BTS50015-1TAD Data Sheet (1.6 MB, EN)

BTS50015-1TAD
Smart Hig h-Side Power Switch
1
Overview
Features
•
One channel device
•
Low Stand-by current
•
3.3 V to VS level capable input pin
•
Electrostatic discharge protection (ESD)
•
Optimized Electromagnetic Compatibility (EMC)
•
Logic ground independent from load ground
•
Very low leakage current at OUT pin
•
Compatible to cranking pulse requirement (test pulse 4 of ISO 7637 and cold start pulse in LV124)
•
Embedded diagnostic functions
•
Embedded protection functions
•
Green Product (RoHS compliant)
•
AEC Qualified
Applications
•
Suitable for resistive, inductive and capacitive loads
•
Replaces electromechanical relays, fuses and discrete circuits
•
Most suitable for applications with high current loads, such as heating system, main switch for power
distribution, start-stop power supply switch
•
PWM applications with low frequencies
Description
The BTS50015-1TAD is a 1.5 mΩ single channel Smart High-Side Power Switch, embedded in a PG-TO-263-7-8
package, providing protective functions and diagnosis. It contains Infineon® ReverSave™ functionality. The
power transistor is built by a N-channel power MOSFET with charge pump. It is specially designed to drive high
current loads up to 80 A, for applications like switched battery couplings, power distribution switches,
heaters, glow plugs, in the harsh automotive environment.
Table 1
Product Summary
Parameter
Symbol Values
Operating voltage range
VS(OP)
8 V … 18 V
Extended supply voltage including dynamic undervoltage capability
VS(DYN)
3.2 V … 28 V
Data Sheet
www.infineon.com/power
1
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Overview
Table 1
Product Summary (cont’d)
Parameter
Symbol Values
Maximum ON-state resistance (TJ = 150°C)
RDS(ON)
3 mΩ
Minimum nominal load current (TA = 85°C)
IL(NOM)
33 A
Typical current sense differential ratio
dkILIS
51500
Minimum short circuit current threshold
ICL(0)
135 A
Maximum stand-by current for the whole device with load (TA = TJ = 85°C) IVS (OFF)
18 µA
Maximum reverse battery voltage (TA = 25°C for 2 min)
16 V
-VS(REV)
Embedded Diagnostic Functions
•
Proportional load current sense
•
Short circuit / Overtemperature detection
•
Latched status signal after short circuit or overtemperature detection
Embedded Protection Functions
•
Infineon® ReverSave™: Reverse battery protection by self turn ON of power MOSFET
•
Infineon® Inversave: Inverse operation robustness capability
•
Secure load turn-OFF while device loss of GND connection
•
Overtemperature protection with latch
•
Short circuit protection with latch
•
Overvoltage protection with external components
•
Enhanced short circuit operation
•
Infineon® SMART CLAMPING
Type
Package
Marking
BTS50015-1TAD
PG-TO-263-7-8
S50015D
Data Sheet
2
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
3.1
3.2
3.3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10
14
15
5
5.1
5.1.1
5.1.2
5.1.3
5.1.3.1
5.1.3.2
5.1.4
5.1.5
5.1.6
5.1.7
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.6.1
5.3.6.2
5.3.6.3
5.3.7
5.4
5.4.1
5.4.2
5.4.3
5.4.3.1
5.4.3.2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Active Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWM Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Advanced switch-off behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection during Loss of Load or Loss of VS Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Activation of the Switch into Short Circuit (Short Circuit Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Appearance when the Device is already ON (Short Circuit Type 2) . . . . . . . . . . . .
