RENESAS HA1630D05

HA1630D04/05/06 Series
Ultra-Small Low Voltage Operation CMOS Dual Operational
Amplifier
REJ03D0801-0200
Rev.2.00
Feb 07, 2007
Description
The HA1630D04/05/06 are high slew rate dual CMOS Operational Amplifiers realizing low voltage operation, low
input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can
achieve full swing output voltage capability extending to either supply. Available in an ultra-small TSSOP-8 and
MMPAK-8 package that occupy more small area against the SOP-8.
Features
• Low power and single supply operation
• Low input offset voltage
• Low supply current (per channel)
• High slew rate
• Maximum output voltage
• Low input bias current
VDD = 1.8 to 5.5 V
VIO = 4.0 mV Max
IDD = 200 μA Typ (HA1630D04)
IDD = 400 μA Typ (HA1630D05)
IDD = 800 μA Typ (HA1630D06)
SR = 2 V/μs Typ (HA1630D04)
SR = 4 V/μs Typ (HA1630D05)
SR = 8 V/μs Typ (HA1630D06)
VOH = 2.9 V Min (at VDD = 3.0 V)
IIB = 1 pA Typ
Ordering Information
Type No.
HA1630D04T
HA1630D05T
HA1630D06T
HA1630D04MM
HA1630D05MM
HA1630D06MM
Rev.2.00 Feb 07, 2007 page 1 of 23
Package Name
Package Code
TTP-8DA
PTSP0008JC-B
MMPAK-8
PLSP0008JC-A
HA1630D04/05/06 Series
Pin Arrangement
VOUT1 1
VIN1(–) 2
VIN1(+) 3
VSS 4
8 VDD
7 VOUT2
− +
+ −
6 VIN2(–)
5 VIN2(+)
Equivalent Circuit (per one channel)
VDD
VIN(–)
VIN(+)
VSS
Rev.2.00 Feb 07, 2007 page 2 of 23
VOUT
HA1630D04/05/06 Series
Absolute Maximum Ratings
(Ta = 25°C)
Items
Symbol
Ratings
Unit
Note
Supply voltage
VDD
7
V
Differential input voltage
VIN(diff)
–VDD to +VDD
V
Input voltage
VIN
–0.3 to +VDD
V
*1
Power dissipation
PT
240/145
mW
TTP-8DA/MMPAK-8 *2
Operating temp. Range
Topr
–40 to +85
°C
Storage temp. Range
Tstg
–55 to +125
°C
Notes: 1. Do not apply Input Voltage exceeding VDD or 7 V.
2. The value of PTSP0008JC-B (TTP-8DAV) / PLSP0008JC-A (MMPAK-8). It computes from heat resistance
θja = 520°C/W, and 690°C/W each other.
Electrical Characteristics
(VDD = 3.0 V, Ta = 25°C)
Items
Input offset voltage
Input offset current
Input bias current
Symbol
VIO
IIO
IIB
Output high voltage
Output source current
VOH
IO SOURCE
Min
—
—
—
Typ
—
(1.0)
(1.0)
Max
4.0
—
—
Unit
mV
pA
pA
2.9
—
—
V
100
200
—
μA
200
400
—
400
800
—
Output low voltage
VOL
—
—
0.1
V
Output sink current
IO SINK
—
(5.0)
—
mA
—
(6.0)
—
—
(6.5)
—
–0.05 to 2.1
—
—
V
VCM
Common mode input voltage
range
0 to 1.9
—
—
Slew rate
SR
—
(2.0)
—
V/μs
—
(4.0)
—
—
(8.0)
—
Voltage gain
AV
60
90
—
dB
Gain bandwidth product
BW
—
(2100)
—
kHz
—
(3300)
—
—
(3600)
—
Power supply rejection ratio
PSRR
50
70
—
dB
Common mode rejection ratio CMRR
50
70
—
dB
Supply current
IDD
—
400
800
μA
—
800
1600
—
1600
3400
Notes: 1. In the case of continuous current flow, use a sink current of under 4 mA.
