10 PZ126PA080MR M909F28Y D3 14

10-PZ126PA080MR-M909F28Y
datasheet
1200 V / 80 mΩ
flow 3xPHASE-SiC
Features
flow 0 12mm housing
● SiC-Power MOSFET´s and Schottky Diodes
● 3 phase inverter topology with split output
● Improved switching behavior (reduced turn on
energy and X-conduction)
● Ultra Low Inductance with integrated DC-capacitors
● Switching frequency >100kHz
● Temperature sensor
Target Applications
Schematic
● Solar Inverter
● Charger
● Power Supply
Types
● 10-PZ126PA080MR-M909F28Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
19
A
80
A
50
W
T1, T2, T3, T4, T5, T6
Drain-source voltage
Drain current
Peak drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Ptot
Gate-source voltage
VGS
-6/+22
V
Tjmax
150
°C
Peak Repetitive Reverse Voltage
VRRM
1200
V
Continuous (direct) forward current
IFAV
Tj=Tjmax
Th=80°C
10
A
Surge (non-repetitive) forward current
IFSM
tp=8,3ms
Tj=25°C
23
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
25
A
Total power dissipation
Ptot
Tj=Tjmax
31
W
175
°C
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Total power dissipation
D1, D2, D3, D4, D5, D6
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1000
V
C1, C2, C3
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation Junction Temperature
Top
-40…+(Tjmax - 25)
°C
4000
V
min 12,7
mm
min 9,9
mm
Isolation Properties
Isolation Voltage
t=2s
DC voltage
Creepage distance
Clearance
copyright Vincotech
2
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Min
Typ
Unit
Max
T1, T2, T3, T4, T5, T6
Drain-source on-state resistance
Gate-source threshold voltage
RDS(on)
20
V(GS)th
20
VDS = VGS
0,0044
Gate to Source Leakage Current
Igss
-6/22
Zero Gate Voltage Drain Current
Idss
0
Internal gate resistance
RG
Gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
1200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
70,00
115,00
1,6
mΩ
4
100
10
f=1MHz; open Drain
V
nA
µA
Ω
9
106
18
400
10
nC
27
31
Tj=25°C
Short-circuit input capacitance
Ciss
Short-circuit output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance junction to sink
RthJH
2080
f=1MHz
0
800
pF
77
16
Phase-Change
Material
1,41
K/W
D1, D2, D3, D4, D5, D6
Forward voltage
Reverse leakage current
Thermal resistance junction to sink
VF
5
Irm
1200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Phase-Change
Material
RthJH
0,8
1,40
1,73
1,7
100
3,07
V
µA
K/W
Single ended configuration
T1, T2, T3, T4, T5, T6
Turn-on delay time
Rise Time
Turn-off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy (per pulse)
Eon
Turn-off energy (per pulse)
Eoff
Rgoff=1 Ω
Rgon=1 Ω
16
700
16
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
14
13
7
7
96
106
5
5
0,333
0,244
0,190
0,178
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
9
10
10
10
0,080
0,110
0,025
0,042
1960
2220
ns
mWs
D1, D2, D3, D4, D5, D6
Peak reverse recovery current
IRRM
Reverse recovery time
trr
Recovered charge
Qrr
Reverse recovered energy
Peak rate of fall of recovery current
copyright Vincotech
Rgon=1 Ω
16
700
Erec
di(rec)max
/dt
3
16
A
ns
µC
mWs
A/µs
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Min
Typ
Unit
Max
Half bridge configuration
D1, D2, D3, D4, D5, D6
Peak reverse recovery current
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgon=1 Ω
-6/16
700
16
di(rec)max
/dt
Erec
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
