Practical layout for Current Sensing Circuit of IRMCF300 Series IC

Application Note AN-1121
Practical layout for
Current Sensing Circuit of IRMCF300 Series IC
Seok Joon Hong
Table of Contents
1. Overview ..........................................................................................2
2. Space Vector PWM and Single Shunt Current Reconstruction ........3
3. Current Feedback Circuit with IRMCF300........................................9
4. Test Results .....................................................................................11
5. Summary..........................................................................................14
This application note provides practical tips on printed circuit board layout and how to set
configuration registers when using the IRMCF300 series of sensorless motor control
IC’s. The control IC reconstructs the motor winding currents by sampling the current
flowing in the inverter DC link. The IRMCF300 series IC’s include the amplifiers, A/D and
timing circuits required for motor current reconstruction. Careful design of the current
feedback circuit layout will minimize noise and provide a high quality current
measurement. Configuration registers in the IRMCF300 series IC’s allow fine tuning of
the sampling instants to maximize the fidelity of the measurement. The application note
describes operating principles, practical implementation and test results.
1. Overview
IRMCF3001 series digital control IC’s are part of iMOTION integrated design platforms
for appliance motor control. This digital IC can control motors without motor position
sensors. IR’s embedded Motion Control Engines enables customers to achieve reliable
sensorless field oriented motor control without significant software development effort.
The motion control peripherals include a space vector modulator to control the three
phase voltages applied to the motor. The IC also employs a single shunt current
reconstruction circuit to minimize external analog and digital circuitry. The integrated
design platform includes an integrated power module that combines six IGBT power
transistors with the high voltage integrated circuit (HVIC) to drive the IGBT gates. The
HVIC also implements inverter over-current protection using the same shunt used for
motor current measurement.
In order to implement sensorless field oriented control, it is crucial to measure the motor
winding currents precisely. The single shunt current reconstruction method derives all
necessary current feedback by sampling the currents in the DC link shunt resistor thus
eliminating the need for isolation circuits or magnetic current sensors. The space vector
modulator generates sample timing signals based on the power inverter state. The IC
integrates the A/D converter and amplifier to sample the voltage across the shunt
resistor. This is a very cost effective solution but under certain operating conditions the
DC link current pulses may become too narrow to guarantee reliable extraction of
winding current data. This application note describes the IC features to help overcome
these difficulties along with circuit layout techniques needed to maximize signal to noise.
Throughout this document, the IRMCF300 will refer to any one of the five digital control
IC’s in the IRMCF300 family. This includes the IRMCF312, IRMCF311, IRMCF343,
IRMCF341 and IRMCF371.
2. Space Vector PWM and Single Shunt Current Reconstruction
Space vector modulation is a technique to generate the power inverter switching signals
based on the desired three phase voltage output. Each leg of the power inverter can
connect the load to either the positive or negative DC bus. In one active inverter state,
the switches connect one winding to the positive rail and the other two windings to the
negative rail. In this instance, 2/3 of the bus voltage is across one winding and 1/3 of the
voltage is across the other phase windings. In another active state, the switches connect
two windings to the positive rail and the other winding to the negative rail. In the zero
vector states, the switches connect all three windings to either the positive or the
negative rail. Figure 1 shows the six active vectors and two zero vectors available using
three inverter switches. It also shows that switching between two active inverter states
can produce any specified inverter voltage. For example, to produce voltage V* in the
sector 1, the inverter is in state V1 for time Ta and in state V2 for time Tb. The inverter is
in a zero vector state for the time remaining in the switching period. Typically half of this
time (T0) is in the V0 state at the beginning of the cycle and the other half of the time is in
the V7 state at the end of the cycle. Figure 2 shows the resultant inverter switching
signals where voltage vectors V0, V1, V2 and V7 are applied for time periods T0, Ta, Tb
and T0. Applying these voltage vectors in the inverse sequence in the second half of the
PWM cycle generates symmetrical PWM signals. Since V* is closer to V1 which is
aligned with U phase, V1 is applied longer time than V2 (Ta>Tb).