2. ( ) : Design specification
Rev.2.00 Feb 07, 2007 page 3 of 23
Test Condition
Vin = 1.5 V
Vin = 1.5 V
Vin = 1.5 V
RL = 100 kΩ
VOH = 2.5 V (HA1630D04)
VOH = 2.5 V (HA1630D05)
VOH = 2.5 V (HA1630D06)
RL = 100 kΩ
VOL = 0.5 V (HA1630D04)
VOL = 0.5 V (HA1630D05)
VOL = 0.5 V (HA1630D06)
(HA1630D04, HA1630D05)
(HA1630D06)
CL = 20 pF (HA1630D04)
CL = 20 pF (HA1630D05)
CL = 20 pF (HA1630D06)
CL = 20 pF (HA1630D04)
CL = 20 pF (HA1630D05)
CL = 20 pF (HA1630D06)
RL = ∞ (HA1630D04)
RL = ∞ (HA1630D05)
RL = ∞ (HA1630D06)
HA1630D04/05/06 Series
Table of Graphs
Electrical Characteristics
Supply current
IDD
vs Supply voltage
vs Ambient temperature
Output high voltage
VOH
vs Output source current
vs Supply voltage
Output source current
IO SOURCE
vs Ambient temperature
Output low voltage
VOL
vs Output sink current
Output sink current
IO SINK
vs Ambient temperature
Input offset voltage
VIO
Distribution
vs Supply voltage
vs Ambient temperature
vs Ambient temperature
VCM
Common mode input
voltage range
HA1630D04
Figure
HA1630D05
Figure
HA1630D06
Figure
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
Test
Circuit
2
4
6
5
6
1
7
Power supply rejection
ratio
PSRR
vs Frequency
1-12
2-12
3-12
1
Common mode rejection
ratio
CMRR
vs Frequency
1-13
2-13
3-13
7
Voltage gain & phase
angle
Input bias current
AV
vs Frequency
1-14
2-14
3-14
10
IIB
SRr
SRf
1-15
1-16
1-17
1-18
2-15
2-16
2-17
2-18
3-15
3-16
3-17
3-18
3
Slew Rate (rising)
Slew Rate (falling)
Slew rate
vs Ambient temperature
vs Input voltage
vs Ambient temperature
vs Ambient temperature
Large signal transient
response
1-19
2-19
3-19
Small signal transient
response
vs. Output voltage p-p
1-20
2-20
3-20
1-21
2-21
3-21
vs. Output voltage p-p
vs Frequency
1-22
1-23
2-22
2-23
3-22
3-23
vs Frequency
vs Frequency
1-24
1-25
2-24
2-25
3-24
3-25
Total harmonic distortion +
noise
(0 dB)
(40 dB)
Maximum p-p output
voltage
Voltage noise density
Channel separation
Rev.2.00 Feb 07, 2007 page 4 of 23
9
8
HA1630D04/05/06 Series
Main Characteristics (HA1630D04)
Figure 1-1. HA1630D04
Supply Current vs. Supply Voltage
400
Ta = 25°C
Supply Current IDD (μA)
Supply Current IDD (μA)
400
Figure 1-2. HA1630D04
Supply Current vs. Ambient Temperature
300
200
100
0
1
2
3
4
5
Supply Voltage VDD (V)
VDD = 5.5 V
VDD = 3.0 V
300
VDD = 1.8 V
200
100
0
−40
6
VDD = 5.5 V
5
4
3
VDD = 3.0 V
2
VDD = 1.8 V
1
6
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
5
4
3
2
1
0
0
100
200
300
Output Source Current IOSOURCE (μA)
Figure 1-5. HA1630D04
Output Source Current vs. Ambient Temperature
400
Output Source Current
IOSOURCE (μA)
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Ta = 25°C
100
Figure 1-4. HA1630D04
Output High Voltage vs. Supply Voltage
Figure 1-3. HA1630D04
Output High Voltage vs. Output Source Current
6
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
VDD = 5.5 V
300
VDD = 3.0 V
VDD = 1.8 V
200
100
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.2.00 Feb 07, 2007 page 5 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630D04/05/06 Series
Figure 1-7. HA1630D04
Output Sink Current vs. Ambient Temperature
10
1.5
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 1-6. HA1630D04
Output Low Voltage vs. Output Sink Current
VDD = 5.5 V
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
0
0
2
4
Output Sink Current IOSINK (mA)
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
8
6
4
2
0
−40
6
Figure 1-8. HA1630D04
Input Offset Voltage Distribution
Input Offset Voltage VIO (mV)
Percentage (%)
Ta = 25°C
VDD = 3.0 V
30
20
10
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
3
VDD = 1.8 V, VIN = 0.9 V
VDD = 3.0 V, VIN = 1.5 V
0
−1
VDD = 5.5 V, VIN = 2.75 V
−2
−3
−4
−40
6
3.0
4
1
3
4
5
Supply Voltage VDD (V)
Figure 1-11. HA1630D04
Common Mode Input Voltage vs.