Influence of the battery wire inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Different Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Variation and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
16
16
16
16
16
17
18
19
20
20
21
21
21
21
22
22
24
25
25
26
26
26
26
28
29
29
30
30
31
34
Data Sheet
3
8
8
8
9
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
5.4.3.3
5.4.3.4
SENSE Signal in Case of Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SENSE Signal in Case of Over Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6
6.1
6.2
Electrical Characteristics BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Electrical Characteristics Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7
7.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Data Sheet
4
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Data Sheet
Product Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Sense Signal, Function of Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Electrical Characteristics: BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Data Sheet
Block Diagram for the BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Maximum Single Pulse Current vs. Pulse Time, TJ ≤ 150°C, TPIN = 85°C . . . . . . . . . . . . . . . . . . . . . . . 12
Maximum Energy Dissipation for Inductive Switch OFF, EA vs. IL at VS = 13.5 V . . . . . . . . . . . . . . . . 13
Maximum Energy Dissipation Repetitive Pulse temperature derating . . . . . . . . . . . . . . . . . . . . . . . 13
Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions . . . . . . . . . . 15
Switching a Resistive Load: Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Output Clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Switching an Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Inverse Current Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Inverse Behavior - Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Switching in PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Input Pin Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Diagram of Diagnosis & Protection Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Loss of Ground Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Loss of VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Overvoltage Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Reverse Polarity Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Oscillations at VS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Consecutive short circuit events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
RC Snubber circuits: between VS pin and module GND; between VS pin and device GND . . . . . 28
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Diagnostic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Current Sense for Nominal and Overload Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Improved Current Sense Accuracy after 2-Point Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Fault Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Application Diagram with BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
PG-TO-263-7-8 (RoHS-Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Block Diagram
2
Block Diagram
R VS
voltage sensor
internal
power
supply
over
temperature
driver
logic
IN
ESD
protection
VS
gate control
&
charge pump
Smart clamp
over current
switch OFF
load current sense
OUT
IS
GND
Figure 1
Data Sheet
Blockdiagram
Block Diagram for the BTS50015-1TAD
7
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
4
123
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
567
Pin
Symbol Function
1
GND
GrouND; Signal Ground
2
IN
INput; Digital signal to switch ON channel (“high” active)
3
IS
Sense; Analog/Digital signal for diagnosis, if not used: left open
4, Cooling tab VS
Supply Voltage; Battery voltage
5, 6, 7
OUTput; Protected high side power output channel1)
OUT
1) All output pins are internally connected and they also have to be connected together on the PCB. Not shorting all
outputs on PCB will considerably increase the ON-state resistance and decrease the current sense / overcurrent
tripping accuracy. PCB traces have to be designed to withstand the maximum current.
Data Sheet
8
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Pin Configuration
3.3
Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
IVS
VS
VS
IIN
IN
VIN
VDS
IOUT
OUT
Vb,IS
IIS
IS
VOUT
GND
VIS
IGND
Figure 3
Data Sheet
Voltage and Current Definition
9
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 2
Absolute Maximum Ratings1)
TJ = -40°C to +150°C; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
-0.3
–
28
Unit
Note or
Test Condition
Number
V
–
P_4.1.1
2)
Supply Voltages
Supply Voltage
VS
Reverse Polarity Voltage
-VS(REV)
0
–
16
V
t < 2 min
TA = 25°C
RL ≥ 0.5 Ω
P_4.1.2
Load Dump Voltage
VBAT(LD)
–
–
45
V
3)
RI = 2 Ω
RL = 2.2 Ω
RIS = 1 kΩ
RIN = 4.7 kΩ
P_4.1.5
Supply Voltage for Short Circuit VS(SC)
Protection
5
–
20
V
4)
Short Circuit is Permanent: IN
Pin Toggles Short Circuit (SC
type 1)
nRSC1
–
–
1 million –
(Grade A)
5)
P_4.1.4
IGND
-15
–6)
–
–
107)
15
mA
–
t ≤ 2 min
P_4.1.6
Voltage at IN pin
VIN
-0.3
–
VS
V
–
P_4.1.7
Current through IN pin
IIN
-5
-5
–
–
5
506)
mA
–
t ≤ 2 min
P_4.1.8
Maximum Retry Cycle Rate in
Fault Condition
ffault
–
–
1
Hz
–
P_4.1.9
Short Circuit Capability
P_4.1.3
RECU = 20 mΩ
LECU = 1 µH
Rcable = 6 mΩ/m
Lcable = 1 µH/m
l = to 5 m
R, C as shown in
Figure 30
See Chapter 5.3
GND Pin
Current through GND pin
Input Pin
Data Sheet
10
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
General Product Characteristics
Table 2
Absolute Maximum Ratings1) (cont’d)
TJ = -40°C to +150°C; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
-0.3
–
VS
Unit
Note or
Test Condition
Number
V
–
P_4.1.10
mA
–
t ≤ 2 min
P_4.1.11
Sense Pin
Voltage at IS pin
Current through IS Pin
VIS
IIS
7)
-15
–6)
–
–
10
15
Maximum Energy Dissipation by EAS
Switching Off Inductive Load
Single Pulse over Lifetime
–
–
3000
mJ
VS = 13.5 V
IL = IL(NOM) = 33A
TJ(0) ≤ 150°C
See Figure 5
P_4.1.12
Maximum Energy Dissipation
Repetitive Pulse
EAR
–
–
550
mJ
8)
VS = 13.5 V
IL = IL(NOM) = 33A
TJ(0) ≤ 105°C
See Figure 5
P_4.1.13
Maximum Energy Dissipation
Repetitive Pulse
EAR
–
–
200
mJ
8)
VS = 13.5 V
IL = 80A
TJ(0) ≤ 105°C
See Figure 5
P_4.1.14
Average Power Dissipation
PTOT
–
–
200
W
TC = -40°C to
150°C
P_4.1.15
Voltage at OUT Pin
VOUT
-64
–
–
V
–
P_4.1.21
TJ
-40
–
150
°C
–
P_4.1.16
Dynamic Temperature Increase ∆TJ
while Switching
–
–
60
K
See Chapter 5.3 P_4.1.17
Storage Temperature
TSTG
-55
–
150
°C
–
VESD(HBM)
-2
–
2
kV
HBM9)
P_4.1.19
kV
9)
P_4.1.20
Power Stage
Temperatures
Junction Temperature
P_4.1.18
ESD Susceptibility
ESD Susceptibility (all Pins)
ESD Susceptibility OUT Pin vs.