13
16
18
17
0,220
0,300
3080
3572
0,067
0,119
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
17
16
6
5
75
79
30
74
0,330
0,280
0,080
0,080
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
16
16
6
6
71
75
12
10
0,310
0,220
0,110
0,090
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
10
12
47
47
0,2
0,2
1373
1302
0,05
0,06
A
ns
µC
A/µs
mWs
T1, T2, T3, T4, T5, T6
Turn-on delay time
Rise Time
Turn-off delay time
Fall time
td(ON)
tr
td(OFF)
Rgoff=1 Ω
Rgon=1 Ω
tf
Turn-on energy (per pulse)
Eon
Turn-off energy (per pulse)
Eoff
-6/16
700
16
ns
mWs
Splitted output configuration
T1, T2, T3, T4, T5, T6
Turn-on delay time
Rise time
Turn-off delay time
Fall time
td(on)
tr
td(off)
tf
Turn-on energy (per pulse)
Eon
Turn-off energy (per pulse)
Eoff
Rgoff=1 Ω
Rgon=1 Ω
-6/16
700
16
ns
mWs
D1, D2, D3, D4, D5, D6
Peak reverse recovery current
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovery energy
Rgon=1 Ω
-6/16
di(rec)max
/dt
Erec
700
16
A
ns
µC
A/µs
mWs
C1, C2, C3
C value
C
47
nF
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-12,37
13,84
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
K
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
Vincotech NTC Reference
copyright Vincotech
B
4
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Half Bridge Configuration
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Typical switching energy losses
as a function of drain current
E = f(I D)
Figure 2
T1, T2, T3, T4, T5, T6 MOSFET
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
E (mWs)
1,5
Eon Low T
1,2
1,2
0,9
0,9
Eon High T
Eon Low T
Eon High T
0,6
0,6
0,3
0,3
Eoff Low T
Eoff Low T
Eoff High T
Eoff High T
0
0
0
5
10
15
20
25
I D (A)
30
0
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
-6/16
V
Rgon =
1
Ω
Rgoff =
1
Ω
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
-6/16
V
ID =
16
A
Figure 3
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery energy loss
as a function of drain current
Erec = f(I D)
Figure 4
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,20
E (mWs)
E (mWs)
0,20
0,16
0,16
0,12
0,12
Erec High T
Erec High T
0,08
0,08
Erec Low T
Erec Low T
0,04
0,04
0,00
0,00
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
-6/16
V
Rgon =
1
Ω
copyright Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
-6/16
V
ID =
16
A
5
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Half Bridge Configuration
Figure 5
Typical switching times as a
function of drain current
t = f(I D)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
T1, T2, T3, T4, T5, T6 MOSFET
tdoff
0,10
0,10
tdoff
tf
tf
tdon
0,01
tdon
0,01
tr
tr
0,00
0,00
0
5
10
15
20
25
I D (A)
30
0
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
-6/16
V
Rgon =
1
Ω
Rgoff =
1
Ω
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
-6/16
V
ID =
16
A
Figure 7
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery time as a
function of drain current
trr = f(I D)
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,03
t rr(ms)
t rr(ms)
0,15
trr Low T
0,025
0,12
trr High T
trr High T
0,02
0,09
trr Low T
0,015
0,06
0,01
0,03
0,005
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
6
4
25/125
700
16
-6/16
8
12
16
R gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Half Bridge Configuration
Figure 9
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery charge as a
