ACA2604 - Anadigics

ACA2604
1 GHz FTTx RF Amplifier
Data Sheet - Rev 2.2
FEATURES
• 50 - 1000 MHz Operating Frequency
• High Linearity: 65 dBc CTB/CSO (79 Chan.)
• Low Equivalent Input Noise: 4.5 pA/rtHz
• 22 dB Gain Adjust
AC
A
• 400  Differential Input Impedance: No
Transformer Required for Interface to Photodiode
26
• Single +5 V Supply
04
• 5 mm x 5 mm x 1 mm Surface Mount Package
• RoHS Compliant Package
• Pin Compatible with the ACA2601
APPLICATIONS
• FTTH RF Amplifier Used in Conjunction With
Triplexer in Fiber-Coax Line Terminals
S29 Package
28 Pin QFN
5 mm x 5 mm x 1 mm
• Post photodiode RF Amplifier in FTTB video
receivers for Multiple Dwelling Units (MDUs).
PRODUCT DESCRIPTION
The ANADIGICS ACA2604 amplifier is intended to
be used in fiber-to-coax equipment, such as ONUs
for FTTH systems incorporating RF overlay, or FTTB
optical receivers for MDUs. The device is driven by,
and amplifies the output of, the video downstream
path photodiode.
The high-impedance input of the ACA2604 eliminates
the need for a costly transformer usually needed to
interface to the photodiode, and a low equivalent input
noise level offers excellent sensitivity. The device
Supply
Matching
Circuit
LNA
provides sufficient linearity to maintain low CTB and
CSO levels in full-bandwidth (132 channel) systems,
even across a wide gain adjustment range.
The ACA2604 is manufactured using ANADIGICS’s
proven MESFET technology that offers state-of-theart reliability, temperature stability and ruggedness.
The device operates from a single +5 V supply and
is offered in a 5 mm x 5 mm x 1 mm surface mount
package.
Attenuator
Control
Voltage
Controlled
Attenuator
ACA2604
Figure 1: Application Block Diagram
08/2008
RF Output
Output
Amplifier
1:1
Transmission
Line Balun
ACA2604
Figure 2: Pinout (X-ray Top View)
Table 1: Pin Description
2
PIN
NAME
DESCRIPTION
PIN
NAME
DESCRIPTION
1
NC
No Connection
28
VCC_IN1
Input Stage Supply 1
2
RFIN1
RF Input 1
27
NC
No Connection
3
NC
No Connection
26
VAGC
AGC Control Input
4
GND
Ground
25
GND
Ground
5
NC
No Connection
24
VCC_AGC
AGC Supply
6
RFIN2
RF Input 2
23
NC
No Connection
7
NC
No Connection
22
GND
Ground
8
VCC_IN2
Input Stage Supply 2
21
VCC_OUT1
Output Stage Supply 1
9
GND
Ground
20
RFOUT1
RF Output 1
10
IADJ_IN
Input Stage Current Adjust
19
GND
Ground
11
GND
Ground
18
GND
Ground
12
GND
Ground
17
GND
Ground
13
GND
Ground
16
RFOUT2
RF Output 2
14
GND
Ground
15
VCC_OUT2
Output Stage Supply 2
Data Sheet - Rev 2.2
08/2010
ACA2604
ELECTRICAL CHARACTERISTICS
Table 2: Absolute Minimum and Maximum Ratings
PARAMETER
MIN
MAX
UNIT
Supply Voltage (VCC)
0
+8
V
AGC Voltage (VAGC)
0
+5
V
RF Input Power (PIN)
-
+25
dBmV/ch
Storage Temperature
-65
+150
°C
Stresses in excess of the absolute ratings may cause permanent damage.
Functional operation is not implied under these conditions. Exposure
to absolute ratings for extended periods of time may adversely affect
reliability.
Table 3: Operating Ranges
PARAMETER
MIN
TYP
MAX
UNIT
50
-
1000
MHz
Supply Voltage (VCC)
-
+5
-
V
RF Output Power (POUT)
-
+18
-
dBmV/ch
Case Temperature (TC)
-40
-
+110
°C
Operating Frequency (f)
COMMENTS
The device may be operated safely over these conditions; however, parametric performance is guaranteed only
over the conditions defined in the electrical specifications.