Sector 2
V2 (1 1 0)
V3 (0 1 0)
Sector 3
Sector 1
V0 (0 0 0)
V7 (1 1 1)
V4 (0 1 1)
V1 (1 0 0)
Sector 4
Sector 6
V5 (0 0 1)
Sector 5
V6 (1 0 1)
Figure 1. Inverter Output Voltage Space Vectors
The real inverter uses a combination of IGBT or MOSFET transistors and anti-parallel
diodes as the power inverter switches. A high voltage integrated circuit provides level
shifting between the logic level signal from the digital control IC and the transistors,
which switch between the positive and negative DC bus. The polarity of the ‘on’ signal
may be active high or active low depending on the design of the gate drive HVIC. There
must be a delay, so called dead time, between the high side turn-off signal and the low
side turn-on signal. This allows the high side power transistor to turn off completely
before the low side transistor turns on or vice versa and avoids a shoot through condition
that can damage the power devices. The actual gate drive signals include the dead time
between all inverter state transitions and so there are six inverter switching signals:
PWMUH through to PWMWL in Figure 2. In this case, the gate drive circuit is the
IR21363, which accepts active low logic inputs. The modulation circuit typically inserts
the dead time but the gate drive circuit can also provide this function. Active high/low
gate logic selection is available through a control register, pwmcfg on the IRMCF300.
( Iu )
( -Iw )
( -Iw )
( Iu )
S/H 1
S/H 2
S/H 1
S/H 2
across shunt
(d) Q5 OFF
(f) Q6 OFF
(c) Q1 ON
(g) Q3 ON
(e) Q2 ON
(b) Q4 OFF
(h) Q3 OFF
(l) Q1 OFF
(k) Q5 ON
(m) Q4 ON
(j) Q2 OFF
(i) Q6 ON
Figure 2. PWM Gate Signals in Sector1
The motor current reconstruction circuit measures the DC link current during the active
vectors of the PWM cycle. When the voltage vector V1 is applied, current flows from the
positive rails into phase U winding and returns to the negative rail through the V and W
phase windings. In this instance, the DC link current flowing from the positive rail equals
the U phase current. When the voltage vector V2 is applied, the DC link current returning
to the negative rail equals the W phase current. Therefore, in each sector, two phase
current measurements are available. The calculation of the third phase current value is
possible because the three winding currents sum zero.
The current sampling instant should be at the mid point of the active vector state to
sample the average current. This sample instant for the first current sample is at time
Ta/2 after the start of the first active vector V1. The space vector modulator calculates
this timing when it calculates the timing for the gate drive signals. In a symmetrical PWM
scheme, there are also two active vectors in the second half of the cycle and so two sets
of current measurements are available. Averaging of the two sets of measurement
improves the reliability of the current feedback.
Successful implementation of motor current reconstruction requires detailed knowledge
of power inverter operation to account for circuit delays that can result in incorrect
current sampling. The error introduced by sampling delays depends on the magnitude of
the motor current ripple, which depends on the bus voltage, switching frequency winding
inductance and motor back emf. The IRMCF300 includes a sampling delay register,
SHDelay that allows the system designer to compensate circuit delays to ensure
accurate current measurement. The voltage across DC link shunt resistor, IFB, in Figure
2 illustrates how to calculate the sampling delay compensation. Figure 3 illustrates
current flow associated with the dead time and each switching instances to display the
change of current path and reverse recovery current from the diode. In this example, Iu >
Iw > 0 > Iv and the IGBT is modeled as a switch with a diode. Depending on the current
direction, sometimes turning on or off the switch doesn’t do anything. A thunder mark on
a diode indicates the reverse recovery action of the diode.
(a) Zero Vector V0
(b) Q4 OFF
(c) Q1 ON, D4 OFF
(d) Q5 OFF, D2 ON
(e) Q2 ON
(f) Q6 OFF
(g) Q3 ON, D6 OFF
(h) Q3 OFF, D6 ON
(i) Q6 ON
(j) Q2 OFF
(k) Q5 ON, D2 OFF
(l) Q1 OFF, D4 ON
(m) Q4 ON
Figure 3. Current Flow Example in Sector 1
There’s a delay between gate driver IC input and output, which is typically 400 ns for
IR21363. There’s another delay from gate driver output to real switching instance of the
device such as IGBT. This is a function of gate charge and gate impedance. It’s typically
190 ns on time and 300 ns off time in case of IRAMS10UP60B. Td_On and Td_Off in
Figure 2 are the sum of these two delays respectively.
Td_On = gate driver delay + transistor turn on delay = 400 ns + 190 ns = 590 ns
Td_Off = gate driver delay + transistor turn off delay = 400 ns + 300 ns = 700 ns
There is a limitation that one active vector must exist for a minimum time to ensure a
reliable sampling of the DC link current. This minimum time is set by the MCE registers
TcntMin3Phs for three-phase modulation and TcntMin2Phs for two-phase modulation.