function of drain current
Qrr = f(I D)
Figure 10
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,5
Qrr (µC)
0,5
Qrr (µC)
Qrr High T
0,4
0,4
0,3
0,3
Qrr High T
Qrr Low T
Qrr Low T
0,2
0,2
0,1
0,1
0,0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 11
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery current as a
function of drain current
IRRM = f(I D)
4
25/125
700
16
-6/16
8
12
16
R gon ( Ω)
20
°C
V
A
V
Figure 12
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
20
IrrM (A)
20
IRRM High T
16
16
IRRM Low T
12
12
8
8
IRRM High T
IRRM Low T
4
4
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
copyright Vincotech
10
15
20
25
I D (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
7
4
25/125
700
16
-6/16
8
12
16
R gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Half Bridge Configuration
4500
Figure 14
D1, D2, D3, D4, D5, D6 FWD
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
direc / dt (A/ms)
Figure 13
D1, D2, D3, D4, D5, D6 FWD
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(I D)
dIrec/dt T
di0/dtT
4000
3500
5000
dIrec/dt T
dI0/dt T
4000
3000
3000
2500
2000
2000
1500
1000
1000
500
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
copyright Vincotech
10
15
20
25
I D (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
8
4
25/125
700
16
-6/16
8
12
16
R gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
T1, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Typical output characteristics
ID = f(VDS)
Figure 2
T1, T2, T3, T4, T5, T6 MOSFET
Typical output characteristics
ID = f(VDS)
80
ID (A)
ID (A)
100
80
60
60
40
40
20
20
0
0
-20
-20
-40
-40
-60
-60
-80
-80
-10
At
tp =
Tj =
VGS from
-8
-6
-4
-2
0
2
4
6
8
10
-10
12
14
V DS (V)
-8
-6
-4
-2
0
2
4
6
8
10
12
14
V DS (V)
At
tp =
Tj =
VGS from
250
µs
25
°C
-6 V to 20 V in steps of 2 V
Dashed line is 0V
250
µs
125
°C
-6 V to 20 V in steps of 2 V
Dashed line is 0V
Figure 3
T1, T2, T3, T4, T5, T6 MOSFET
Typical transfer characteristics
ID = f(VGS)
Figure 4
D1, D2, D3, D4, D5, D6 FWD
Typical diode forward current as
a function of forward voltage
IF = f(VF)
20
IC (A)
IF (A)
15
16
Tj = 25°C
12
Tj = Tjmax-25°C
12
9
Tj = Tjmax-25°C
8
6
Tj = 25°C
4
3
0
0
0
2
At
tp =
VDS =
250
10
copyright Vincotech
4
6
8
10
V GS (V)
12
0
At
tp =
µs
V
9
1
250
2
3
4
V F (V)
5
µs
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Splitted Configuration
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Typical switching energy losses
as a function of drain current
E = f(I D)
Figure 6
T1, T2, T3, T4, T5, T6 MOSFET
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
E (mWs)
1,5
Eon Low T
1,2
1,2
0,9
Eon Low T
0,9
0,6
Eon High T
0,6
Eon High T
0,3
0,3
Eoff Low T
Eoff Low T
Eoff High T
Eoff High T
0
0
0
5
10
15
20
25
I D (A)
0
30
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
-6/16
V
Rgon =
1
Ω
Rgoff =
1
Ω
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
-6/16
V
ID =
16
A
Figure 7
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery energy loss
as a function of drain current
Erec = f(I D)
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
0,1
Erec High T
0,1
0,08
0,08
0,06
0,06
Erec High T
Erec Low T
Erec Low T
0,04
0,04
0,02
0,02
0
0
0
5
10
15
20
25
I D (A)
0
30
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
-6/16
V
Rgon =
1
Ω
copyright Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