GND / VS
1)
2)
3)
4)
5)
6)
7)
8)
9)
VESD(HBM)
-4
–
4
HBM
Not subject to production test, specified by design.
The device is mounted on a FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection.
VS(LD) is setup without DUT connected to the generator per ISO 7637-1.
In accordance to AEC Q100-012, Figure-1 Test Circuit.
In accordance to AEC Q100-012, Chapter 3 conditions. Short circuit conditions deviating from AEC Q100-012 may
influence the specified short circuit cycle number in the data sheet.
The total reverse current (sum of IGND, IIS and -IIN) is limited by -VS(REV)_max and RVS.
TC ≤ 125°C
Setup for EAR equivalent to short circuit test AEC Q100-012: Grade A (exceeding 106 cycles, parameter deviations are
possible)
ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001.
Data Sheet
11
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
General Product Characteristics
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
250
200
IL,max [A]
150
100
50
0
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tpulse [sec]
Figure 4
Maximum Single Pulse Current vs. Pulse Time, TJ ≤ 150°C, TPIN = 85°C
Note:
Above diagram shows the maximum single pulse current that can be maintained by the internal
power stage bond wires for a given pulse time tpulse. The maximum reachable current may be
smaller depending on the device current limitation level. The maximum reachable pulse time may
be shorter due to thermal protection of the device. TPIN is the temperature of pins 5, 6 and 7.
Data Sheet
12
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
General Product Characteristics
5.0
EAS - TJ(0)<150°C
4.5
EAR - TJ(0)<105°C
4.0
EA [J]
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0
20
40
60
80
100
120
140
IL(0) [A]
Figure 5
Maximum Energy Dissipation for Inductive Switch OFF, EA vs. IL at VS = 13.5 V
100%
EAR derating
80%
60%
40%
20%
0%
100
110
120
130
140
150
Tj(0) [°C]
Figure 6
Data Sheet
Maximum Energy Dissipation Repetitive Pulse temperature derating
13
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
General Product Characteristics
4.2
Functional Range
Table 3
Functional Range
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Supply Voltage Range for
Nominal Operation
VS(NOM)
8
–
18
V
–
P_4.2.1
Supply Voltage Range for
Extended Operation
VS(EXT)
5.3
–
28
V
1)
P_4.2.2
VS(EXT)
5.5
–
28
V
1)
Supply Voltage Range for
Extended Operation
Dynamic Undervoltage
Capability
VS(EXT,DYN)
3.22)
–
–
V
1)
Supply Undervoltage
Shutdown
VS(UV)
–
–
4.5
V
1)
VIN ≥ 2.2 V
RL = 270 Ω
VS decreasing
See Figure 19
Slewrate at OUT
|dVDS/dt|
–
–
10
V/µs
1)
|VDS| < 3V
P_4.2.7
See Chapter 5.1.4
Slewrate at OUT
|dVDS/dt|
–
–
0.2
V/µs
1)
VIN ≥ 2.2 V
IL ≤ IL(NOM)
TJ ≤ 25°C
Parameter
deviations
possible
VIN ≥ 2.2 V
IL ≤ IL(NOM)
TJ = 150°C
Parameter
deviations
possible
acc. to ISO 7637
P_4.2.3
P_4.2.4
VS(EXT) < VS < 8 V
P_4.2.8
0 < VDS < 1 V
t < tON(DELAY)
See Chapter 5.1.4
1) Not subject to production test. Specified by design
2) TA = 25°C; RL = 0.5 Ω; pulse duration 6 ms; cranking capability is depending on load and must be verified under
application conditions
Note:
Data Sheet
Within the functional or operating range, the IC operates as described in the circuit description. The
electrical characteristics are specified within the conditions given in the Electrical Characteristics
table.
14
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
General Product Characteristics
4.3
Thermal Resistance
Note:
This thermal data was generated in accordance with JEDEC JESD51 standards. For more
information, go to www.jedec.org.