Ambient Temperature
Figure 1-10. HA1630D04
Input Offset Voltage vs. Ambient Temperature
2
100
Figure 1-9. HA1630D04
Input Offset Voltage vs. Supply Voltage
40
0
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.2.00 Feb 07, 2007 page 6 of 23
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630D04/05/06 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 1-12. HA1630D04
Power Supply Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 1-13. HA1630D04
Common Mode Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Figure 1-14. HA1630D04
Open Loop Voltage Gain and Phase Angle vs. Frequency
Open Loop Voltage Gain
AVOL (dB)
Ta = 25°C
VDD = 3.0 V 180
RL = 1 MΩ
CL = 20 pF 135
Open Loop Voltage Gain
80
60
90
40
Phase Angle
20
45
0
Phase Margin: 57 deg
−45
−20
−40
10
0
100
1k
10k
Frequency f (Hz)
Rev.2.00 Feb 07, 2007 page 7 of 23
100k
1M
−90
10M
Phase Angle (deg)
225
100
HA1630D04/05/06 Series
200
VDD = 3.0 V
100
0
−100
−200
0
Figure 1-16. HA1630D04
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 1-15. HA1630D04
Input Bias Current vs. Ambient Temperature
25
50
75
Ambient Temperature Ta (°C)
200
100
0
−100
−200
100
Figure 1-17. HA1630D04
Slew Rate (rising) vs. Ambient Temperature
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
2
1
0
−40
0.5
1.0
1.5
2.0
Input Voltage VIN (V)
2.5
3.0
5
Slew Rate SRf (V/μs)
Slew Rate SRr (V/μs)
3
0
Figure 1-18. HA1630D04
Slew Rate (falling) vs. Ambient Temperature
5
4
Ta = 25°C
VDD = 3.0 V
−20
0
20
40
60
80
100
4
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
3
2
1
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 1-19. HA1630D04
Large Signal Transient Response
Figure 1-20. HA1630D04
Small Signal Transient Response
2.0 V
Vin = 2.1 Vp-p, 250 kHz
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
1.6 V
Vin = 0.2 Vp-p, 250 kHz
0V
1.4 V
2.0 V
1.6 V
0V
1.4 V
Rev.2.00 Feb 07, 2007 page 8 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
HA1630D04/05/06 Series
Figure 1-21. HA1630D04
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 1-22. HA1630D04
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01
0.001
1
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01 V = 3.0 V
DD
Ta = 25°C
Gain = 40 dB
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
0
0.5
Output Voltage Vout p-p (V)
1.0
1.5
2.0
2.5
3.0
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 1-23. HA1630D04
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
3.0
2.5
Gain = 40 dB,
VIN = 0.03 Vp-p
Gain = 20 dB,
VIN = 0.3 Vp-p
2.0
Gain = 0 dB,
VIN = 2.0 Vp-p
1.5
1.0
0.5
0
1k
10k
100k
Frequency f (Hz)
Voltage Noise Density
(nVms/√Hz)
200
VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
RS = 1 kΩ
160
120
80
40
0
100
1k
Frequency f (Hz)
Rev.2.00 Feb 07, 2007 page 9 of 23
10M
Figure 1-25. HA1630D04
Channel Separation vs. Frequency
10k
Channel Separation C.S (dB)
Figure 1-24. HA1630D04
Voltage Noise Density vs. Frequency
1M
140
120
CH2→CH1
100
CH1→CH2
80
60
40 VDD = 3.0 V
Ta = 25°C
20 RL = 1 MΩ
CL = 20 pF
0
100
1k
10k
100k
Frequency f (Hz)
1M
10M
HA1630D04/05/06 Series
Main Characteristics (HA1630D05)
Figure 2-1. HA1630D05
Supply Current vs. Supply Voltage
800
Ta = 25°C
Supply Current IDD (μA)