This lower bound on the minimum time results in a limitation when modulation index is
small or the voltage vector passes an active vector. The areas where problems exist are
illustrated in Figure 4.
Figure 4. Areas Where Reliable Sampling is Difficult
The minimum time required for reliable current sampling adds undesired voltage
distortion, which may cause audible noise especially in low speed operation. In order to
minimize this time, it is important to understand when sampling occurs. Ideally, the
current sample should occur at the center of the active vector, which results in average
value of the current regardless of the slope related to motor inductance. However, as
discussed previously, actual switching happens after certain period of time from the
edges of PhaseU, PhaseV, and PhaseW. This delay can be as short as Td_Off and as
long as dead time plus Td_On. Sampling timings can be adjusted by SHDelay register in
the way that sampling occurs one half of the active vector time plus SHDelay after the
edges of PhaseU, PhaseV, and PhaseW. For example, in Figure 2, first sampling
instance is Ta/2 plus SHDelay after the rising edge of PhaseU. In case of
IRAMS10UP60B, Td_On is 590 ns and Td_Off is 700 ns, and dead time can be 400 ns.
Real switching instance happens either Td_Off or Td_On plus dead time after the edge
of PhaseX. Thus, SHDelay can be set to cover worse case as follows.
SHDelay = Td_On + dead time
Since sampling should be done after the ringing settles down even in the case of
minimum pulse, one condition for sampling delay from the edge can be driven as below.
minimum pulse /2 + SHDelay > dead time + Td_On + ringing time
The left hand side is sampling delay in case of active vector with minimum pulse and the
right hand side is actual delay time required to sample without noise.
From (1) and (2), minimum pulse can be driven as
minimum pulse > 2 * ringing time
Remember that (1) to (3) are mid point sampling case. If the slope of current is not
steep, delaying the sample instance further to the end of the active vector can reduce
the minimum pulse. Because the switching of the next “PhaseX” edge also has at least
Td_Off (or sometimes even dead time plus Td_On) to have a real switching instance,
minimum pulse can be as small as following equation.
minimum pulse = dead time + Td_On + ringing time - Td_Off
This can be put into (2) to get the proper SHDelay.
(dead time + Td_On + ringing time - Td_Off ) / 2 + SHDelay
> dead time + Td_On + ringing time
SHDelay = (dead time + Td_On + ringing time + Td_Off ) / 2
If motor inductance is small and sampling should be done at the center, Equation (3) and
(1) need to be used to get the minimum pulse and SHDelay. If application requires
shorter minimum pulse and slope of the shunt voltage is not steep due to relatively high
inductance of the motor or small DC bus voltage, equation (4) and (6) can be used.
Keep in mind that Td_On and Td_Off can vary depending on the operating condition.
Actually it’s possible to reduce minimum pulse by adjusting sampling point to be in the
middle of ringing measured by scope because timing of ringing is consistent if the
operating conditions are the same. But it’s not recommended because this timing varies
as operating conditions change.
3. Current Feedback Circuit with IRMCF300
IRMCF300 series IC has necessary circuit to implement single shunt current feedback
including built-in operational amplifiers, sample/holds, and multiplexers. Sampling timing
is determined by PWM logic automatically. Only thing user needs to do is to add some
resistors and capacitors in order to configure the internal operational amplifier as a
differential amplifier and adjust minimum pulse width and sampling instances to optimal
ones by setting parameters such as TcntMin3Phs and SHDelay
Figure 5 shows the example of this differential amplifier circuit. Rsh is the shunt resistor
in the negative DC link and the voltage across this shunt resistor (displayed as IFB in
Figure 2) is used as input to the amplifier. Amplifier gain R5 / (R1 + R3) should be set
appropriately to cover operating range with best resolution. C5 is to stabilize Cmext,
which is un-buffered 0.6V, and C4 is for Aref, which is buffered 0.6V reference voltage.
C2 and C3 may be required to stabilize the operational amplifier output, IFBO. C3 is 10
pF and C2 is not used for IRMCF341 reference design kit, IRMCS3041. Feedback
resistor R5 (=R6) needs to be in the range from 5K to 20K Ohm. AVDD and AVSS are
power pins for analog circuit and need decoupling capacitors 0.1 µF and 0.01 µF in
Make it as
short as
Dedicated traces
right from the shunt !
