10 FZ06NPA045FP01 P967F10 P3 19

FZ06NPA045FP01
preliminary datasheet
NPC Application
flowNPC 0
600V/50A & 45A PS*
General conditions
BUCK
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
+ 15 V
- 15 V
8Ω
8Ω
Vout= 230 VAC
Figure 1.
Buck MOSFET
15 V
0V
8Ω
8Ω
Figure 2.
Typical average static loss as a function of
of output current IoRMS
Ploss=f(Iout)
Buck FRED
Typical average static loss as a function of
output current IoRMS
Ploss=f(Iout)
50
Ploss (W)
45
Ploss (W)
BOOST
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
45
40
φ=90º
φ=0º
40
35
35
30
30
25
25
20
20
φ=0º
15
15
φ=180º
10
10
5
5
φ=180º
0
0
0
10
20
Conditions:
parameter:
Tj=
φ
30
125
from
40
50 I (A)
out
0
60
°C
0°
in
12
to
10
20
Conditions:
parameter:
180°
Tj=
φ
30
125
from
steps
40
Buck MOSFET
0°
12
60
to
180°
steps
Figure 4.
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
I out (A)
°C
in
Figure 3.
50
Buck FRED
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
50
Ploss (W)
Ploss (W)
45
IoutRMS=Imax
45
40
40
35
IoutRMS=Imax
35
30
30
25
25
20
20
15
15
10
10
5
5
IoutRMS=6%Imin
IoutRMS=6% Imax
0
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
copyright by Vincotech
120
140
3,33 A
7
160
to
180
φ(º )
0
200
Conditions:
parameter:
50 A
A
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
1
120
140
3,33 A
7
160
to
180
φ(º )
200
50 A
A
Revision: 3
FZ06NPA045FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 5.
Buck MOSFET
600V/50A & 45A PS*
Figure 6.
Buck FRED
Typical average switching loss as a function of
phase displacement φ
Ploss=f(φ)
phase displacement φ
Ploss=f(φ)
Ploss (W)
Typical average switching loss as a function of
Ploss (W)
7,0
IoutRMS=Imax
2,00
1,80
6,0
1,60
IoutRMS=Imax
1,40
5,0
1,20
4,0
1,00
3,0
0,80
0,60
2,0
0,40
IoutRMS=6% Imax
1,0
0,20
IoutRMS=6% Imax
0,00
0
20
40
Conditions:
parameter:
60
80
100
120
Tj=
fsw=
125
20
°C
kHz
DC link=
IoRMS
700
from
V
140
φ(º )
180
0
200
20
40
Conditions:
3,33 A
in steps of
160
7
to
50 A
parameter:
60
100
Tj=
fsw=
125
20
°C
kHz
DC link=
IoRMS
700
from
V
A
Figure 7.
80
7
Buck FRED
P loss (W)
47
47
43
43
40
0-5
40
5-10
37
37
33
33
15-20
10-15
15-20
30
30
27
27
20-25
25-30
20-25
23
25-30
23
20
20
17
17
30-35
30-35
35-40
35-40
13
13
10
10
40-45
40-45
7
45-50
0
15
30
45
60
75
90
200
50 A
50
IoutR
50
10-15
to
180
φ(º )
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
P loss (W)
5-10
160
A
Figure 8.
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
0-5
140
3,33 A
in steps of
Buck MOSFET
120
IoutR
0,0
3
105 120 135 150 165 180
7
0
15
30
45
60
75 90
φ(º )
3
105 120 135 150 165 180
φ(º )
Conditions:
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
copyright by Vincotech
Conditions:
2
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
Revision: 3
FZ06NPA045FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 9.
for Buck MOSFET+FRED
600V/50A & 45A PS*
Figure 10.
for Buck MOSFET+FRED
Typical available output current as a function of
phase displacement φ
Typical available output current as a function of
switching frequency fsw
Iout=f(φ)
Iout=f(fsw)
60
Th=50°C
Iout (A)
Iout (A)
60
Th=50°C
50
50
40
40
30
30
Th=100°C
Th=100°C
20
20
10
10
0
0
15
30
45
60
75
90
105
120
135
150
165
0
180
1
φ
Conditions:
Tj= Tjmax-25 °C
fsw=
parameter:
700
V
Heatsink temp.
Th from
50
°C to
in
10
°C
20 kHz
Conditions:
DC link=
parameter:
100
steps
Figure 11.
°C
10
fsw (kHz)
φ= 0 °
Tj= Tjmax-25 °C
DC link=
Heatsink temp.