-6/16
V
ID =
16
A
10
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Splitted Configuration
Figure 9
Typical switching times as a
function of drain current
t = f(I D)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
T1, T2, T3, T4, T5, T6 MOSFET
1
t ( µs)
t ( µs)
1
tdoff
tdoff
0,1
0,1
tf
tdon
tr
tdon
tf
0,01
0,01
tr
0,001
0,001
0
5
10
15
20
25
I D (A)
30
0
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
-6/16
V
Rgon =
1
Ω
Rgoff =
1
Ω
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
-6/16
V
ID =
16
A
Figure 11
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery time as a
function of drain current
trr = f(I D)
Figure 12
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,1
t rr(ms)
t rr(ms)
0,1
trr Low T
trr High T
0,08
0,08
0,06
0,06
trr High T
0,04
0,04
trr Low T
0,02
0,02
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
11
4
25/125
700
16
-6/16
8
12
16
R gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Splitted Configuration
Figure 13
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery charge as a
function of drain current
Qrr = f(I D)
Figure 14
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,4
Qrr (µC)
Qrr (µC)
0,4
Qrr High T
0,3
0,3
Qrr High T
0,2
0,2
0,1
Qrr Low T
0,1
Qrr Low T
0,0
0
0
At
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 15
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery current as a
function of drain current
IRRM = f(I D)
4
25/125
700
16
-6/16
8
12
16
R gon ( Ω)
20
°C
V
A
V
Figure 16
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
15
IrrM (A)
IrrM (A)
15
IRRM High T
12
12
IRRM Low T
9
9
6
6
IRRM High T
IRRM Low T
3
3
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
12
4
25/125
700
16
-6/16
8
12
16
R gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Splitted Configuration
Figure 17
D1, D2, D3, D4, D5, D6 FWD
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(I D)
Figure 18
D1, D2, D3, D4, D5, D6 FWD
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
5000
dIo/dt T
direc / dt (A/ms)
direc / dt (A/ms)
5000
dIrec/dt T
4000
dI0/dt T
dIrec/dt T
4000
3000
3000
2000
2000
1000
1000
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
-6/16
1
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
13
5
25/125
700
16
-6/16
10
15
R gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
T1, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
Figure 19
T1, T2, T3, T4, T5, T6 MOSFET
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
1
10
1
ZthJH (K/W)
10
ZthJH (K/W)
10
Figure 20
D1, D2, D3, D4, D5, D6 FWD
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,41
10-3
10-2
10-1
100
t p (s)
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
2
10101
10-5
At
D=
RthJH =
K/W
10-4
tp / T
3,07
10-3
FWD thermal model values
R (K/W)
0,12
0,39
0,68
0,12
0,10
R (K/W)
0,06
0,14
1,00
0,83
0,64
0,40
copyright Vincotech
14
10-1
100
t p (s)
2
10101
K/W
MOSFET thermal model values
Tau (s)
1,0E+00
1,7E-01
6,1E-02
5,5E-03
8,0E-04
10-2
Tau (s)
3,5E+00
5,2E-01
7,8E-02
2,6E-02
5,8E-03
1,3E-03
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
T1, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6
Figure 21
T1, T2, T3, T4, T5, T6 MOSFET
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Figure 22
T1, T2, T3, T4, T5, T6 MOSFET
Drain current as a
function of heatsink temperature