Data Sheet - Rev 2.2
08/2010
3
ACA2604
Table 4: Electrical Specifications - RFIN and RFOUT Characterizations (see Figure 3)
( VCC = +5 V, 75  system, TA = +25 °C)
COMMENTS
PARAMETER
MIN
TYP
MAX
UNIT
RF Gain over Temperature (1)
22.5
24.0
-
dB
at 547.25 MHz
20
22
-
dB
55.25 to 865.25 MHz
+0.5
-
+3.0
V
Max. gain at +3.0 V
-
-65
-60
dBc
-
-65
-
dBc
+47
-
-
dBm
-
400
-

differential
16
15
18
-
-
dB
55.25 to 865.25 MHz
Current Consumption over
Temperature (1)
-
250
295
mA
Thermal Resistance
-
18
25
8C/W
Gain Adjustment Range
Gain Adjust Control Voltage
CTB
(2)
CSO (2)
OIP2
(3)
Input Impedance
Output Return Loss over Temperature
-30 oC to +85 oC
+85 oC to +100 oC
Table 5: Electrical Specifications - Optical in and RFOUT Characterizations
( VCC = +5 V, optical input, 75  output, TA = +25 °C)
PARAMETER
MIN
TYP
MAX
UNIT
Best linear filt - Tilt
VAGC = +3.0 V
VAGC = +0.5 V
0.5
2.5
1.5
3.5
2.0
4.5
dB
55.25 to 865.25 MHz
Best linear fit - Tilt over Temperature(1)
VAGC = +3.0 V
VAGC = +0.5 V
-
4.5
5.8
-
dB
55.25 to 865.25 MHz
Best linear fit - Gain Flatness
VAGC = +3.0 V
VAGC = +0.5 V
-
0.8
0.8
2.0
2.0
dB
55.25 to 865.25 MHz
(peak to peak deviation)
Best linear fit - Gain Flatness over
Temperature(1)
VAGC = +3.0 V
VAGC = +0.5 V
-
1.0
1.0
-
dB
Equivalent Input Noise (EIN)
-
4.5
5.5
pA/rt Hz
55.25 to 865.25 MHz
Equivalent Input Noise over Temperature(1)
-
5.0
-
pA/rtHz
55.25 to 865.25 MHz
COMMENTS
55.25 to 865.25 MHz
(peak to peak deviation)
Notes:
(1) Temperature range of -30 to +100 8C referenced to the package slug.
(2) 79 analog channels from 55.25 to 547.25 MHz, +21 dBmV output power, with 14 dB gain reduction
by AGC (i.e. mid-range)
(3) Two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction
by AGC (i.e. mid- range)
4
Data Sheet - Rev 2.2
08/2010
ACA2604
Figure 3: Test Circuit
Data Sheet - Rev 2.2
08/2010
5
ACA2604
PERFORMANCE DATA
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure
vs.Frequency
Frequency
Figure4:
4: Z21
Z21 vs.
