V23990 P823 F10 D3 14

V23990-P823-F10-PM
datasheet
flow PACK 1 3rd gen
600 V / 50 A
Features
flow1 housing
● Compact flow1 housing
● Compact and Low Inductance Design
● Built-in NTC
Target Applications
Schematic
● Motor Drive
● Power Generation
● UPS
Types
● V23990-P823-F10-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
Tj=Tjmax
tp limited by T jmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
T jmax
44
150
77
A
A
W
±20
V
6
360
µs
V
175
°C
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
V RRM
IF
I FRM
P tot
Tj=25°C
Tj=Tjmax
tp limited by T jmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
40
100
57
A
A
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+150
°C
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
V is
t=1min
1
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,56
1,79
2,1
Inverter Transistor
Gate emitter threshold voltage
V GE(th)
Collector-emitter saturation voltage
V CEsat
VCE=VGE
0,0008
15
50
Collector-emitter cut-off current incl. Diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
0,35
650
Rgoff=8 Ω
Rgon=8 Ω
±15
300
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
t d(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
106
98
19
16
150
173
89
115
0,50
0,75
1,18
1,63
ns
mWs
3140
f=1MHz
0
Tj=25°C
25
200
pF
93
Vcc=480
±15
50
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
310
nC
1,24
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
VF
50
I RRM
t rr
Q rr
Rgon=8 Ω
±15
300
( di rf/dt )max
E rec
R th(j-s)
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
Thermal grease
thickness≤50um
λ = 1 W/mK
1,63
1,60
28
79
144
147
1,91
4,71
1357
4135
0,55
1,09
2,1
V
A
ns
nC
A/µs
mWs
1,65
K/W
Thermistor
Rated resistance
Deviation of R100
Power dissipation given Epcos-Typ
B-value
copyright Vincotech
R 25
D R /R
Tj=25°C
Tol. ±5%
R100=435Ω
P
B (25/100)
Tol. ±3%
2
4,46
4,7
4,94
kΩ
Tc=100°C
2,6
%/K
Tj=25°C
210
mW
Tj=25°C
3530
K
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IC (A)
150
IC (A)
150
Output inverter IGBT
120
120
90
90
60
60
30
30
0
0
0
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I c = f(V GE)
Output inverter IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
150
IC (A)
IF (A)
50
Output inverter FWD
40
Tj = 25°C
120
30
90
Tj = Tjmax-25°C
Tj = Tjmax-25°C
20
60
10
30
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
3
0,5
1
250
µs
1,5
2
2,5
VF (V)
3
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I c)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
3
E (mWs)
3
Output inverter IGBT
Eoff
2,5
2,5
Eon
2
2
Eoff
1,5
Eoff
Eon
1,5
Eoff
Eon
1
1
Eon:
0,5
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
V CE =
300
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
V CE =
300
V
V GE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
1,5
E (mWs)
E (mWs)
2
Output inverter IGBT
1,2
1,5
Erec
0,9
Erec
1
0,6
Erec
Erec
0,5
0,3
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/150
°C
V CE =
300
V
V GE =
±15
V
R gon =
8
Ω
copyright Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
25/150
°C
V CE =
300
V
V GE =
±15
V
IC =
50
A
4
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Output Inverter
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
tdoff
t ( µs)
t ( µs)
1
Output inverter IGBT
tdon
tdoff
tf
tf
tdon
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
IC (A)
100
0
With an inductive load at
Tj =
150
°C
V CE =
300
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
RG (Ω )
32
40
With an inductive load at
Tj =
150
°C
V CE =
300
V
V GE =
±15
V
IC =
50
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
Output inverter FWD
0,4
t rr( µs)
t rr( µs)
0,2
0,16
trr
trr
trr
0,3
trr
0,12
0,2
0,08
0,1
0,04
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/150
300
±15
8
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
5
8
25/150
300
50
±15
16
24
32
R Gon ( Ω ) 40
°C
V
A
V
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Output Inverter
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
7
Output inverter FWD
6
Qrr ( µC)
Qrr ( µC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I c)
Qrr
6
5
Qrr
5
4
4
3
3
Qrr
Qrr
2
2
1
1
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
25/150
300
±15
8
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I c)
Output inverter FWD
8
25/150
300
50
±15
16
24
R Gon ( Ω)
40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
Output inverter FWD
150
IrrM (A)
IrrM (A)
120
32
100
IRRM
120
80
90
60
60
40
IRRM
IRRM
30
20
IRRM
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/150
300
±15
8
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
6
8
25/150
300
50
±15
16
24
32
R Gon ( Ω )
40
°C
V
A
V
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
dIrec/dt
5000
dI0/dt
dIrec/dt
10000
4000
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
Output inverter FWD
12000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
6000
Output inverter FWD
20
25/150
300
±15
8
40
60
I C (A)
80
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
8
25/150
300
50
±15
16
24
R Gon ( Ω) 40
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
32
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
1,24
K/W
10-5
10-4
At
D =
R thJH =
tp/T
1,65
10-3
FWD thermal model values
R (K/W)
0,02
0,10
0,30
0,49
0,23
0,04
0,06
R (K/W)
0,02
0,09
0,27
0,72
0,36
0,09