ID = f(Th)
30
ID (A)
Ptot (W)
125
25
100
20
75
15
50
10
25
5
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
VGS =
ºC
Figure 23
D1, D2, D3, D4, D5, D6 FWD
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
200
ºC
V
Figure 24
D1, D2, D3, D4, D5, D6 FWD
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
15
50
12
40
9
30
6
20
3
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
15
50
175
100
150
Th ( o C)
200
ºC
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
T1, T2, T3, T4, T5, T6
Figure 25
T1, T2, T3, T4, T5, T6 MOSFET
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
100uS
T1, T2, T3, T4, T5, T6 MOSFET
VGS = f(Qg)
10uS
UGS (V)
2
ID (A)
10
Figure 26
Gate voltage vs Gate charge
1mS
20
18
10mS
100mS
16
DC
4
14
101
12
10
8
100
6
4
2
0
10-1
100
At
D=
Th =
VGS =
Tj =
101
10
2
10
3
0
V DS (V)
At
IDS =
VDS=
IGS=
Tj =
single pulse
80
ºC
V
0
Tjmax
ºC
copyright Vincotech
16
10
20
20
800
10
A
V
mA
25
ºC
30
40
Qg (nC)
50
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Booster Configuration
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Typical switching energy losses
as a function of drain current
E = f(I D)
Figure 2
T1, T2, T3, T4, T5, T6 MOSFET
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2
E (mWs)
E (mWs)
2
1,6
1,6
Eon Low T
Eon Low T
1,2
1,2
Eon High T
0,8
0,8
Eon High T
Eoff High T
0,4
Eoff High T
Eoff Low T
0,4
Eoff Low T
0
0
0
5
10
15
20
25
I D (A)
30
0
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
Rgon =
1
Ω
Rgoff =
1
Ω
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
ID =
16
A
Figure 3
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery energy loss
as a function of drain current
Erec = f(I D)
Figure 4
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
0,05
Erec High T
0,04
0,05
0,04
Erec Low T
0,03
0,03
Erec High T
0,02
0,02
0,01
0,01
0
Erec Low T
0
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
Rgon =
1
Ω
Rgoff =
1
Ω
copyright Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
16
V
ID =
16
A
17
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Booster Configuration
Figure 5
Typical switching times as a
function of drain current
t = f(I D)
T1, T2, T3, T4, T5, T6 MOSFET
Figure 6
Typical switching times as a
function of gate resistor
t = f(RG)
T1, T2, T3, T4, T5, T6 MOSFET
1
t ( ms)
t ( ms)
1
tdoff
tdoff
0,1
0,1
tr
tdon
tdon
0,01
0,01
tr
tf
tf
0,001
0,001
0
5
10
15
20
25
I D (A)
30
0
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
16
V
Rgon =
1
Ω
Rgoff =
1
Ω
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
16
V
ID =
16
A
Figure 7
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery time as a
function of drain current
trr = f(I D)
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,015
t rr( ms)
t rr( ms)
0,015
0,012
0,012
trr Low T
trr High T
trr High T
0,009
0,009
trr Low T
0,006
0,006
0,003
0,003
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
16
1
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
18
4
25/125
700
16
16
8
12
16
R Gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Booster Configuration
Figure 9
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery charge as a
function of drain current
Qrr = f(I D)
Figure 10
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,15
Qrr ( µC)
Qrr ( µC)
0,15
0,12
0,12
Qrr High T
Qrr High T
0,09
0,09
