30 F212R6A075SCx M448 Ex D1 14

30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
flowPACK 2
1200V/75A
Features
flowPACK 2
● Inverter, blocking diodes
● Built-in thermistor
● IGBT4 technology for low saturation losses
Target Applications
● Power Regeneration
Schematic
Types
● 30-F212R6A075SC-M448E
● 30-F212R6A075SC01-M448E10
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
D7,D8
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
154
208
A
1270
A
2400
A2s
189
287
W
Tjmax
150
°C
VCE
1200
V
85
109
A
tp limited by Tjmax
210
A
VCE ≤ 1200V, Tj ≤ Top max
140
A
239
361
W
20
V
10
800
µs
V
175
°C
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
64
84
A
100
A
127
192
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,12
1,07
0,89
0,76
2
3
0,05
1,21
D7,D8
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
100
Slope resistance (for power loss calc. only)
rt
100
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to heatsink per chip
RthJC
100
1600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mΩ
mA
0,37
Phase-Change
Material
K/W
0,24
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VGE(th)
VCE(sat)
IGES
Integrated Gate resistor
Rgint
Rise time
Turn-off delay time
Fall time
0,0024
15
ICES
Gate-emitter leakage current
Turn-on delay time
VCE=VGE
75
1200
0
20
0
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5
5,8
6,5
1,6
2
2,41
2,1
0,02
240
Rgoff=8 Ω
Rgon=8 Ω
±15
600
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
nA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
92,8
93
23
27
202
275
65
125
4,49
6,5
3,91
6,91
ns
mWs
3900
f=1MHz
Tj=25°C
25
0
310
pF
230
960
±15
75
Tj=25°C
380
nC
0,4
Phase-Change
Material
K/W
0,26
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
75
Rgon=8 Ω
±15
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,35
2,03
2,15
71,53
85,7
271,4
308,2
6,03
11,73
2648
602
2,28
4,71
2,05
V
A
ns
µC
A/µs
mWs
0,75
Phase-Change
Material
K/W
0,49
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
R100=1486 Ω
Tc=100°C
-5
5
%
200
mW
Tj=25°C
2
mW/K
Tc=100°C
Power dissipation constant
Ω
22000
Tj=25°C
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3998
K
Vincotech NTC Reference
Copyright by Vincotech
Tj=25°C
3
B
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
240
IC (A)
240
200
200
160
160
120
120
80
80
40
40
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
µs
250
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
200
IC (A)
IF (A)
75
60
150
45
100
30
50
15
0
0
0
2
4
6
8
10
V GE (V) 12
0
At
Tj =
tp =
VCE =
1
2
3
4
V F (V)
5
At
25/150
250
10
°C
µs
V
Copyright by Vincotech
Tj =
tp =
4
25/150
250
°C
µs
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
20
Eon High T
16
Eon High T
16
Eoff High T
12
Eon Low T
12
Eon Low T
8
8
Eoff High T
Eoff Low T
4
4
0
Eoff Low T
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
9
E (mWs)
E (mWs)
9
8
6
8
6
Erec
5
5
3
Erec
3
Erec
Erec
2
2
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
5
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdon
tdoff
tf
tf
tdon
0,10
0,10
tr
tr
0,01
0,01
0,00
0,00
0
25
50
75
100
125
I C (A) 150
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
R G ( Ω ) 40
32
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1
t rr( µs)
t rr( µs)
0,8
0,8
trr
0,6
trr
0,6
0,4
trr
0,4
trr
0,2
0,2
0
0
0
25
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
8
25/150
600
75
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
15
Qrr( µC)
Qrr( µC)
20
Qrr
16
Qrr
12
12
9
Qrr
Qrr
8
6
4
3
0
0
0
25
At
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6 FWD
8
25/150
600
75
±15
16
24
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
150
R gon ( Ω)
32
120
200
90
150
IRRM
IRRM
60
100
30
50
IRRM
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/150
600
75
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
15000
direc / dt (A/ µs)
direc / dt (A/µ s)
7500
D1,D2,D3,D4,D5,D6 FWD
dI0/dt
dIrec/dt
6000
dI0/dt
dIrec/dt
12500
10000
4500
dIo/dtLow T
di0/dtHigh T
7500
di0/dtHigh T
3000
5000
dIrec/dtLow T
1500
dIo/dtLow T
dIrec/dtHigh T
2500
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/150
600
75
±15
16
24
40
D1,D2,D3,D4,D5,D6 FWD
ZthJH (K/W)
Zth-JH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
R gon ( Ω )
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
32
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
1012
10
10-5
At
D=
RthJH =
tp / T
0,40
K/W
10-4
10-3
10-2
R (C/W)
0,06
0,09
0,14
0,07
0,02
0,02
R (C/W)
0,04
0,07
0,25
0,32
0,06
8
t p (s)
1
10
102
K/W
FWD thermal model values
Phase-Change Material