over Vover
AGC VAGC
o CC = +5V )
+25C,V
(TA( T=A =+25
C, VCC = + 5 V)
30
Vagc=0.0V
25
Vagc=0.2V
Vagc=0.4V
Vagc=0.6V
Z21 ( Ampere/Watt )
20
Vagc=0.8V
Vagc=1.0V
Vagc=1.2V
Vagc=1.4V
15
Vagc=1.6V
Vagc=1.8V
Vagc=2.0V
Vagc=2.2V
10
Vagc=2.4V
Vagc=2.6V
Vagc=2.8V
5
Vagc=3.0V
0
0
100
200
300
400
500
600
700
800
900
1000
Frequency ( MHz )
Figure
5: 5:
Output
Loss
vs. Frequency
over VAGC
Figure
Output Return
Return Loss
vs. Frequency
over VAGC
+25C,oC,
VCCV
= CC
+5V)= + 5 V)
(TA(T=A =+25
-5
-10
Vagc=0.0V
Vagc=0.2V
Vagc=0.4V
-15
Vagc=0.6V
Vagc=0.8V
S22 (dB)
Vagc=1.0V
-20
Vagc=1.2V
Vagc=1.4V
Vagc=1.6V
-25
Vagc=1.8V
Vagc=2.0V
Vagc=2.2V
Vagc=2.4V
-30
Vagc=2.6V
Vagc=2.8V
Vagc=3.0V
-35
-40
0
100
200
300
400
500
600
Frequency ( MHz )
6
Data Sheet - Rev 2.2
08/2010
700
800
900
1000
ACA2604
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure
6: Gain
Flatness
to Best
Fit Line
Over Temperature
Figure
6: Gain
Flatness
To Best
Fit Line
vs. Frequency
over Temperature
VAGC
= +3.0V
(VCC =( V
+CC
5 =V,+5V,
VAGC
= +3.0
V) )
2
+85C
1.5
+25C
-40C
Gain Flaness (dB)
1
0.5
0
-0.5
-1
-1.5
-2
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Table 6: Gain Flatness to Best Fit Line
(VAGC = +3.0 V)
Temp (oC)
Tilt (dB)
Flatness (dB)
85
3.7
1.3
25
4.5
1.0
-40
5.1
0.9
The best fit line is calculated
using the least mean squares
method:
y = m⋅ x +b
m=
∑ (x ⋅ y )−
∑x
b=
Data Sheet - Rev 2.2
08/2010
2
−
∑ x⋅∑ y
n
(∑ x )2
n
∑ y − m⋅ ∑x
n
n
7
ACA2604
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure
7: Gain
Flatness
To Best
Fit Line
vs. Frequency
over Temperature
Figure
7: Gain
Flatness
to Best
Fit Line
Over Temperature
VAGC
= +1.6V)
(VCC =(V+CC5=V,+5V,
VAGC
= +1.6
V)
2
+85C
1.5
+25C
-40C
Gain Flatness (dB)
1
0.5
0
-0.5
-1
-1.5
-2
0
100
200
300
400
500
600
700
Frequency (MHz)
Table 7: Gain Flatness to Best Fit Line
(VAGC = +1.6 V)
8
Temp (oC)
Tilt (dB)
Flatness (dB)
85
4.1
0.5
25
4.5
0.7
-40
5.1
0.8
Data Sheet - Rev 2.2
08/2010
800
900
1000
ACA2604
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure 8: Figure
Gain Flatness
to Best
Line
vs. Frequency
8: Gain Flatness
ToFit
Best
Fit Line
vs. FrequencyOver
over Temperature
Temperature
VAGC==0+0.0V)
(VCC = (V
+CC
5 =V,+5V,
VAGC
V)
2
+85C
1.5
+25C
-40C
Gain Flaness (dB)
1
0.5
`
0
-0.5
-1
-1.5
-2
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Table 8: Gain Flatness to Best Fit Line
(VAGC = 0 V)
Temp (oC)
Tilt (dB)
Flatness (dB)
85
5.2
1.2
25
5.8
1.0
-40
6.3
0.8
Data Sheet - Rev 2.2
08/2010
9
ACA2604
Performance data on this page measured using test circuit shown in Figure 3.
Figure 9: CTB vs. Frequency
(79 Analog channels (55.25
to 9:
547.25
MHz),
+21 dBmV output power,
Figure
CTB vs
Frequency
79 Analog channels
(55.25 14
to 547.25MHz),
+21dBmV
output power,
14dB gain reduction by AGC
with
dB gain
reduction
by with
AGC)
-60
-61
-62
CTB (dBc)
-63
-64
-65
-66
-67
-68
-69
-70
0
100
200
300
400
500
600
Frequency (MHz)
Figure 10: Worst Case CSO vs. Frequency
(79 Analog channels
(55.25
to 547.25
MHz),
dBmV output power,
Figure
10: Worst
Case CSO
vs +21
Frequency
79 Analog channels (55.25
547.25MHz),
+21dBmV
output power,
14dB gain reduction by AGC
withto14
dB gain
reduction
bywith
AGC)
-60
-62
-64
-66
-68
wst CSO (dBc)
-70
-72
-74
-76
-78
-80
-82
-84
-86
-88
-90
0
100
200
300
Frequency (MHz)
10
Data Sheet - Rev 2.2
08/2010
400
500
600
ACA2604
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure
11: CTB
Frequency
vs. POPTvs. POPT
Figure
11: vs.