Qrr Low T
Qrr Low T
0,06
0,06
0,03
0,03
0
0
0
At
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
16
1
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 11
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery current as a
function of drain current
IRRM = f(I D)
4
25/125
700
16
16
8
12
16
R Gon ( Ω)
20
°C
V
A
V
Figure 12
D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
12
IrrM (A)
IrrM (A)
12
IRRM High T
10
10
IRRM Low T
8
8
6
6
4
4
IRRM High T
2
IRRM Low T
2
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
16
1
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
19
4
25/125
700
16
16
8
12
16
R Gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Booster Configuration
Figure 14
D1, D2, D3, D4, D5, D6 FWD
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
4000
direc / dt (A/ µs)
direc / dt (A/ µs)
Figure 13
D1, D2, D3, D4, D5, D6 FWD
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(I D)
dI0/dt
dIrec/dt
3200
4000
dI0/dt
dIrec/dt
3200
2400
2400
1600
1600
800
800
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
700
16
1
copyright Vincotech
10
15
20
25
I D (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
20
4
25/125
700
16
16
8
12
16
R Gon ( Ω)
20
°C
V
A
V
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
21
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Half Bridge Configuration
General
Tj
R gon
R goff
conditions
= 125 °C
= 1Ω
= 1Ω
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
125
tdoff
%
ID
%
VDS
100
VDS 90%
VGS 90%
150
ID
75
VDS
100
50
tEoff
tdon
25
ID 1%
VGS
50
0
VGS 10%
VGS
-25
VDS 3%
ID 10%
0
tEon
-50
-0,08
-0,05
-0,02
0,01
0,04
0,07
time (us)
-50
2,95
0,1
2,99
3,03
V GS (0%) =
V GS (100%) =
0
16
V
V
V GS (0%) =
V GS (100%) =
0
16
V
V
VD (100%) =
I D (100%) =
t doff =
t E off =
700
16
0,079
0,107
V
A
µs
µs
VD (100%) =
I D (100%) =
t don =
t E on =
700
16
0,016
0,057
V
A
µs
µs
Figure 3
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t f
3,07
time(us)
3,11
Figure 4
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
VDS
ID
ID
%
100
ID 90%
150
75
ID 60%
VDS
100
50
ID 90%
ID 40%
tr
25
50
ID10%
0
ID 10%
tf
0
-25
-50
-0,06
-0,03
VD (100%) =
I D (100%) =
tf =
copyright Vincotech
0
700
16
0,074
0,03
0,06
0,09
-50
2,99
0,12
0,15
time (us)
V
A
µs
VD (100%) =
I D (100%) =
tr =
22
3
3,01
3,02
700
16
0,005
V
A
µs
3,03
3,04
3,05
time(us)
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Half Bridge Configuration
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of t Eon
125
150
Eoff
%
Pon
%
100
125
75
100
Eon
50
75
Poff
25
50
VGS 90%
ID 1%
0
25
tEoff
VGS 10%
-25
-50
-0,06
VDS 3%
0
-0,04
-0,02
P off (100%) =
E off (100%) =
t E off =
0
0,02
11,16
0,08
0,107
kW
mJ
µs
0,04
0,06
tEon
-25
2,97
0,08
0,1
time (us)
2,99
P on (100%) =
E on (100%) =
t E on =
3,01
3,03
11,16
0,28
0,057
kW
mJ
µs
3,05
3,07
3,09
time(us)
Figure 7
D1, D2, D3, D4, D5, D6 FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
fitted
-50
IRRM 90%
IRRM 100%
-100
-150
3
3,012
V d (100%) =
I d (100%) =
IRRM (100%) =
trr =
copyright Vincotech
23
3,024
700
16
-16
0,017
3,036
3,048
3,06
time(us)
V
A
A
µs
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Half Bridge Configuration
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
150
%
Figure 9
D1, D2, D3, D4, D5, D6 FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
%
Qrr
Id
125
100