Supply Current IDD (μA)
800
Figure 2-2. HA1630D05
Supply Current vs. Ambient Temperature
600
400
200
0
1
2
3
4
5
Supply Voltage VDD (V)
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
600
400
200
0
−40
6
6
Ta = 25°C
VDD = 5.5 V
5
4
3
VDD = 3.0 V
2
VDD = 1.8 V
1
0
6
Ta = 25°C
VDD = 3.0 V
5
RL = 100 kΩ
RL = 20 kΩ
4
3
2
1
0
100
200
300
400
500
Output Source Current IOSOURCE (μA)
Figure 2-5. HA1630D05
Output Source Current vs. Ambient Temperature
800
Output Source Current
IOSOURCE (μA)
100
Figure 2-4. HA1630D05
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 2-3. HA1630D05
Output High Voltage vs. Output Source Current
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
VDD = 5.5 V
600
VDD = 3.0 V
VDD = 1.8 V
400
200
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.2.00 Feb 07, 2007 page 10 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630D04/05/06 Series
Figure 2-7. HA1630D05
Output Sink Current vs. Ambient Temperature
10
1.5
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 2-6. HA1630D05
Output Low Voltage vs. Output Sink Current
VDD = 5.5 V
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
0
0
2
4
6
Output Sink Current IOSINK (mA)
VDD = 5.5 V
VDD = 3.0 V
8
6
4
VDD = 1.8 V
2
0
−40
8
Figure 2-8. HA1630D05
Input Offset Voltage Distribution
Input Offset Voltage VIO (mV)
Percentage (%)
Ta = 25°C
VDD = 3.0 V
30
20
10
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
VDD = 1.8 V, VIN = 0.5 V
VDD = 3.0 V, VIN = 1.5 V
1
0
−1
VDD = 5.5 V, VIN = 2.75 V
−2
−3
−4
−40
6
3.0
4
2
3
4
5
Supply Voltage VDD (V)
Figure 2-11. HA1630D05
Common Mode Input Voltage vs.
Ambient Temperature
Figure 2-10. HA1630D05
Input Offset Voltage vs. Ambient Temperature
3
100
Figure 2-9. HA1630D05
Input Offset Voltage vs. Supply Voltage
40
0
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.2.00 Feb 07, 2007 page 11 of 23
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630D04/05/06 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 2-12. HA1630D05
Power Supply Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 2-13. HA1630D05
Common Mode Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Figure 2-14. HA1630D05
Open Loop Voltage Gain and Phase Angle vs. Frequency
Open Loop Voltage Gain
AVOL (dB)
Ta = 25°C
VDD = 3.0 V 180
RL = 1 MΩ
CL = 20 pF 135
Open Loop Voltage Gain
80
60
90
40
Phase Angle
20
45
0
Phase Margin: 55 deg
−45
−20
−40
10
0
100
1k
10k
Frequency f (Hz)
Rev.2.00 Feb 07, 2007 page 12 of 23
100k
1M
−90
10M
Phase Angle (deg)
225
100
HA1630D04/05/06 Series
200
VDD = 3.0 V
100
0
−100
−200
0
Figure 2-16. HA1630D05
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 2-15. HA1630D05
Input Bias Current vs. Ambient Temperature
25
50
75
Ambient Temperature Ta (°C)
200
100
0
−100
−200
100
Ta = 25°C
VDD = 3.0 V
0
Figure 2-17. HA1630D05
Slew Rate (rising) vs. Ambient Temperature
Slew Rate SRf (V/μs)
Slew Rate SRr (V/μs)
2.5
3.0
10
VDD = 5.5 V
8
VDD = 3.0 V
VDD = 1.8 V
4
2
0
−40
1.0
1.5
2.0
Input Voltage VIN (V)
Figure 2-18. HA1630D05
Slew Rate (falling) vs. Ambient Temperature
10
6
0.5
−20
0
20
40
60
80
100
8
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
6
4
2
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 2-19. HA1630D05