Copyright by Vincotech
100
tp / T
0,75
IGBT thermal model values
Phase-Change Material
Tau (s)
1,6E+00
2,1E-01
5,1E-02
1,6E-02
3,1E-03
4,6E-04
10-1
Tau (s)
3,6E+00
6,2E-01
8,6E-02
2,1E-02
3,5E-03
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
500
400
90
300
60
200
30
100
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
250
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
17,5
IC (A)
VGE (V)
103
15
10uS
10
240V
2
12,5
100uS
960V
101
10
1mS
7,5
100
10mS
5
100mS
DC
2,5
0
10
0
-1
10
0
At
D=
Th =
VGE =
10
1
10
103
2
V CE (V)
At
IC =
single pulse
ºC
80
±15
V
Tjmax
ºC
Tj =
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 27
25
75
50
100
125
150
175
Q g (nC)
200
A
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
75
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
600
tsc (µS)
IC (sc)
17,5
15
500
12,5
400
10
300
7,5
200
5
100
2,5
0
0
12
13
14
15
16
17
18
19
V GE (V)
20
12
13
14
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
10
15
16
17
18
19 V (V) 20
GE
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
200
IC MAX
Ic CHIP
150
Ic
MODULE
100
VCE MAX
50
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Rgon =
Rgoff =
150 °C
8Ω
8Ω
Copyright by Vincotech
11
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
D7a-b,D8a-b
D7a-b,D8a-b diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D7a-b,D8a-b diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
300
0
IF (A)
ZthJC (K/W)
10
250
200
150
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
50
0
0
0,5
1
1,5
2
V F (V)
10-2
2,5
10-5
At
25/125
250
Tj =
tp =
At
D=
RthJH =
°C
µs
D7a-b,D8a-b diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
t p (s)
1
10
102
tp / T
0,370
K/W
D7a-b,D8a-b diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
250
IF (A)
Ptot (W)
500
400
200
300
150
200
100
100
50
0
0
0
At
Tj =
10-4
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
12
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
13
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 1
120
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
tdoff
%
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
%
IC
VCE
100
200
VCE 90%
VGE 90%
80
150
IC
60
VCE
100
tEoff
40
VGE
tdon
50
20
IC 1%
VCE 3%
IC10%
VGE10%
0
0
VGE
tEon
-20
-0,4
-50
-0,2
0
0,2
0,4
0,6
0,8
1
2,9
2,98
3,06
3,14
3,22
3,3
3,38
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
75
0,28
0,66
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 3
3,46
time(us)
-15
15
600
75
0,09
0,33
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
V
V
V
A
µs
µs
Turn-on Switching Waveforms & definition of tr
140
250
%
%
Ic
120
fitted
IC
VCE
200
100
IC 90%
150
80
VCE
IC 60%
60
100
40
IC90%
tr
IC 40%
50
20
IC10%
IC10%
0
0
tf
-20
0
0,1
0,2
0,3
0,4
0,5
-50
3,05
0,6
3,08
3,11
3,14
time (us)
VC (100%) =
IC (100%) =
tf =
600
75
0,12
Copyright by Vincotech
3,17
3,2
3,23
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
14
600
75
0,03
V
A
µs
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
Switching Definitions Output Inverter
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 5
T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
250
%
Eoff
%
100
200
Poff
Pon
80
150
Eon
60
100
40
50
20
VGE 10%
VGE 90%
IC 1%
0
VCE 3%
0
tEoff
tEon
-50
-20
-0,2
0
0,2
0,4
0,6
2,9
0,8
3
3,1
3,2
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
44,82
6,91
0,66
3,3
3,4
3,5
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
44,82
6,50
0,33
kW
mJ
µs
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
0
IRRM10%
Vd
-50
fitted
-100
IRRM90%
IRRM100%
-150
2,8
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
3
3,2
600
75
-86
0,31
Copyright by Vincotech
3,4
3,6
time(us)
3,8
V
A
A
µs
15
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
Switching Definitions Output Inverter
D1,D2,D3,D4,D5,D6 FWD
Figure 8
D1,D2,D3,D4,D5,D6 FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Qrr
Id
100
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
3
3,2
3,4
3,6
3,8
4
4,2
3
3,2
3,4
3,6
44,82
4,71
1,00
kW
mJ
µs
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
75
11,73
1,00
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
16
3,8
4
time(us)
4,2
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
17mm housing
17mm housing, without thermistor
Ordering Code
30-F212R6A075SC-M448E
30-F212R6A075SC01-M448E10
in DataMatrix as
in packaging barcode as
M448-E
M448-E10
M448-E
M448-E10
Outline
Pinout
Copyright by Vincotech
17
Revision: 1
30-F212R6A075SC-M448E-PM
30-F212R6A075SC01-M448E10-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
18
Revision: 1