( 1.8V )
Make it short
Figure 5. Current Feedback Circuit for IRMCF341
Layout for the single shunt current feedback should be done very carefully. Most
important thing is to use dedicated traces right from the shunt resistor to the resistors of
amplifier. Traces must not be shared with ground planes. Another important thing is to
make the traces among IGBTs and DC bus capacitors as short as possible. The stray
inductances on these traces increase the amount of spike voltage at the switching
instances. Figure 6 is a layout example from IRMCS3041. On the bottom layer, a trace
starts right from the pin 12 of IRAMS10UP60B without sharing with ground, negative DC
(a) Top Layer
(b) Bottom Layer
(c) Schematic
Figure 6. IRMCF341 Reference Board Layout
Another very important fact is that noise from switching power supply may significantly
influence the current feedback. It is recommended to separate IRMCF300 ground not
only from the main power ground but also from the power supply primary side ground.
Internal operational amplifiers are specifically designed for this application. It has high
gain, bandwidth, and slew rate to respond to the rapid rise of current through shunt
resistor. Sample/hold actually tracks the signal and then holds to reduce the sampling
time. For more information regarding characteristics of operational amplifiers,
sample/hold and A/D converter, please refer to the datasheet of IRMCF300 IC.
4. Test Results
Figure 7 shows the real waveforms for V* in sector 1 of Figure 1. Channel 1 is voltage
across the shunt resistor and others are low side gate signals. U phase current (Iu) is
positive during vector V1 and negate of W phase current (-Iw) is negative, which means
W phase current is positive.
Ch1 : IFB
Ch2 : UL
Ch3 : VL
Ch4 : WL
Figure 7. Waveforms in Sector 1
Figure 8 is a collection of waveforms when active vector changes. It will be better to
understand together with Figure 2 and Figure 3. It can be observed that ringing is most
severe at the transition from V2 to V1 in which case the biggest amount of current is
flowing through D2 and therefore reverse recovery is also most significant.
(a) V0 to V1
(b) V1 to V2
(c) V2 to V7
(d) V7 to V2
(e) V2 to V1
(f) V1 to V0
Figure 8. Vector Transition Waveforms in Sector 1
Figure 9(a) is to measure the longest ringing time at the transition from V2 to V1. High
frequency noise stops within 0.6 µsec, but there’s also slow component ends in 0.85
µsec. However, operational amplifier output (IFBO) is the one needs attention here
because this is the input to the sample/hold. Figure 9(b) shows IFBO and AREF together
with IFB. Some slow component noise in AREF is reflected into IFBO. This ripple ends in
1.25 µsec.
Ch1 : IFB
Ch1 : IFB
Ch2 : UL
Ch2 : IFBO
Ch3 : VL
Ch3 : VL
Ch4 : WL
Ch4 : AREF
(a) IFB at V2 to V1
(b) IFBO and AREF
Figure 9. Ringing at Transition from V2 to V1
When dead time is set to 500 ns, equation (1) and (3) give
SHDelay = Td_On + dead time = 590 ns + 500 ns = 1.1 µsec
minimum pulse = 2 * ringing time = 2 * 1.25 µs = 2.5 µsec
Figure 10(a) is a trace buffer plot from MCE Designer for this case. Figure 10(b) is a plot
when SHDelay is 1.1 µsec and minimum pulse is 1.5 µsec. Some glitches exist due to
slow ripple component.
(a) SHDelay 1.1µs and MinPulse 2.5 µsec
(b) SHDelay 1.1 µs and MinPulse 1.5 µsec
(c) SHDelay 1.5 µs and MinPulse 1.7 µsec
Figure 10. Phase Current Plot from Trace Buffer
From equation (4) and (6),
minimum pulse
= dead time + Td_On + ringing time - Td_Off
= 0.5 + 0.59 + 1.25 - 0.7
= 1.64 µsec
= (dead time + Td_On + ringing time + Td_Off) / 2
= (0.5 + 0.59 + 1.25 + 0.7) / 2
= 1.52 µsec
Figure 10(c) is a plot for this case and seems as good as 10(a). These plots in Figure 10
verify equations (1) to (6).
5. Summary
Some guidelines for PCB layout associated with IRMCF300 series ICs to extract reliable
phase current data from single shunt resistor in the negative DC bus are suggested with
practical examples. Also how to set up MCE parameters related to current feedback is
explained with equations and proved by trace plots.
In this application note, cable length is not considered because it’s rare to have long
cables in most case of appliance application. If motor cables become too long, quality of
current feedback will deteriorate due to wave reflection.