Large Signal Transient Response
Figure 2-20. HA1630D05
Small Signal Transient Response
2.0 V
VIN = 2.1 Vp-p, 500 kHz
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
1.6 V
VIN = 0.2 Vp-p, 500 kHz
0V
1.4 V
2.0 V
1.6 V
0V
1.4 V
Rev.2.00 Feb 07, 2007 page 13 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
HA1630D04/05/06 Series
Figure 2-21. HA1630D05
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 2-22. HA1630D05
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01
0.001
f = 10 kHz
f = 1 kHz
f = 100 Hz
1
0.1
0.01 V = 3.0 V
DD
Ta = 25°C
Gain = 40 dB
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
0
0.5
Output Voltage Vout p-p (V)
1.0
1.5
2.0
2.5
3.0
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 2-23. HA1630D05
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
3.0
2.5
Gain = 40 dB,
VIN = 0.03 Vp-p
Gain = 20 dB,
VIN = 0.3 Vp-p
2.0
Gain = 0 dB,
VIN = 2.0 Vp-p
1.5
1.0
0.5
0
1k
10k
100k
Frequency f (Hz)
Voltage Noise Density
(nVms/√Hz)
200
VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
RS = 1 kΩ
160
120
80
40
0
100
1k
Frequency f (Hz)
Rev.2.00 Feb 07, 2007 page 14 of 23
10M
Figure 2-25. HA1630D05
Channel Separation vs. Frequency
10k
Channel Separation C.S (dB)
Figure 2-24. HA1630D05
Voltage Noise Density vs. Frequency
1M
140
120
CH2→CH1
100
80
CH1→CH2
60
40 VDD = 3.0 V
Ta = 25°C
20 RL = 1 MΩ
CL = 20 pF
0
100
1k
10k
100k
Frequency f (Hz)
1M
10M
HA1630D04/05/06 Series
Main Characteristics (HA1630D06)
Figure 3-1. HA1630D06
Supply Current vs. Supply Voltage
1600
Ta = 25°C
Supply Current IDD (μA)
Supply Current IDD (μA)
1600
Figure 3-2. HA1630D06
Supply Current vs. Ambient Temperature
1200
800
400
0
1
2
3
4
5
Supply Voltage VDD (V)
VDD = 5.5 V
VDD = 3.0 V
1200
VDD = 1.8 V
800
400
0
−40
6
6
Ta = 25°C
5 VDD = 5.5 V
4
VDD = 3.0 V
3
VDD = 1.8 V
2
1
0
6
Ta = 25°C
RL = 100 kΩ
5
RL = 20 kΩ
4
3
2
1
0
200
400
600
800
1000
Output Source Current IOSOURCE (μA)
Figure 3-5. HA1630D06
Output Source Current vs. Ambient Temperature
1600
Output Source Current
IOSOURCE (μA)
100
Figure 3-4. HA1630D06
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 3-3. HA1630D06
Output High Voltage vs. Output Source Current
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
VDD = 5.5 V
VDD = 3.0 V
1200
VDD = 1.8 V
800
400
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.2.00 Feb 07, 2007 page 15 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630D04/05/06 Series
Figure 3-7. HA1630D06
Output Sink Current vs. Ambient Temperature
12
1.5
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 3-6. HA1630D06
Output Low Voltage vs. Output Sink Current
VDD = 5.5 V
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
VDD = 5.5 V
VDD = 3.0 V
10
8
6
4
VDD = 1.8 V
2
0
0
0.2
0.4
0.6
0.8
Output Sink Current IOSINK (mA)
0
−40
1.0
Figure 3-8. HA1630D06
Input Offset Voltage Distribution
Input Offset Voltage VIO (mV)
Percentage (%)
Ta = 25°C
VDD = 3.0 V
30
20
10
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
3
VDD = 1.8 V, VIN = 0.5 V
VDD = 3.0 V, VIN = 1.5 V
0
−1
VDD = 5.5 V, VIN = 2.75 V
−2
−3
−4
−40
6
3.0
4
1
3
4
5
Supply Voltage VDD (V)
Figure 3-11. HA1630D06
Common Mode Input Voltage vs.