Th from
in
700
50
10
100
V
°C to
°C
100
steps
°C
for Buck IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement φ
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
60-65
135
55-60
120
50-55
45-50
105
40-45
35-40
90
30-35
25-30
75
20-25
60
15-20
10-15
45
5-10
0-5
30
15
fsw (kHz)
Conditions:
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
copyright by Vincotech
700
80
V
°C
3
Revision: 3
FZ06NPA045FP01
preliminary datasheet
flowNPC 0
NPC Application
Figure 12.
Boost IGBT
600V/50A & 45A PS*
Figure 13.
Typical average static loss as a function of
output current
Ploss=f(Iout)
Boost FRED
Typical average static loss as a function of
output current
Ploss=f(Iout)
80
Ploss (W)
Ploss (W)
40
φ=0º
φ=180º
70
35
60
30
50
25
40
20
30
15
20
10
φ=180º
10
5
φ=0º
0
0
0
10
20
Conditions:
parameter:
30
Tj=
125
φ
from
in
40
50 Iout (A)
0
60
°C
10
20
Conditions:
0°
12
to
steps
Figure 14.
180º
parameter:
Boost IGBT
30
Tj=
125
φ
from
in
50
Iout (A)
60
°C
0°
12
to
steps
Figure 15.
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
180º
Boost FRED
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
FRED D1
80
Ploss (W)
40
Ploss (W)
40
IoutRMS=Imax
35
IoutRMS=Imax
70
30
60
25
50
20
40
15
30
10
20
5
10
IoutRMS=6% Imax
IoutRMS=6% Imax
0
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
copyright by Vincotech
120
3 A
140
160
to
180
φ(º )
200
0
Conditions:
parameter:
50 A
7 A
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
4
120
3 A
140
160
to
180
φ(º )
200
50 A
7 A
Revision: 3
FZ06NPA045FP01
preliminary datasheet
flowNPC 0
NPC Application
Figure 16.
Boost IGBT
600V/50A & 45A PS*
Figure 17.
Boost FRED
Ploss (W)
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
Ploss (W)
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
35
IoutRMS=Imax
25
IoutRMS=Imax
30
20
25
15
20
15
10
10
5
5
IoutRMS=6% Imax
IoutRMS=6% Imax
0
0
40
80
100
Tj=
125
°C
DC link=
IoRMS
700
from
V
Conditions:
parameter:
60
120
140
160
fsw=
in steps of
3 A
to
7 A
A
Figure 18.
φ(º )
180
0
20 kHz
40
Conditions:
50 A
parameter:
60
80
100
Tj=
125
°C
DC link=
IoRMS
700
from
V
in steps of
Boost IGBT
120
140
160
180
φ(º )
200
fsw=
20 kHz
3 A
to
50 A
7 A
A
Figure 19.
Typical total loss as a function of phase displacement
and IoutRMS
Boost FRED
Typical total loss as a function of phase displacement
and IoutRMS
Ploss=f(IoRMS;φ)
Ploss=f(IoRMS;φ)
P loss (W)
47
36-39
33-36
43
30-33
40
27-30
50
IoutR
50
P loss (W)
30
15-18
27
12-15
0
15
30
45
60
75
90
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
copyright by Vincotech
27
24-30
23
18-24
20
12-18
6-9
13
30
30-36
20
0-3
33
36-42
9-12
17
37
42-48
23
3-6
40
48-54
33
18-21
43
54-60
37
21-24
47
60-66
24-27
Conditions:
20
200
17
6-12
13
0-6
10
10
7
7
3
105 120 135 150 165 180
φ(º )
0
15
Conditions:
5
MS
20
IoutR
0
30
45
60
75 90
φ(º )
3
105 120 135 150 165 180
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
Revision: 3
FZ06NPA045FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 20.
Boost IGBT+FRED
600V/50A & 45A PS*
Figure 21.
Typical available output current as a function of
of phase displacement
Iout=f(φ)
Boost IGBT+FRED
Typical available output current
as a function of switching frequency
Iout=f(fsw)
60
Iout (A)
Iout (A)
60
50
Th=50°C
50
40
40
Th=50°C
30
30
20
20
Th=100°C
Th=100°C
10
10
0
0
Conditions:
15
30
45
60
75
90
105
120
135
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
Th from
in
150
fsw=
Heatsink temp.
50
°C to
10
°C
165
0
180
φ(º )
1
20 kHz
Conditions:
10
Figure 22.
°C
f sw (kHz)
Th from
in
Heatsink temp.
