V23990 P840 x4x D7 19

V23990-P840-*4*-PM
application sheet
Inverter Application
flow PIM 0 3rd gen
1200 V / 15 A
General conditions
3phase SPWM
V GEon = 15 V
V GEoff = 0 V
R gon = 16 Ω
R goff = 16 Ω
Figure 1
IGBT
Figure 2
Typical average static loss as a function of output current
P loss = f(I out)
FWD
Typical average static loss as a function of output current
P loss = f(I out)
Ploss (W)
40
Ploss (W)
50
Mi*cosfi = 1
Mi*cosf i= -1
40
30
30
20
20
10
10
Mi*cosfi = -1
0
At
Tj =
5
125
10
15
20
25
30
Iout (A)
0
35
5
10
15
20
25
30
35
Iout (A)
At
Tj =
°C
Mi*cosφ from -1 to 1 in steps of 0,2
125
°C
Mi*cosφ from -1 to 1 in steps of 0,2
Figure 3
IGBT
Typical average switching loss
as a function of output current
Figure 4
FWD
Typical average switching loss
as a function of output current
P loss = f(I out)
40
Ploss (W)
Ploss (W)
Mi*cosfi = 1
0
0
35
P loss = f(I out)
16
fsw = 16kHz
14
fsw = 16kHz
30
12
25
10
20
8
15
6
10
4
5
2
fsw = 2kHz
fsw = 2kHz
0
0
0
5
10
15
20
25
30
35
0
Iout (A)
At
Tj =
125
At
Tj =
°C
DC link = 600
V
f sw from 2 kHz to 16 kHz in steps of factor 2
copyright Vincotech
5
125
10
15
20
25
30
Iout (A)
35
°C
DC link = 600
V
f sw from 2 kHz to 16 kHz in steps of factor 2
1
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
application sheet
Inverter Application
flow PIM 0 3rd gen
Figure 5
Phase
1200 V / 15 A
Figure 6
Typical available 50Hz output current
as a function Mi*cosφ
I out = f(Mi*cos φ )
Phase
Typical available 50Hz output current
as a function of switching frequency
I out = f(f sw)
Iout (A)
25
Iout (A)
25
Ts = 60 °C
Ts = 60 °C
Ts = 100 °C
20
20
15
15
Ts = 100 °C
10
10
5
5
0
0
-1,0
-0,8
At
Tj =
-0,6
125
-0,4
-0,2
0,0
0,2
0,4
0,6
0,8
1,0
Mi*cos φ
1
At
Tj =
°C
DC link = 600
V
f sw =
4
kHz
T s from
60 °C to 100 °C in steps of 5 °C
10
125
DC link = 600
Mi*cos φ =0,8
T s from
Figure 7
Phase
V
60 °C to 100 °C in steps of 5 °C
Phase
Typical available 0Hz output current as a function
of switching frequency
I outpeak = f(f sw)
Iout (Apeak)
-1,0
Mi*cosfi
Iout (A)
-0,6
100
°C
Figure 8
Typical available 50Hz output current as a function of
Mi*cos φ and switching frequency
I out = f(f sw, Mi*cos φ )
-0,8
fsw (kHz)
25
Th = 60°C
20
21,0-23,0
-0,4
19,0-21,0
-0,2
15
17,0-19,0
0,0
15,0-17,0
0,2
13,0-15,0
10
0,4
11,0-13,0
0,6
9,0-11,0
0,8
Th = 100°C
5
1,0
1
2
4
8
16
32
0
64
1
f sw (kHz)
At
Tj =
125
°C
DC link = 600
Ts =
80
V
°C
copyright Vincotech
At
Tj =
10
125
fsw (kHz)
100
°C
DC link = 600
V
T s from
60 °C to 100 °C in steps of 5 °C
Mi =
0
2
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
application sheet
Inverter Application
flow PIM 0 3rd gen
Figure 9
Inverter
Figure 10
Typical available peak output power as a function of
heatsink temperature
P out=f(T s)
Inverter
Typical efficiency as a function of output power
efficiency=f(P out)
12
100
efficiency (%)
Pout (kW)
1200 V / 15 A
2kHz
10
2kHz
99
16kHz
8
98
6
97
4
16kHz
96
2
0
95
60
65
At
Tj =
DC link =
Mi =
cos φ =
f sw from
70
75
125
°C
600
1
V
80
85
90
95
Ts ( o C)
100
0
At
Tj =
DC link =
Mi =
cos φ =
f sw from
0,80
2 kHz to 16 kHz in steps of factor 2
Figure 11
2
4
6
125
°C
600
1
V
8
10
12
14
16
Pout (kW)
18
0,80
2 kHz to 16 kHz in steps of factor 2
Inverter
Overload (%)
Typical available overload factor as a function of
motor power and switching frequency
P peak / P nom=f(Pnom,fsw)
400
350
300
250
200
150
Switching frequency (kHz)
Motor nominal power (HP/kW)
100
3,00 / 2,21
5,00 / 3,68
7,50 / 5,52
10,00 / 7,36
15,00 / 11,03
20,00 / 14,71
1
374
225
150
112
0
0
2
374
225
150
112
0
0
4
374
225
150
112
0
0
8
374
225
150
112
0
0
16
374
225
150
112
0
0
At
Tj =
125
DC link = 600
°C
V
Mi =
1
cos φ =
f sw from
Ts =
0,8
1 kHz to 16kHz in steps of factor 2
80
°C
Motor eff =0,85
copyright Vincotech
3
19 Mar. 2016 / Revision 7