Erec
100
tQrr
50
tErec
75
0
50
25
-50
0
Prec
-100
-25
-150
-50
3
3,01
I d (100%) =
Qrr (100%) =
t Q rr =
3,02
3,03
16
0,30
0,033
A
µC
µs
3,04
3,05
3,06
time(us)
3
3,01
P rec (100%) =
E rec (100%) =
t E rec =
3,02
3,03
3,04
11,16
0,12
0,033
kW
mJ
µs
3,05
3,06
time(us)
Measurement circuit
Figure 10
Half Bridge Configuration switching measurement circuit
Vcc V
L
-8V
VDC
D1
705uH
T2
700
Vce V
Vge V
T1
D2
Ic
A
0.00001
0.000003
Q
Q
Q
Q
Q
+16V
4Ohm
4Ohm
-5V
Q
copyright Vincotech
24
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Splitted Configuration
General
Tj
R gon
R goff
conditions
= 124 °C
= 1Ω
= 1Ω
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
200
tdoff
%
%
VDS
ID
100
VGS 90%
150
VDS 90%
75
VGS
VDS
ID
100
50
tEoff
VGS
tdon
ID 1%
25
50
0
VGS 10%
VDS 3%
ID 10%
0
-25
tEon
-50
-0,07
-0,04
0,05
0,08
time (us)
-50
2,95
-0,01
0,02
0,11
V GS (0%) =
V GS (100%) =
0
-6/16
V
V
V GS (0%) =
V GS (100%) =
0
-6/16
V
V
VD (100%) =
I D (100%) =
t doff =
t E off =
700
16
0,075
0,113
V
A
µs
µs
VD (100%) =
I D (100%) =
t don =
t E on =
700
16
0,016
0,064
V
A
µs
µs
Figure 3
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t f
fitted
3,025
3,05
175
%
VDS
ID
3
3,075
3,1
time(us)
Figure 4
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of tr
125
%
2,975
ID
150
100
ID 90%
125
75
VDS
ID 60%
100
ID 90%
50
ID 40%
75
tr
25
50
ID10%
0
25
ID 10%
tf
-25
-50
0,02
0
0,03
0,04
0,05
0,06
-25
2,99
0,07
3
3,01
3,02
time (us)
VD (100%) =
I D (100%) =
tf =
copyright Vincotech
700
16
0,010
V
A
µs
VD (100%) =
I D (100%) =
tr =
25
700
16
0,006
3,03
3,04
time(us)
V
A
µs
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Splitted Configuration
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Pon
Eon
Eoff
100
100
75
75
50
Poff
50
25
VGS 90%
ID 1%
0
25
tEoff
VGS 10%
-25
-50
-0,06
VDS 3%
0
tEon
-0,04
-0,02
P off (100%) =
E off (100%) =
t E off =
0
11,23
0,095
0,113
0,02
0,04
0,06
-25
2,97
0,08
0,1
time (us)
kW
mJ
µs
2,99
P on (100%) =
E on (100%) =
t E on =
3,01
3,03
11,23
0,223
0,064
kW
mJ
µs
3,05
3,07
time(us)
3,09
Figure 7
D1, D2, D3, D4, D5, D6 FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
fitted
-50
IRRM 90%
IRRM 100%
-100
-150
3
3,02
V d (100%) =
I d (100%) =
IRRM (100%) =
trr =
copyright Vincotech
26
3,04
700
16
-12
0,047
3,06
3,08
time(us)
3,1
V
A
A
µs
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Splitted Configuration
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
D1, D2, D3, D4, D5, D6 FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Id
Qrr
Erec
100
100
tErec
75
tQrr
50
50
Prec
0
25
-50
0
-100
2,95
3
I d (100%) =
Qrr (100%) =
t Q rr =
3,05
16
0,27
0,100
3,1
3,15
time(us)
-25
2,95
3,2
A
µC
µs
3
3,05
P rec (100%) =
E rec (100%) =
t E rec =
11,23
0,05
0,100
3,1
3,15
time(us)
3,2
kW
mJ
µs
Measurement circuit
Figure 10
Splitted Configuration switching measurement circuit
Vd
Vcc V
Vd used for T2 dody diode Erec calculation
-8V
D1
VDC
V
L
T2
700
705uH
1uH
Vce
V
Vge
V
T1
D2
Ic
A
0.00001
0.000003
Q
Q
Q
Q
Q
+16V
4Ohm
4Ohm
-8V
Q
copyright Vincotech
27
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Booster Configuration
General
Tj
R gon
R goff
conditions
= 124 °C
= 1Ω
= 1Ω
Figure 1
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
125
%
tdoff
%
ID
100
VGS 90%
VDS 90%
VGS
ID
150
75
VDS
100
50
tdon
tEoff
VGS
50
25
ID 1%
VGS 10%
VDS
VDS 3%
ID 10%
0
0