50
°C to
10
°C
1000
φ= 90°
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
100
steps
100
100
steps
°C
Boost IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
0-5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
40-45
45-50
135
120
105
90
75
60
45
30
15
2
Conditions:
4
8
16
32
64
0
128
fsw (kHz)
Tj= Tjmax-25 °C
DC link=
Th=
copyright by Vincotech
700
80
V
°C
6
Revision: 3
FZ06NPA045FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 23.
per MODULE
600V/50A & 45A PS*
Figure 24.
Typical available output current as a function of
heat sink temperature
Iout=f(Th)
per MODULE
Typical available output current
as a function of phase displacement
Iout=f(φ)
60
Iout (A)
Iout (A)
60
50
Th=50°C
50
40
40
2kHz
30
30
20
20
Th=100°C
128kHz
10
10
0
0
φ
60
65
Conditions:
70
75
80
85
90
o
95T h ( C) 100
0
Tj= Tjmax-25 °C
DC link=
φ=
parameter:
Conditions:
700
V
0°
Switching freq.
fsw from
2
in steps of factor 2
15
30
45
parameter:
128
Figure 25.
kHz
Th from
in
per MODULE
75
90
105
120
135
150
50
10
°C to
°C
100
steps
per MODULE
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
60
Iout (A)
180
700
V
20
kHz
Heatsink temp.
Figure 26.
Typical available output current as a function of
switching frequency
Iout=f(fsw)
165
Tj= Tjmax-25 °C
DC link=
fsw=
kHz to
60
I out (A)
Th=50°C
φ
165
50
150
60-65
135
55-60
50-55
40
120
45-50
40-45
105
35-40
30
30-35
90
25-30
Th=100°C
75
20-25
20
15-20
60
10-15
5-10
45
0-5
10
30
15
0
1
10
Conditions:
Tj= Tjmax-25 °C
DC link=
parameter:
Th from
in
50
10
copyright by Vincotech
f sw (kHz)
φ=
100
f sw (kHz)
0°
Conditions:
700
V
Heatsink temp.
°C to
°C
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
700
80
V
°C
100
steps
7
Revision: 3
FZ06NPA045FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 27.
per MODULE
600V/50A & 45A PS*
Figure 28.
per MODULE
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
100,0
100,0
99,0
φ=0º
99,0
2kHz
98,0
φ=180º
98,0
97,0
128kHz
Pout (kVA)
Pout (kVA)
96,0
97,0
0,0
2,0
Conditions:
4,0
Tj=
fsw=
6,0
125
20
8,0
10,0
12,0
0,0
14,0
°C
kHz
Conditions:
DC link=
parameter:
2,0
700
V
phase displacement
φ
from
0°
in steps of 30 °
Tj=
DC link=
parameter:
to
Figure 29.
6,0
125
700
8,0
10,0
12,0
128
kHz
Figure 30.
per MODULE
Typical available output power as a function of
Typical loss distribution as a function of
heat sink temperature
Pout=f(Th)
output current
Pout=f(Th)
14
14,0
φ= 0 °
°C
V
Switching freq.
fsw from
2
kHz to
in steps of factor 2
180 °
per MODULE
4,0
Pout (kW)
120,0
Loss distribution
12
100,0
10
T1
Stat.
2kHz
80,0
D3-5
Sw.
8
D3-5
Stat.
60,0
6
T3
Sw.
40,0
T3
Stat.
4
128kHz
20,0
2
0,0
0
60
Conditions:
parameter:
65
70
75
80
Tj= Tjmax-25 °C
DC link=
700
φ=
0
Switching freq.
fsw from
2
kHz to
in steps of factor 2
copyright by Vincotech
85
90
95
T h ( o C)
3
100
10
13
17
20
23
27
30
33
37
40
43
47
50
Iout (A)
Conditions:
V
°
128
7
Tj=
fsw=
125
20
°C
kHz
DC link=
φ=
700
0°
V
kHz
8
Revision: 3
FZ06NPA045FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 31.
Typical relativ loss distribution as a function of
output current
Pout=f(Th)
per MODULE
Figure 32.
600V/50A & 45A PS*
per MODULE
1,0
Loss distribution
0,9
0,8
T1
Stat.
D3-5
Sw.
D3-5
Stat.
0,7
0,6
0,5
0,4
T3
Sw.
T3
Stat.
0,3
0,2
0,1
0,0
3
7
10
13
17
20
23
27
30
33
37
40
43
47
50
Iout (A)
Conditions:
Tj=
fsw=
DC link=
φ=
125
20
700
0°
°C
kHz
V
Cg is included in the module
copyright by Vincotech
9
Revision: 3
FZ06NPA045FP01
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
10
Revision: 3
Similar pages