Ambient Temperature
Figure 3-10. HA1630D06
Input Offset Voltage vs. Ambient Temperature
2
100
Figure 3-9. HA1630D06
Input Offset Voltage vs. Supply Voltage
40
0
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.2.00 Feb 07, 2007 page 16 of 23
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630D04/05/06 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 3-12. HA1630D06
Power Supply Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 3-13. HA1630D06
Common Mode Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Figure 3-14. HA1630D06
Open Loop Voltage Gain and Phase Angle vs. Frequency
Open Loop Voltage Gain
AVOL (dB)
Ta = 25°C
VDD = 3.0 V 180
RL = 1 MΩ
CL = 20 pF 135
Open Loop Voltage Gain
80
60
90
40
Phase Angle
20
45
0
Phase Margin: 65 deg
−45
−20
−40
10
0
100
1k
10k
Frequency f (Hz)
Rev.2.00 Feb 07, 2007 page 17 of 23
100k
1M
−90
10M
Phase Angle (deg)
225
100
HA1630D04/05/06 Series
200
VDD = 3.0 V
100
0
−100
−200
0
Figure 3-16. HA1630D06
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 3-15. HA1630D06
Input Bias Current vs. Ambient Temperature
25
50
75
Ambient Temperature Ta (°C)
200
Ta = 25°C
VDD = 3.0 V
100
0
−100
−200
100
Figure 3-17. HA1630D06
Slew Rate (rising) vs. Ambient Temperature
1.0
1.5
2.0
Input Voltage VIN (V)
2.5
3.0
14
12
Slew Rate SRf (V/μs)
Slew Rate SRr (V/μs)
0.5
Figure 3-18. HA1630D06
Slew Rate (falling) vs. Ambient Temperature
14
VDD = 5.5 V
VDD = 3.0 V
10
VDD = 1.8 V
8
6
4
−40
0
−20
0
20
40
60
80
100
12
10
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
8
6
4
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 3-19. HA1630D06
Large Signal Transient Response
Figure 3-20. HA1630D06
Small Signal Transient Response
2.0 V
VIN = 1.9 Vp-p, 500 kHz
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
1.6 V
VIN = 0.2 Vp-p, 500 kHz
0V
1.4 V
2.0 V
1.6 V
0V
1.4 V
Rev.2.00 Feb 07, 2007 page 18 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
HA1630D04/05/06 Series
Figure 3-21. HA1630D06
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 3-22. HA1630D06
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01
0.001
1
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01 V = 3.0 V
DD
Ta = 25°C
Gain = 40 dB
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
0
0.5
Output Voltage Vout p-p (V)
1.0
1.5
2.0
2.5
3.0
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 3-23. HA1630D06
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
3.0
2.5
Gain = 40 dB,
VIN = 0.03 Vp-p
Gain = 20 dB,
VIN = 0.3 Vp-p
2.0
Gain = 0 dB,
VIN = 2.0 Vp-p
1.5
1.0
0.5
0
1k
10k
100k
Frequency f (Hz)
Voltage Noise Density
(nVms/√Hz)
200
VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
RS = 1 kΩ
160
120
80
40
0
100
1k
Frequency f (Hz)
Rev.2.00 Feb 07, 2007 page 19 of 23
10M
Figure 3-25. HA1630D06
Channel Separation vs. Frequency
10k
Channel Separation C.S (dB)
Figure 3-24. HA1630D06
Voltage Noise Density vs. Frequency
1M
140
120
CH2→CH1
100
CH1→CH2
80
60
40 VDD = 3.0 V
Ta = 25°C
20 RL = 1 MΩ
CL = 20 pF
0
100
1k
10k
100k
Frequency f (Hz)
1M
10M
HA1630D04/05/06 Series
Test Circuits
1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO
VIO
VDD
VIO = VO −
RF = 680 kΩ
VDD
2
×
RS
R S + RF
RS = 6.8 kΩ
PSRR
−
+
VO
RS = 6.8 kΩ
VDD
PSRR = −20log
2
VDD1 − VDD2
VO1 − VO2
×
RS
R S + RF
Measure VO corresponding to VDD1 = 2.95 V and VDD2 = 3.05 V
2. Supply Current, IDD
3. Input Bias Current, IIB
VDD
VDD
A
−
+
−
+
VDD
VDD
2
2
4. Output High Voltage, VOH
VOH
VDD
VIN1 = VDD / 2 − 0.05 V
VIN2 = VDD / 2 + 0.05 V
−
+
VIN1
VO
VIN2
RL = 100 kΩ
5. Output Low Voltage, VOL
VOL
VDD
VIN1 = VDD / 2 + 0.05 V
VIN2 = VDD / 2 − 0.05 V
−
+
VIN1
RL = 100 kΩ
VIN2
Rev.2.00 Feb 07, 2007 page 20 of 23
VO
A
HA1630D04/05/06 Series
6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK
VDD
IOSOURCE
VO = VDD − 0.5 V
