MAXIM MAX1960EVKIT

19-2976; Rev 0; 9/03
MAX1960 Evaluation Kit
Features
♦ 2.35V to 5.5V Input Supply Range
♦ 1.8V Output at Up to 15A
♦ Output Voltage Adjustable Down to 0.8V
♦ Fixed-Frequency PWM Operation
♦ Selectable 500kHz/1MHz or External
Synchronization
♦ ±4% Voltage Margining
Ordering Information
PART
MAX1960EVKIT
TEMP RANGE
0°C to +70°C
IC PACKAGE
20 QSOP
Component List
DESIGNATION QTY
C1
C2, C3, C13
C4
C5
C6
C7, C8, C9
C10, C38
C11
C12
DESCRIPTION
1
0.47µF ±10%, 10V X5R ceramic
capacitor (0603)
TDK C1608X5R1A474K or equivalent
0
Not installed; 0.47µF ±10%, 10V X5R
ceramic capacitors (0603)
TDK C1608X5R1A474K or equivalent
(tripler)
1
1µF ±20%, 6.3V X5R ceramic
capacitor (0402)
Panasonic ECJ0EB0J105M or
equivalent
1
0.1µF ±10%, 10V X5R ceramic
capacitor (0402)
TDK C1005X5R1A104K or equivalent
DESIGNATION QTY
DESCRIPTION
C14, C15
2
680µF, 2.5V, 8mΩ POSCAPs
Sanyo 2R5TPD680M8
C16, C17
2
4700pF ±10%, 50V X7R ceramic
capacitors (0603)
TDK C1608X7R1H472K or equivalent
C37
1
470µF, 6.3V POSCAP
Sanyo 6TPB470M
D1
1
Single Schottky diode (SOT-323)
Central CMSSH-3
D2–D5
0
Not installed, Schottky diodes
(SOD-123)
Central CMHSH5-2L (tripler)
JU1, JU2, JU3
3
3-pin headers
JU4
1
4-pin 3-way header
1
2.2µF ±10%, 6.3V X5R ceramic
capacitor (0603)
TDK C1608X5R0J225K or equivalent
L1
1
0.22µH inductor
Sumida CDEP105(S)-0R2NC-50
3
10µF ±20%, 6.3V X5R ceramic
capacitors (0805)
Panasonic ECJ2FB0J106M or
equivalent
N1
1
N-channel MOSFET (D-Pak)
IRF IRLR7821
N2
1
N-channel MOSFET (D-Pak)
IRF IRLR7833
2
0.22µF ±10%, 6.3V X5R ceramic
capacitors (0402)
TDK C1005X5R0J224K or equivalent
R1
1
301kΩ ±1% resistor (0603)
R2
1
6.8kΩ ±5% resistor (0603)
R3
1
12.4kΩ ±1% resistor (0603)
R4
1
10kΩ ±1% resistor (0603)
R5
1
10Ω ±5% resistor (0603)
R12, R13
2
1Ω ±5% resistors (0603)
1
1
Not installed, 10pF ceramic capacitor
(0402)
0.01µF ±10%, 25V X7R ceramic
capacitor (0402)
Murata GRP155R71E103K or
equivalent
U1
1
Maxim MAX1960EEP (20-pin QSOP)
None
4
Shunts, two position
None
1
MAX1960EVKIT PC board
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX1960/MAX1961/MAX1962
General Description
The MAX1960 evaluation kit (EV kit) is a fully assembled
and tested surface-mount circuit board that evaluates
the MAX1960 family of PWM synchronous step-down
controllers. There are two circuits on the board. The first
has the MAX1960 installed but can also be used to
evaluate the MAX1961. This circuit provides a 1.8V output at up to 15A, or the output can be adjusted from
0.8V to (0.9 ✕ VIN). The second circuit evaluates the
MAX1962. Components for the second circuit are not
installed on the standard evaluation kit. Both circuits
can operate with a 2.35V to 5.5V input voltage.
