
D=
RthJH =
ȑs
250
10-4
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
102
tp / T
1,528
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
tp (s)
101
Ptot (W)
IF (A)
70
60
80
50
60
40
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
Th (oC)
200
0
At
Tj =
ºC
Copyright by Vincotech
20
50
150
100
150
Th (oC)
200
ºC
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
INP. BOOST INVERSE DIODE
INP. BOOST INVERSE DIODE
Figure 1
Typical thyristor forward current as
a function of forward voltage
IF= f(VF)
INP. BOOST INVERSE DIODE
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
40
30
100
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,5
1
1,5
2
2,5
10-2
3
10-5
VF (V)
At
tp =
At
D=
RthJH =
ȑs
250
INP. BOOST INVERSE DIODE
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
100
tp (s)
1012
10
tp / T
2,44
K/W
INP. BOOST INVERSE DIODE
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
75
10-1
25
60
20
45
15
30
10
15
5
0
0
0
50
100
150
200
0
Th (oC)
At
Tj =
175
At
Tj =
ºC
Copyright by Vincotech
21
50
175
100
150
Th (oC)
200
ºC
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
75
100
125
T (°C)
Copyright by Vincotech
22
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Switching Definitions H-Bridge IGBT
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
H-Bridge IGBT
Figure 1
H-Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
150
%
%
IC
tdoff
200
VCE
100
VGE 90%
VCE 90%
150
IC
VGE
50
100
VCE
tEoff
VGE
tdon
IC 1%
50
0
VCE 3%
VGE 10%
IC 10%
0
-50
-0,1
0
0,1
0,2
0,3
0,4
-50
3,95
0,5
4
tEon
4,05
4,1
4,15
4,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
400
50
0,33
0,39
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
ȑs
ȑs
H-Bridge IGBT
Figure 3
4,25
time(us)
time (us)
0
15
400
50
0,03
0,19
V
V
V
A
ȑs
ȑs
H-Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
%
IC
VCE
IC
200
100
IC 90%
150
75
IC 60%
100
50
VCE
IC 90%
IC 40%
tr
50
25
IC 10%
0
IC 10%
0
tf
-25
0,26
VC (100%) =
IC (100%) =
tf =
0,28
0,3
400
50
0,01
Copyright by Vincotech
0,32
0,34
time (us)
-50
3,95
0,36
4
4,05
4,1
4,15
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
ȑs
23
400
50
0,02
V
A
ȑs
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Switching Definitions H-Bridge IGBT
H-Bridge IGBT
Figure 5
H-Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
180
120
%
IC 1%
100
%
Pon
Eoff
140
80
Eon
100
60
40
60
Poff
20
VGE 90%
20
VGE 10%
VCE 3%
0
tEon
tEoff
-20
-20
-0,1
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,3
19,99
0,80
0,39
time (us)
3,9
0,5
4
4,2
4,3
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
ȑs
H-Bridge IGBT
Figure 7
Gate voltage vs Gate charge (measured)
4,1
19,99
1,20
0,19
kW
mJ
ȑs
H-Bridge FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
Id
%
80
15
trr
40
10
Vd
fitted
0
IRRM 10%
5
-40
0
-80
IRRM 90%
IRRM 100%
-120
-5
-50
0
50
100
150
200
250
4
300
4,04
4,08
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
15
400
50
270,72
Copyright by Vincotech
4,12
4,16
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
400
50
-56
0,03
V
A
A
ȑs
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Switching Definitions H-Bridge IGBT
H-Bridge FWD
Figure 9
H-Bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Id
Erec
Qrr
100
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
4
4,05
4,1
4,15
4
4,2
4,05
4,1
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
50
1,16
0,10
Copyright by Vincotech
4,15
4,2
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
ȑC
ȑs
25
19,99
0,13
0,10
kW
mJ
ȑs
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FY06BIA050SG-M523E18
in DataMatrix as
M523E18
in packaging barcode as
M523E18
Outline
Pinout
Pins 3,4,7,14 are not connected.
Pins 27 and 30 have to be connected together
Pins 31 and 34 have to be connected together
Copyright by Vincotech
26
Revision: 1
10-FY06BIA050SG-M523E18
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
27
Revision: 1