FZ06RIA045FH01 Maximum Ratings

FZ06RIA045FH01
preliminary datasheet
flowSOL RI
600V/30A & 45mΩ
Features
flow0 housing
● High efficiency
● Ultra fast rectification and switching frequency
● Low inductive design
● Tandem to FZ06BIA083FI
Target Applications
Schematic
● Transformer-based solar inverters
Types
● FZ06RIA045FH01
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
28
37
A
300
A
450
A2s
41
62
W
150
°C
600
V
Fast Rectifier Diode
Repetitive peak reverse voltage
VRRM
Forward average current
IFAV
Repetitive peak forward current
IFSM
I2t-value
I2t
Power dissipation per diode
Ptot
Maximum Junction Temperature
sine,d=0.5
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tjmax
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
22
28
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
70
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
34
52
W
150
°C
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
30
37
A
tp limited by Tjmax
Tc=25°C
230
A
Th=80°C
94
142
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
36
40
A
225
A
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
79
129
W
±20
V
6
360
μs
V
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Tj≤150°C
VGE=15V
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
1
2,38
1,70
1,58
1,02
27
22
0,1
0,5
2,7
Fast Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
30
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
V
V
mΩ
mA
1,72
K/W
Buck Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
VF
15
IRRM
trr
Qrr
Rgon=4 Ω
400
10
15
di(rec)max
/dt
Erec
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
2,04
1,50
42
58
12
19
0,26
0,65
14190
13169
0,04
0,11
2,7
V
A
ns
μC
A/μs
mWs
2,04
K/W
Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Rds(on)
44
10
V(GS)th
0,003
0
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Rgoff=4 Ω
Rgon=4 Ω
Coss
Thermal resistance chip to heatsink per chip
RthJH
Copyright by Vincotech
15
2,1
45
89
3
400
10
44
Tj=25°C
mΩ
3,9
200
25000
31
30
6
6
158
170
45
12
0,132
0,229
0,026
0,026
150
34
V
nA
nA
ns
mWs
190
nC
51
6800
f=1MHz
Output capacitance
400
10
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
100
0
Tj=25°C
pF
320
Thermal grease
thickness≤50um
λ = 1 W/mK
0,75
3
K/W
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,59
1,83
2,1
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0008
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,1
650
Integrated Gate resistor
Rgint
none
Input capacitance
Cies
3140
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
f=1MHz
0
25
15
480
V
V
mA
nA
Ω
Tj=25°C
200
pF
Tj=25°C
310
nC
1,20
K/W
93
50
Thermal grease
thickness≤50um
λ = 1 W/mK
Note: For the Boost IGBT only LF switching allowed
Thermistor
Rated resistance*
R25
R100
Power dissipation
P
B(25/100)
B-value
Tj=25°C
Tol. ±5%
Tol. ±3%
17,5
22
1486
29,0
kΩ
Ω
Tj=25°C
210
mW
Tj=25°C
4000
K
* see details on Thermistor charts on Figure 2.
Copyright by Vincotech
4
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Buck
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
4 V to 14 V in steps of 1 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
250
μs
125
°C
4 V to 14 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IF (A)
50
IC (A)
50
5
Tj = Tjmax-25°C
40
40
30
30
20
Tj = Tjmax-25°C
Tj = 25°C
20
Tj = 25°C
10
10
0
0
0
At
tp =
VCE =
1
250
10
2
3
4
5
V GE (V)
6
0
At
tp =
μs
V
Copyright by Vincotech
5
0,8
250
1,6
2,4
3,2
V F (V)
4
μs
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,40
E (mWs)
0,40
E (mWs)
Eon High T
0,32
0,32
0,24
0,24
Eon High T
Eon Low T
Eon Low T
0,16
0,16
0,08
0,08
Eoff High T
Eoff Low T
Eoff High T
Eoff Low T
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
15
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,150
E (mWs)
E (mWs)
0,250
0,200
0,120
Erec High T
0,150
0,090
0,100
0,060
Erec Low T
Erec Low T
Erec High T
0,030
0,050
0,000
0,000
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
6
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Buck
MOSFET
MOSFET
1,00
1,00
t (ms)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t (ms)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdoff
0,10
0,10
tf
tdon
tdon
tr
0,01
0,01
tf
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,040
t rr(ms)
0,025
t rr(ms)
trr High T
0,020
0,032
0,015
0,024
trr High T
trr Low T
0,010
0,016
0,005
0,008
0,000
trr Low T
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/125
400
15
10
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Buck
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr (mC)
Qrr (mC)
1,20
1,00
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,9
0,75
Qrr High T
0,80
0,6
Qrr High T
0,60
0,45
0,40
0,3
Qrr Low T
Qrr Low T
0,20
0,15
0,00
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
25/125
400
15
10
8
12
16
100
100
IrrM (A)
R g on ( Ω)
20
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
IRRM High T
80
80
IRRM High T
60
60
IRRM Low T
40
40
IRRM Low T
20
20
0
0
0
5
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
4
10
15
20
25
I C (A)
30
°C
V
V
Ω
Copyright by Vincotech
8
0
4
At
Tj =
VR =
IF =
VGE =
25/125
400
15
10
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Buck
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
25000
direc / dt (A/ms)
25000
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
dIrec/dtLow T
20000
15000
dI0/dt
dIrec/dt
20000
15000
dIrec/dtHigh T
dIrec/dtHigh T