Evaluates: MAX1960/MAX1961/MAX1962
MAX1960 Evaluation Kit
The following components are for the optional MAX1962 circuit and are not installed:
DESIGNATION QTY
C18, C19
C20, C21
C22, C32, C33
C23
C24
C25, C39
C26, C27, C28
C29
C30
C31
C34
C35
DESCRIPTION
2
680µF, 2.5V, 8mΩ POSCAPs
Sanyo 2R5TPD680M8 or equivalent
2
4700pF ±10%, 50V X7R ceramic
capacitors (0603)
TDK C1608X7R1H472K or equivalent
0
Not installed; 1µF ±10%, 16V X5R
ceramic capacitors (0603)
Panasonic ECJ1VB1C105K or
equivalent (tripler)
1
6800pF ±10%, 25V X7R ceramic
capacitor (0402)
Murata GRP155R71E682K or
equivalent
1
Not installed, 10pF ceramic capacitor
(0402)
2
0.22µF ±10%, 6.3V X5R ceramic
capacitors (0402)
TDK C1005X5R0J224K or equivalent
3
1
4.7µF ±10%, 6.3V X5R ceramic
capacitor (0603)
Panasonic ECJ1VB0J475K or
equivalent
1
1
1µF ±20%, 6.3V X5R ceramic
capacitor (0402)
Panasonic ECJ0EB0J105M or
equivalent
1
1µF ±10%, 16V X5R ceramic
capacitor (0603)
Panasonic ECJ1VB1C105K or
equivalent
470µF, 6.3V POSCAP
Sanyo 6TPB470M
DESCRIPTION
C36
1
Not installed (0805)
D6
1
Single Schottky diode (SOT-323)
Central CMSSH-3
D7–D10
4
Not installed, Schottky diodes
(SOD-123)
Central CMHSH5-2L (tripler)
JU5
1
4-pin 3-way header
JU6, JU7
2
3-pin headers
JU8
1
2-pin header
L2
1
0.45µH inductor
Sumida CDEP105(S)-0R4MC-50
N3
1
N-channel MOSFET (D-Pak)
IRF IRLR7821
N4
1
N-channel MOSFET (D-Pak)
IRF IRLR7833
R6
1
10kΩ ±1% resistor (0603)
R7
1
12.4kΩ ±1% resistor (0603)
R8
1
20kΩ ±5% resistor (0603)
R9
1
1.5mΩ ±5%, 1W resistor (2512)
Panasonic ERJM1WTJ1M5U
R10
1
10Ω ±5% resistor (0603)
10µF ±20%, 6.3V X5R ceramic
capacitors (0805)
Panasonic ECJ2FB0J106M or
equivalent
0.1µF ±10%, 10V X5R ceramic
capacitor (0402)
TDK C1005X5R1A104K or equivalent
1
DESIGNATION QTY
R11
1
Not installed (0603)
R14, R15
2
1Ω ±5% resistors (0603)
U2
1
MAX1962EEP (20-pin QSOP)
None
3
Shunts
Component Suppliers
SUPPLIER
Central
Semiconductor
International
Rectifier
Kamaya
PHONE
WEBSITE
631-435-1110
www.centralsemi.com
310-322-3331
www.irf.com
260-489-1533
www.kamaya.com
Murata
814-237-1431
www.murata.com
Panasonic
714-373-7939
www.panasonic.com
Sanyo
619-661-6835
www.sanyo.com
Sumida
847-545-6700
www.sumida.com
TDK
847-803-6100
www.component.tdk.com
Note: Please specify that you are using the MAX1960/
MAX1961/MAX1962 when contacting these suppliers.
2
_______________________________________________________________________________________
MAX1960 Evaluation Kit
1) Verify jumpers JU1, JU2, and JU3 are shorted
between pins 2 and 3.
2) Preset input power supply to between 2.7V and
5.5V. Turn power supply off.
3) Connect the positive power-supply lead to the IN1
pad on the EV kit. Connect the supply ground to the
PGND1 pad on the EV kit.
4) Connect a voltmeter and load from OUT1 to PGND1
on the EV kit.
5) Turn on the power supply.
6) Verify that the voltage at OUT1 is +1.8V ±1.5%.
Table 5. JU8 Functions
JUMPER POSITION
1-2
Not connected
Table 6. JU9 and JU11 Functions
JUMPER PADS
Open
Short
OUT1 FUNCTION
JUMPER PADS
Open
Short
JU1 POSITION
JU2 POSITION
1-2
1-2
Shutdown
1-2
2-3
-4% margining
2-3
1-2
+4% margining
Open
2-3
2-3
Enable (normal operation)
Short
Table 2. JU3 and JU6 Functions
JUMPER POSITION
1-2
2-3
Not connected
OPERATING FREQUENCY
500kHz
1MHz
Clock applied to SYNC_ input
Table 3. JU4 and JU5 Functions
(MAX1961/MAX1962)
JUMPER POSITION
1-2
1-3
1-4
Not connected
OUTPUT VOLTAGE
+1.5V
+1.8V
+3.3V
+2.5V
CHARGE PUMP
2x (normal)
3x (tripler)
Table 7. JU10 Functions
(MAX1960/MAX1961)
Jumper Selection
Table 1. JU1 and JU2 Functions
(MAX1960/MAX1961)
OUT2 VOLTAGE
Selected with JU5
Adjustable—set with resistors
R6 and R7
FUNCTION
JU1 and JU2 function as
shown in Table 1
CTL1 and CTL2
connected—use only one
jumper on JU1 or JU2 for
shutdown/enable
Table 8. JU12 Functions (MAX1962)
JUMPER PADS
FUNCTION
Uses inductor resistance for
current sensing
Uses current-sense resistor
Detailed Description
Evaluating the MAX1961 or MAX1962
The MAX1960 EV kit comes with the MAX1960
installed, but can also be used to evaluate the
MAX1961 and the MAX1962. Free samples of these
parts can be obtained from Maxim.