VIN1 = VDD / 2 − 0.05 V
VIN2 = VDD / 2 + 0.05 V
−
+
VIN1
A
IOSINK
VIN2
VO = + 0.5 V
VIN1 = VDD / 2 + 0.05 V
VIN2 = VDD / 2 − 0.05 V
VO
7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR
VDD
CMRR
RF = 680 kΩ
RS = 6.8 kΩ
VIN1 − VIN2
VO1 − VO2
CMRR = −20log
−
+
VO
RS = 6.8 kΩ
×
RS
RS + RF
Measure VO corresponding to VIN1 = 1.45 V and VIN2 = 1.55 V
VDD
VIN
2
RF = 680 kΩ
8. Total Harmonic Distortion, THD
VDD
THD
RF
Gain Variable
RS
−
+
VO
Gain Variable
RF / RS = 20log (100 kΩ / 1 kΩ) = 40 dB
RF / RS = 20log (100 kΩ / 100 kΩ) = 0 dB
freq = 100 Hz, 1 kHz, 10 kHz
30 kHz LPF ON
VIN
VSS
9. Slew Rate, SR
10. Gain, AV & Phase, GBW
VDD
VDD
RF = 680 kΩ
RS = 6.8 kΩ
−
+
VO
1 MΩ
−
+
20 pF
VSS
Rev.2.00 Feb 07, 2007 page 21 of 23
VO
1 MΩ
RS = 6.8 kΩ VSS
20 pF
HA1630D04/05/06 Series
Package Dimensions
JEITA Package Code
P-TSSOP8-4.4x3-0.65
RENESAS Code
PTSP0008JC-B
*1
Previous Code
TTP-8DAV
MASS[Typ.]
0.034g
D
F
8
5
NOTE)
1. DIMENSIONS"*1 (Nom)"AND"*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION"*3"DOES NOT
INCLUDE TRIM OFFSET.
c
HE
*2
E
bp
Terminal cross section
( Ni/Pd/Au plating )
Reference Dimension in Millimeters
Symbol
Index mark
L1
1
4
e
*3
bp
x
M
θ
A1
A
Z
L
Detail F
y
Package Name
MMPAK-8
JEITA Package Code
P-LSOP8-2.8 x 2.95 - 0.65
RENESAS Code
PLSP0008JC-A
Previous Code
⎯
0.13 +0.12
-0.03
0.6
0 to 0.1
0.65
0.1 M
0.3
1.1 ± 0.1
1.95
0.1
Rev.2.00 Feb 07, 2007 page 22 of 23
0.2
+0.1
-0.05
Min Nom Max
3.00 3.30
4.40
0.03 0.07 0.10
1.10
0.15 0.20 0.25
0.10 0.15 0.20
0°
8°
6.20 6.40 6.60
0.65
0.13
0.10
0.805
0.40 0.50 0.60
1.00
Unit: mm
2.8 ± 0.1
4.0 ± 0.3
2.95 ± 0.2
MASS[Typ.]
0.02 g
D
E
A2
A1
A
bp
b1
c
c1
θ
HE
e
x
y
Z
L
L1
HA1630D04/05/06 Series
Taping & Reel Specification
[Taping]
W
12
12
P
8
4.0
Ao
6.9
3.15
Bo
3.6
4.35
Ko
1.7
—
E
1.75
—
F
5.5
5.5
4.0
φ 1.5
2.0
D1
1.5
1.05
Maximum Storage No.
3,000 pcs/reel
3,000 pcs/reel
Unit: mm
1.75
Package Code
TSSOP-8
MMPAK-8
Cover
Tape
W
B0
F
A0
K0
D1
P
Tape withdraw direction
Tape width
12
12
W1
17.4
17.0
W2
13.4
13.0
A
330
178
φA
[Reel]
Package
TSSOP-8
MMPAK-8
φ13.0 ± 0.5
W1
[Ordering Information]
Ordering Unit
3,000 pcs
2.0
2.0
W2
Mark Indication
TSSOP-8
MMPAK-8
Product Name
0D04: HA1630D04
0D05: HA1630D05
0D06: HA1630D06
0 D 0 4
D 0 4
Product Name
D04: HA1630D04
D05: HA1630D05
D06: HA1630D06
Trace Code
Trace Code
Rev.2.00 Feb 07, 2007 page 23 of 23
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes
warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property
rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including,
but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass
destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws
and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document,
please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be
disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com )
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a
result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability
of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular
application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications
or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality
and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or
undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall
have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing
applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages
arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain
rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage
caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software
alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as
swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have
any other inquiries.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .7.0