10000
10000
dI0/dtLow T
dIo/dtLow T
5000
dIrec/dtLow T
5000
di0/dtHigh T
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
400
15
10
8
12
R gon (W)
16
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
20
0
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
-5
-4
10
10
At
D=
RthJH =
-3
10
10
-2
10
-1
0
10
t p (s)
10-5
1
10 1
At
D=
RthJH =
tp / T
0,75
K/W
10-4
10-3
2,04
R (C/W)
0,03
0,12
0,41
0,11
0,03
0,04
R (C/W)
0,06
0,25
0,90
0,53
0,23
0,07
9
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
9,3E+00
1,2E+00
1,6E-01
3,8E-02
5,2E-03
3,7E-04
10-2
Tau (s)
5,6E+00
5,0E-01
7,8E-02
1,5E-02
1,8E-03
3,3E-04
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Buck
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
250
200
40
150
30
100
20
50
10
0
0
0
50
At
Tj =
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
200
°C
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
90
75
40
60
30
45
20
30
10
15
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
150
100
150
T h ( o C)
200
°C
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Buck
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
3
10
IC (A)
VGE (V)
10
MOSFET
Figure 26
Gate voltage vs Gate charge
100uS
10
2
10
1
100mS
DC
10uS
10mS
8
120V
1mS
480V
6
4
100
2
10-1
0
0
20
40
60
80
100
120
140
160
Q g (nC)
0
10
At
D=
Th =
VGE =
Tj =
1
10
10
2
V CE (V)
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Copyright by Vincotech
11
44
A
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 4
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
IC (A)
50
40
100
30
Tj = Tjmax-25°C
Tj = 25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
-1
10
10
0
10-2
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V) 12
-5
10
μs
V
Copyright by Vincotech
At
D=
RthJH =
12
-4
10
-3
10
-2
10
-1
10
10
t p (s)
0
1
10 1
IGBT thermal model values
tp / T
1,20
K/W
R (C/W)
0,03
0,14
0,56
0,31
0,10
Tau (s)
1,2E+01
1,1E+00
1,5E-01
3,3E-02
5,4E-03
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Boost
IGBT
Figure 5
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 6
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
150
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
Copyright by Vincotech
13
50
175
15
100
150
T h ( o C)
200
ºC
V
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Fast Rectifier
Rectifier
Figure 1
Typical rectifier forward current as
a function of forward voltage
IF= f(VF)
Rectifier
Figure 2
Rectifier transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
100
Tj = Tjmax-25°C
80
100
Tj = 25°C
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
-1
10
20
0
10-2
0
0,8
At
tp =
1,6
2,4
3,2
VF (V) 4
-5
μs
250
Rectifier
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
At
D=
RthJH =
tp / T
-3
10
1,72
10
-2
-1
0
10
10
t p (s)
1
10 1
K/W
Rectifier
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
-4
10
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
14
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
R/Ω
25000
[Ω]
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
15
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
550
140
IC
120
tdoff
450
VCE
100
IC
VGE 90%
VCE 90%
350
80
%
%60
250
40
150
tEoff
IC 1%
VCE
20
IC10%
tdon
VGE
50
0
VGE10%
VGE
-20
-0,1
-0,05
0
0,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
time (us)
0
10
400
15
0,17
0,19
0,15
0,2
0,25
0,3
2,9
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
VCE3%
tEon
-50
3
3,05
time(us)
0
10
400
15
0,03
0,06
3,1
3,2
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,15
Turn-on Switching Waveforms & definition of tr
160
550
fitted
130
Ic
IC
450
VCE
100
IC 90%
350
70
%
IC 60%
%
250
IC 40%
40
150
IC10%
10
VCE
tf
-20
-50
0,12
IC90%
tr
50
IC10%
0,13
VC (100%) =
IC (100%) =
tf =
0,14
0,15
400
15
0,01
Copyright by Vincotech
0,16
time (us)
0,17
0,18
0,19
-50
0,2
2,9
VC (100%) =
IC (100%) =
tr =
V
A
μs
16
2,95
time(us)
3
400
15
0,01
3,05
3,1
3,15
V
A
μs
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
190
350
%
Poff
Pon
%
300
150
250
Eoff
110
200
150
70
Eon
100
30
VGE90%
50
VGE10%
-10
IC 1%
tEoff
VCE3%
0
tEon
-50
-0,1
-50
-0,05
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,05
6,00
0,03
0,19
0,1
time (us)
0,15
0,2
0,25
2,9
0,3
2,93
2,96
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
2,99
6,00
0,23
0,06
3,02
time(us)
3,05
3,08
3,11
3,14
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
15
200
fitted
Id
100
trr
10
VGE (V)
0
IRRM10%
Vd
-100
%
5
-200
-300
0
IRRM90%
IRRM100%
-400
-500
2,95
-5
-30
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
30
0
10
400
15
112,61
Copyright by Vincotech
60
Qg (nC)
90
120
150
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
17
2,98
3,01
400
15
-58
0,02
3,04
time(us)
3,07
3,1
3,13
V
A
A
μs
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
200
150
150
Id
Qrr
Erec
100
100
tQrr
% 50
tErec
%
50
0
Prec
0
-50
-100
-50
2,9
Id (100%) =
Qrr (100%) =
tQrr =
2,95
3
3,05
15
0,65
0,04
A
μC
μs
3,1
3,15 time(us) 3,2
2,9
2,95
Prec (100%) =
Erec (100%) =
tErec =
3
6,00
0,11
0,04
3,05
3,1
3,15 time(us) 3,2
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
18
Revision: 1
FZ06RIA045FH01
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06RIA045FH01-P906D10
in DataMatrix as
P906D10
in packaging barcode as
P906D10
Outline
Pinout
Copyright by Vincotech
19
Revision: 1
FZ06RIA045FH01
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
20
Revision: 1