To evaluate the MAX1961, first carefully remove U1
from the PC board and replace it with the MAX1961.
Next, remove feedback resistors R3 and R4. Finally,
short the pads of R3. The evaluation kit is now configured for the MAX1961.
To evaluate the MAX1962, a second circuit is provided
on the PC board. Components for this circuit do not
come installed on the standard evaluation kit board. To
configure the board for the MAX1962, install the components recommended in the Component List section.
Table 4. JU7 Functions (MAX1962)
JUMPER POSITION
1-2
2-3
OUT2 FUNCTION
Shutdown
Enable
_______________________________________________________________________________________
3
Evaluates: MAX1960/MAX1961/MAX1962
Quick Start
The MAX1960 EV kit is fully assembled and tested. Follow
these steps to verify board operation. Do not turn on the
power supply until all connections are completed:
Evaluates: MAX1960/MAX1961/MAX1962
MAX1960 Evaluation Kit
Setting the Output Voltage
(MAX1960/MAX1962)
The MAX1960 uses a pair of feedback resistors to set
the output voltage, which is fixed at +1.8V from the factory. The output voltage of the MAX1962 can also be
set with feedback resistors, or can use its preset output
voltages like the MAX1961 (see the Selecting a Preset
Output Voltage section).
To change the output voltage on the MAX1960 circuit,
first verify that a 10kΩ resistor is installed in R4. Then
calculate a resistor value for R3:
V

R3 = R4 ×  OUT − 1
 0.8

To set the output voltage on the MAX1962 circuit, first
remove jumper JU8. Then, install a 10kΩ resistor in R6.
Finally, calculate a resistor value for R7:
V

R7 = R6 ×  OUT − 1
 0.8

When changing the output-voltage setting, refer to the
MAX1960/MAX1961/MAX1962 data sheet for selecting
compensation components, output inductor, and output
capacitor for best performance.
Selecting a Preset Output Voltage
(MAX1961/MAX1962)
First, follow the procedure given under the Evaluating
the MAX1961 or MAX1962 section to set up the EV kit
for using the MAX1961 or MAX1962. To select a preset
output voltage with the MAX1962, short the pins of
jumper JU8, remove resistors R6 and R7, and use JU5
to select the output voltage (Table 3). For the MAX1961,
use JU4 to select the output voltage (Table 3).
When selecting different output voltages, refer to the
MAX1960/MAX1961/MAX1962 data sheet for selecting
compensation components, output inductor, and output
capacitor for best performance.
Evaluating at Low Input Voltages
(Tripler Configuration)
In the default configuration, the EV kit works at input
voltages from +2.7V to +5.5V. To work with input voltages below +2.7V, configure the charge pump as a
tripler. When using the tripler, the input voltage range is
+2.35V to +3.6V.
To configure the charge pump as a tripler, use the
following procedure:
For the MAX1960/MAX1961 circuit:
1) Remove C1.
2) Add C2, C3, and C13 (see the Component List).
3) Add D2–D5 (see the Component List).
4) Short the pads of JU9.
For the MAX1962 circuit:
1) Remove C34.
2) Add C22, C32, and C33 (see the Component List).
3) Add D7–D10 (see the Component List).
4) Short the pads of JU11.
Changing the Switching Frequency
JU3 and JU6 select between 500kHz and 1MHz operation. To optimize performance, it is also necessary to
change the value of some of the components. The
components for 1MHz operation come installed on the
PC board (MAX1960/MAX1961 circuit), and are listed in
the Component List table. For 500kHz operation,
change the components listed in Table 9, and refer to
the MAX1960/MAX1961/MAX1962 data sheet for selecting compensation components. The MAX1962 circuit
component list is configured for 500kHz operation.