0,10
copyright Vincotech
7
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
Tau (s)
1,3E+01
1,7E+00
3,0E-01
9,8E-02
1,6E-02
2,2E-03
3,4E-04
10-2
Tau (s)
1,5E+01
1,7E+00
3,1E-01
8,9E-02
1,4E-02
1,3E-03
2,4E-04
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
60
IC (A)
Ptot (W)
150
Output inverter IGBT
50
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
100
150
Th ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
60
IF (A)
Ptot (W)
120
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
175
15
V GE =
Output inverter FWD
50
50
175
copyright Vincotech
°C
100
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
8
50
175
100
150
Th ( o C)
200
°C
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
Output inverter IGBT
V GE = f(Q g)
103
IC (A)
VGE (V)
18
16
10uS
102
120V
14
100uS
12
1mS
101
480V
10
10mS
DC
8
100mS
100
6
4
10-1
2
0
10
0
At
D =
Th =
V GE =
Tj =
101
102
V CE (V)
10
0
3
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
copyright Vincotech
9
100
50
200
300
Qg (nC)
400
A
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
copyright Vincotech
75
100
T (°C)
125
10
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
= 8Ω
R gon
R goff
= 8Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
280
140
Ic
tdoff
120
240
Uce
100
80
200
Uce 90%
Uge 90%
160
Uce
60
Ic
%
120
%
tEoff
40
80
20
Uge
tdon
Ic 1%
40
0
Ic10%
Uge
-20
0
-40
-0,2
Uce3%
Uge10%
tEon
-40
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
300
t doff =
t E off =
time (us)
0,4
0,6
0,8
2,8
2,95
3,1
time(us)
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
50
A
I C (100%) =
50
A
0,17
0,58
µs
µs
t don =
t E on =
0,10
0,22
µs
µs
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
300
3,25
3,4
3,55
V
V
V
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
260
fitted
120
220
Uce
100
Ic
180
Ic 90%
80
140
Ic 60%
%60
Uce
%
100
Ic90%
Ic 40%
40
tr
60
20
Ic10%
tf
0
-20
0,05
20
Ic
Ic10%
-20
0,1
0,15
0,2
0,25
time (us)
0,3
0,35
0,4
2,9
3
3,1
time(us)
V C (100%) =
I C (100%) =
300
50
V
A
V C (100%) =
I C (100%) =
300
50
V
A
tf =
0,12
µs
tr =
0,02
µs
copyright Vincotech
11
3,2
3,3
3,4
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
160
Eoff
Poff
Pon
100
130
80
100
Eon
60
70
%
%
40
40
20
Uge10%
Uce3%
10
0
tEon
Uge90%
tEoff
-20
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
15,03
1,63
0,58
time (us)
Ic 1%
0,4
0,6
-20
2,95
0,8
3,11
3,19
3,27
P on (100%) =
E on (100%) =
t E on =
Output inverter FRED
15,03
0,75
0,22
kW
mJ
µs
Figure 8
Output inverter IGBT
Turn-off Switching Waveforms & definition of t rr
Gate voltage vs Gate charge (measured)
20
120
15
80
Id
fitted
trr
10
40
5
0
0
% -40
-5
-80
-10
-120
-15
-160
Uge (V)
3,35
time(us)
kW
mJ
µs
Figure 7
3,03
Ud
IRRM10%
IRRM90%
-20
-250
IRRM100%
-200
-100
50
200
Qg (nC)
V GE off =
V GE on =
V C (100%) =
I C (100%) =
-15
15
300
50
V
V
V
A
Qg =
479,76
nC
copyright Vincotech
350
500
3
650
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
12
3,08
3,16
300
50
-79
0,15
time(us)
3,24
3,32
3,4
V
A
A
µs
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Switching Definitions Output Inverter
Figure 9
Output inverter FRED
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Output inverter FRED
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
120
Id
Erec
Qrr
100
100
50
80
tQint
0
60
%
%
tErec
-50
40
-100
20
-150
0
Prec
-200
-20
2,9
3,15
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,4
50
4,71
0,80
time(us)
3,65
3,9
4,15
2,9
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
13
3,15
3,4
15,03
1,09
0,80
time(us)
3,65
3,9
4,15
kW
mJ
µs
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 17mm housing
in DataMatrix as
V23990-P823-F10-PM
P823-F10
in packaging barcode as
P823-F10
Outline
Pin table
Pin
X
Y
52,6
0
2
49,9
0
3
42,65
0
4
39,65
0
5
35,15
2,8
6
28,4
0
7
24
2,8
8
21
0
9
12,2
0
10
9,2
0
11
2,7
0
12
0
0
13
0
14,65
14
2,7
14,65
15
0
28,6
16
2,7
28,6
17
5,4
28,6
18
9,6
28,6
19
12,6
28,6
20
19,6
28,6
21
22,3
28,6
22
25
28,6
23
29,7
28,6
24
32,7
28,6
25
39,7
28,6
26
42,7
28,6
27
42,2
28,6
28
49,9
28,6
29
52,6
28,6
30
52,6
14,56
31
49,9
14,56
1
Pinout
copyright Vincotech
14
12 Aug. 2015 / Revision 3
V23990-P823-F10-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
100
>SPQ Standard
<SPQ Sample
Handling instruction
Handling instructions for flow 1 packages see vincotech.com website.
Package data
Package data for flow 1 packages see vincotech.com website.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”)
are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be
incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves
the right to make any changes without further notice to any products to improve reliability, function or
design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or
completeness of said information or that the application or use of any of the same will avoid hazards,
accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe
third parties rights or give desired results. It is reader’s sole responsibility to test and determine the
suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems
without the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance
with instructions for use provided in labelling can be reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
copyright Vincotech
15
12 Aug. 2015 / Revision 3