CTB
vs. Frequency
79 Analog channels
(55.25
to 547.25
MH),
+17 dBmV
at 109.25
MHz, 3.5%
79 Analog
channels
(55.25 to
547.25MH),
+17dBmV
@ 109.25MHz,
3.5% OMI/ch
OMI/ch
-60
Popt = -7dBm
Popt = 0dBm
Popt = +2dBm
CTB (dBc)
-65
-70
-75
-80
0
100
200
300
400
500
600
Frequency (MHz)
Figure
12: CSO
Frequency
vs. POPTvs. Popt
Figure
12: vs.
CSO
vs. Frequency
79 Analog
channels
(55.25 to
547.25MH),
+17dBmV
@ 109.25MHz,
3.5% OMI/ch)
OMI/ch
(79 Analog channels
(55.25
to 547.25
MH),
+17 dBmV
at 109.25
MHz, 3.5%
-60.00
Popt = -7dBm
Popt = 0dBm
Popt = +2dBm
CSO (dBc)
-65.00
-70.00
-75.00
-80.00
0
100
200
300
400
500
600
Frequency (MHz)
Data Sheet - Rev 2.2
08/2010
11
ACA2604
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure
Equivalent
Input
Noise
vs. Frequency
Figure13:
13: Equivalent
Input
Noise
vs. Frequency
= +25
C,
VAGC
= +3V)
(TA(T
= A25
8C, oV
CCVcc
= +5=V,+5V,
VAGC
= +3.0
V)
6
5
EIN (pA/rtHz)
4
3
2
1
0
0
100
200
300
400
500
600
Frequency (MHz)
12
Data Sheet - Rev 2.2
08/2010
700
800
900
1000
ACA2604
APPLICATION INFORMATION
Figure 14: Application Circuit with Input Photodiode
Data Sheet - Rev 2.2
08/2010
13
ACA2604
Table 9: Evaluation Board Parts List for 50 - 870 MHz Applications
REF
DESCRIPTION
C18
0.6 pF; 0402 Cap
C1
VENDOR
VENDOR PART NO.
1
Murata Electronics
GRM1555C1HR60BZ01
1 pF; 0603 Cap
1
Murata Electronics
GRM1885C1H1R0CZ01D
C9, C10
270 pF; 0603 Cap
2
Murata Electronics
GRM155R7H271KA01D
C2, C3
470 pF; 0603 Cap
2
Murata Electronics
GRM155R71H471KA01D
C5
1000 pF; 0603 Cap
1
Murata Electronics
GRM1885C1H102JA01D
C6, C7, C12, C13,
C15, C16
0.01 F; 0603 Cap
6
Murata Electronics
GRM1885C1HR50CZ01D
C4, C17
0.1 F; 0603 Cap
1
Murata Electronics
GRM188F51C104ZA01D
C14
1 F; 0603 Cap
1
Murata Electronics
GRM188R61C105KA93D
C8
47 F; Elect. Cap 25 V
1
Panasonic-ECG
ECA-1EM470B
L1, L2, L3, L4
30 nH; 0603 Ind
4
Coilcraft
0603HP-30NXJL
L5, L6, L7, L8
330 nH; 1008 Ind
4
Coilcraft
1008CS-331XJLB
R1, R2
1 k; 0603 Res
2
Panasonic-ECG
ERJ-2GEJ102X
R3
20  0603 Res
1
Panasonic-ECG
ERT-3GEYJ200W
R4
0 ; 0603 Res
1
Panasonic-ECG
ERJ-3GE40R00V
T1
1:1 Balun Transformer
1
M/A-COM
MABA-009921-CT1A40
D1
Analog Photodiode
1
EGTRAN
PD070-HL1-300 or
PD070-HL2-300
Connector
75  N Male Panel
Mount
1
Pasternack
Enterprises
PE4504
L10
7.5 nH; 0402 Ind
1
Murata
LQG154S7N5J02D
FB1, FB2
EMI Ferrite Chip
2
Murata Electronics
BLM15HD182SN
FB3
EMI Ferrite Chip
1
Murata
BLM15HG102SN1D
14
QTY
Data Sheet - Rev 2.2
08/2010
ACA2604
Table 10: Evaluation Board Parts List for 50 - 1000 MHz Applications
REF
DESCRIPTION
C18
0.6 pF; 0402 Cap
C1
QTY
VENDOR
VENDOR PART NO.