Table 9. Component Changes for 500kHz Operation
DESIGNATION
(MAX1960/MAX1961)
QTY
C1
1
4
DESCRIPTION
NOTES
1µF ±10%, 16V X5R ceramic capacitor (0603), Panasonic ECJ1VB1C105K
Without tripler
C2, C3, C13
3
1µF ±10%, 16V X5R ceramic capacitors (0603), Panasonic ECJ1VB1C105K
With tripler
C6
1
4.7µF ±10%, 6.3V X5R ceramic capacitor (0603), Panasonic ECJ1VB0J475K
—
L1
1
0.45µH inductor, Sumida CDEP105(S)-0R4MC-50
—
_______________________________________________________________________________________
MAX1960 Evaluation Kit
Evaluating Shutdown
Shutdown mode turns off the IC, reducing the input
current to below 10µA. For the MAX1960/MAX1961,
JU1 and JU2 control the shutdown feature (Table 1).
On the MAX1962, JU7 controls shutdown (Table 4).
If voltage margining is not used on the MAX1960/
MAX1961, then the pads of JU10 can be connected
together to allow shutdown/enable using a single jumper.
If this is done, either JU1 or JU2 must be completely
removed and the other used to control shutdown/enable.
Connecting both jumpers can cause an input supply to
ground short, which could damage the EV kit.
Evaluating Voltage Margining
(MAX1960/MAX1961)
A voltage-margining feature is provided on the
MAX1960 and MAX1961. This allows the output to be
shifted up or down by 4%. Voltage margining is
controlled by JU1 and JU2 (Table 1).
_______________________________________________________________________________________
5
Evaluates: MAX1960/MAX1961/MAX1962
Using SYNC and CLKOUT
To synchronize the converter to an external clock,
connect the clock signal (450kHz to 1.1MHz) to SYNC_.
A clock output (CLKOUT_) is provided on the EV kit.
CLKOUT_ functions both when the converter is switching at its preset frequency and when a SYNC signal is
applied. The CLKOUT_ waveform is 180° out-of-phase
with the converter’s clock, allowing a second converter
to operate out-of-phase with the first by connecting
CLKOUT_ of the first converter to SYNC_ of the second
converter.
Evaluates: MAX1960/MAX1961/MAX1962
MAX1960 Evaluation Kit
VCC
IN1
VDD
C7
10µF
PGND1
C8
10µF
C9
10µF
C37
470µF
C38
0.22µF
D2
D3
17
2
3
JU2
2
JU1
5
1
1
9
REF
C10
0.22µF
R2
6.8kΩ
SYNC1
R1
C11
301kΩ
10pF
3
2
1
C+
CTL1
C-
COMP
DH
VDD
BST
11
JU3
1
4
VDD
AVDD
10
REF
3
ILIM
2
CLKOUT1
CTL2
REF
LX
GND
FSET/SYNC
D5
15
JU9
7
C4
1µF
DL
PGND
19
VCC
R5
10Ω
R12
1Ω
N1
C16
4700pF
VDD
12
18
C3
0.47µF
C1
0.47µF
16
JU10
6
C12
0.01µF
MAX1960
VCC
D4
C2
0.47µF
U1
3
C13
0.47µF
2
3
C6
2.2µF
D1
OUT1
L1
0.22µH
C5
0.1µF
20
13
C14
680µF
R13
1Ω
N2
C17
4700pF
14
R3
12.4kΩ
CLKOUT
FB
N.C.
C15
680µF
PGND1
8
R4
10kΩ
4
1
3
2
JU4
VCC2
IN2
VDD2
C28
C27
C26
C35
C39
D7
PGND2
C22
D8
D9
C33
U2
C+
17
3
2
JU7
3
MAX1962
VCC
EN
1
9
REF2
10
C23
C24
REF
BST
11
GND
LX
C32
C34
15
JU11
7
C31
VCC2
R14
R10
DH
VDD
C25
N3
19
VDD2
C20
12
18
20
2
3
D6
L2
0.22µH
C29
2
JU6
CLKOUT2
1
FSET/SYNC
CLKOUT
VDD
1
JU5
4
14
JU12
C18
C19
N4
PGND2
C21
C36
OUT
4
2
PGND
CS
REF2
3
DL
13
OUT2
R9
C30
R15 R11
3
2
1
AVDD
COMP
R8
SYNC2
C-
16
D10
VSEL
FB
6
5
VDD2
R7
JU8
8
R6
Figure 1. MAX1960 EV Kit Schematic
6
_______________________________________________________________________________________
MAX1960 Evaluation Kit
Figure 3. MAX1960 EV Kit PC Board Layout—Component Side
Figure 4. MAX1960 EV Kit PC Board Layout—Layer 2 (Ground)
_______________________________________________________________________________________
7
Evaluates: MAX1960/MAX1961/MAX1962
Figure 2. MAX1960 EV Kit Component Placement Guide—
Component Side
Evaluates: MAX1960/MAX1961/MAX1962
MAX1960 Evaluation Kit
Figure 5. MAX1960 EV Kit PC Board Layout—Layer 3
Figure 6. MAX1960 EV Kit PC Board Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2003 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.