tEon
-25
-0,07
-0,04
-0,01
0,02
0,05
0,08
-50
2,95
0,11
0,14
time (us)
2,98
3,01
3,04
V GS (0%) =
V GS (100%) =
0
16
V
V
V GS (0%) =
V GS (100%) =
0
16
V
V
VD (100%) =
I D (100%) =
t doff =
t E off =
700
16
0,106
0,136
V
A
µs
µs
VD (100%) =
I D (100%) =
t don =
t E on =
700
16
0,012
0,067
V
A
µs
µs
Figure 3
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t f
175
%
fitted
ID
time(us)
3,1
Figure 4
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of tr
125
%
3,07
VDS
ID
150
100
ID 90%
125
VDS
75
100
ID 90%
ID 60%
75
50
tr
ID 40%
50
25
25
ID 10%
ID 10%
0
0
tf
-25
0,06
0,07
0,08
0,09
0,1
-25
2,99
0,11
3
3,01
3,02
700
16
0,007
V
A
µs
time (us)
VD (100%) =
I D (100%) =
tf =
copyright Vincotech
700
16
0,005
V
A
µs
VD (100%) =
I D (100%) =
tr =
28
3,03
3,04
3,05
time(us)
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Booster Configuration
Figure 5
T1, T2, T3, T4, T5, T6 MOSFET
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
T1, T2, T3, T4, T5, T6 MOSFET
Turn-on Switching Waveforms & definition of t Eon
150
125
%
%
Eoff
Pon
125
100
Eon
100
Poff
75
75
50
50
25
25
VGS 90%
VGS 10%
ID 1%
0
-25
-0,07
-0,04
P off (100%) =
E off (100%) =
t E off =
-0,01
11,23
0,18
0,136
VDS 3%
0
tEoff
0,02
0,05
0,08
tEon
-25
2,98
0,11
0,14
time (us)
kW
mJ
µs
3
P on (100%) =
E on (100%) =
t E on =
3,02
3,04
11,23
0,24
0,067
kW
mJ
µs
3,06
3,08
3,1
time(us)
Figure 7
D1, D2, D3, D4, D5, D6 FWD
Turn-off Switching Waveforms & definition of t rr
125
Id
%
100
75
trr
50
25
Vd
0
IRRM 10%
-25
fitted
-50
-75
3,01
IRRM 90%
IRRM 100%
3,018
3,026
3,034
3,042
3,05
time(us)
V d (100%) =
I d (100%) =
IRRM (100%) =
trr =
copyright Vincotech
29
700
16
-10
0,010
V
A
A
µs
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Switching Definitions Booster Configuration
Figure 8
D1, D2, D3, D4, D5, D6 FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
D1, D2, D3, D4, D5, D6 FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
200
%
600
%
Erec
500
150
Qrr
Id
400
100
300
tQrr
50
200
0
tErec
100
-50
0
-100
Prec
-100
3
3,01
3,02
3,03
3,04
3,05
3,06
3
3,01
3,02
3,03
time(us)
I d (100%) =
Qrr (100%) =
t Q rr =
16
0,11
0,019
3,04
3,05
time(us)
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
11,23
0,04
0,019
kW
mJ
µs
Measurement circuit
Figure 10
Booster Configuration switching measurement circuit
Vcc V
VDC
D1
L
-8V
705uH
T2
700
Vce V
Vge V
T1
D2
Ic
A
0.00001
0.000003
Q
Q
Q
Q
Q
+16V
4Ohm
4Ohm
0V
Q
copyright Vincotech
30
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
w/o thermal paste 12mm housing Press-fit pin
Ordering Code
10-PZ126PA080MR-M909F28Y
in DataMatrix as
M909F28Y
in packaging barcode as
M909F28Y
Outline
Pin table
X
Y
Pin
1
33,4
2
25,4
0
0
3
25,05
2,8
4
5
25,05
22,25
5,6
5,6
6
22,25
2,8
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
22,25
14,25
8
0
0
0
0
7,15
7,75
7,75
8,35
11,15
13,75
13,75
13,15
19,65
25,65
33,4
31,55
31,55
0
0
0
0
2,8
5,6
22,2
22,2
19,2
16,4
10,2
11,5
16,4
19,2
22,2
22,2
22,2
22,2
19,2
16,4
Pinout
Identification
ID
T1-T6
D1-D6
C1-C3
NTC
Component
IGBT
FWD
Capacitor
NTC
copyright Vincotech
Voltage
1200V
1200V
1000V
Current
35A
5A
Function
Half-Bridge Switch
Half-Bridge Diode
DC Capacitor
Thermistor
31
Comment
13 Mar. 2015 / Revision 3
10-PZ126PA080MR-M909F28Y
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
32
13 Mar. 2015 / Revision 3
Similar pages