1
Murata Electronics
GRM1555C1HR60BZ01
1.1 pF; 0603 Cap
1
Murata Electronics
GRM1885C1H1R01CZ01D
C9, C10
270 pF; 0603 Cap
2
Murata Electronics
GRM155R7H271KA01D
C2, C3
470 pF; 0603 Cap
2
Murata Electronics
GRM155R71H471KA01D
C5
1000 pF; 0603 Cap
1
Murata Electronics
GRM1885C1H102JA01D
C6, C7, C12, C13,
C15, C16
0.01 F; 0603 Cap
6
Murata Electronics
GRM1885C1HR50CZ01D
C4, C17
0.1 F; 0603 Cap
1
Murata Electronics
GRM188F51C104ZA01D
C14
1 F; 0603 Cap
1
Murata Electronics
GRM188R61C105KA93D
C8
47 F; Elect. Cap 25 V
1
Panasonic-ECG
ECA-1EM470B
L1, L2
18 nH; 0603 Ind
2
Coilcraft
0603HP-1BNXJLU
L3, L4
22 nH; 0603 Ind
2
Coilcraft
0603HP-22NXJLU
L5, L6
120 nH; 1008 Ind
2
Coilcraft
0603LS-121XJLB
L7, L8
180 nH; 0603 Ind
2
Coilcraft
0603LS-121XJLB
R1, R2
1 k; 0603 Res
2
Panasonic-ECG
ERJ-2GEJ102X
R3
20  0603 Res
1
Panasonic-ECG
ERT-3GEYJ200W
R4
0 ; 0603 Res
1
Panasonic-ECG
ERJ-3GEY0R00V
T1
1:1 Balun Transformer
1
M/A-COM
MABA-009921-CT1A40
D1
Analog Photodiode
1
EGTRAN
PD070-HL1-300 or
PD070-HL2-300
Connector
75  N Male Panel
Mount
1
Pasternack
Enterprises
PE4504
L10
7.5 nH; 0402 Ind
1
Murata
LQG154S7N5J02D
FB1, FB2
EMI Ferrite Chip
2
Murata Electronics
BLM15HD182SN
FB3
EMI Ferrite Chip
1
Murata
BLM15HG102SN1D
Data Sheet - Rev 2.2
08/2010
15
ACA2604
PACKAGE OUTLINE
Figure 15: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN
16
Data Sheet - Rev 2.2
08/2010
ACA2604
Figure 16: PCB Metal and Solder Mask Details
Data Sheet - Rev 2.2
08/2010
17
ACA2604
ORDERING INFORMATION
ORDER NUMBER
ACA2604RS29P8
TEMPERATURE
RANGE
PACKAGE
DESCRIPTION
COMPONENT PACKAGING
-40 °C to +110 °C
RoHS-Compliant
28 Pin QFN
5 mm x 5 mm x 1 mm
Tape and Reel, 2500 pieces per Reel
ANADIGICS, Inc.
141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A.
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
E-mail: [email protected]
IMPORTANT NOTICE
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice.
The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to
change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are assumed
to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers
to verify that the information they are using is current before placing orders.
warning
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product
in any such application without written consent is prohibited.
18
Data Sheet - Rev 2.2
08/2010