Table 4
Thermal Resistance
Parameter
Symbol
Junction to Case
RthJC
Junction to Ambient
Junction to Ambient
RthJA(2s2p)
RthJA
Values
Min.
Typ.
Max.
–
–
0.5
–
–
20
70
–
–
Unit
Note or
Test Condition
Number
K/W
1)
P_4.3.1
K/W
1)2)
P_4.3.2
K/W
1)3)
P_4.3.3
1) Not subject to production test, specified by design.
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. TA = 25°C.
Device is dissipating 2 W power.
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; the Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with only one top copper layer 1 × 70 µm. TA = 25°C.
Device is dissipating 2 W power.
Figure 7 is showing the typical thermal impedance of BTS50015-1TAD mounted according to JEDEC JESD512,-5,-7 at natural convection on FR4 1s0p and 2s2p boards.
100
JEDEC 1s0p / 600mm²
JEDEC 1s0p / 300mm²
JEDEC 1s0p / footprint
Zth(JA) [K/W]
10
JEDEC 2s2p
1
0.1
0.01
0.0001
Figure 7
Data Sheet
0.001
0.01
0.1
1
tPULSE [s]
10
100
1000
Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions
15
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
5
Functional Description
5.1
Power Stage
The power stage is built by a N-channel power MOSFET (DMOS) with charge pump.
5.1.1
Output ON-State Resistance
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Page 42
shows the dependencies in terms of temperature and supply voltage, for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 5.3.5.
A HIGH signal (see Chapter 5.2) at the input pin causes the power DMOS to switch ON with a dedicated slope,
which is optimized in terms of EMC emission.
5.1.2
Switching Resistive Loads
Figure 8 shows the typical timing when switching a resistive load. The power stage has a defined switching
behavior. Defined slew rates results in lowest EMC emission at minimum switching losses.
90% VS
50% VS
25% VS
10% VS
dVON/dt
VOUT
VOUT
IOUT
IOUT
dVOFF/dt
tOFF(DELAY)
tON(DELAY)
tON
VIN
VIN
Figure 8
Switching a Resistive Load: Timing
5.1.3
Switching Inductive Loads
5.1.3.1
Output Clamping
tOFF
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device due
to high voltages, there is a Infineon® SMART CLAMPING mechanism implemented that keeps negative output
voltage to a certain level (VS - VDS(CL)). Please refer to Figure 9 and Figure 10 for details. Nevertheless, the
maximum allowed load inductance remains limited.
Data Sheet
16
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
VS
RVS
Smart
Clamp
IN
VDS
LOGIC
IL
VS
OUT
GND
VIN
Figure 9
VOUT
L, RL
Output Clamp
VIN
t
VOUT
VS
t
VS -V DS(CL)
IL
t
Tj
TJ0
t
Figure 10
Switching an Inductance
The BTS50015-1TAD provides Infineon® SMART CLAMPING functionality. To increase the energy capability for
single operation, the clamp voltage VDS(CL) increases with junction temperature TJ and with load current IL.
Refer to Page 44.
5.1.3.2
Maximum Load Inductance
During demagnetization of inductive loads, energy must be dissipated in the BTS50015-1TAD. This energy can
be calculated with following equation:
E = VDS(CL) ×
VS − VDS(CL)
RL × IL
L
×
× ln 1 −
+ IL
RL
RL
VS − VDS(CL)
[
(
) ]
(5.1)
Data Sheet
17
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
Following equation simplifies under the assumption of RL = 0 Ω.
E=
1
VS
× L × I2L × 1 −
2
VS − VDS(CL)
(
)
(5.2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 5 for
the maximum allowed energy dissipation as function of the load current.
5.1.4
Switching Active Loads
When switching generative or electronic loads such as motors or secondary ECUs which have the ability to
feed back voltage disturbances to the OUT pins, special attention is required about the resulting absolute and
dynamic voltage VDS between VS pin and OUT pins.
To maintain device functionality it is required to limit the maximum positive or negative slew rate of
VDS = VS - VOUT below |dVDS/dt| (parameter P_4.2.7) .
In case the device operates at low battery voltage (VS < 8 V) where the load feeds back a positive output voltage
reaching almost VS potential (0 < VDS < 1 V), it has to be ensured that for each activation (turn-on event), where
the device is commanded on by applying VIN(H) at IN pin, a maximum positive or negative slew rate of VDS below
|dVDS/dt| (parameter P_4.2.8) will not be exceeded until tON(DELAY) has expired (maxium 150 µs after turn-on
command).
For loads that generate steady or dynamic voltage at the OUT pins which is higher than voltage at VS pin
please consider Chapter 5.1.5.
Data Sheet
18
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
5.1.5
Inverse Current Capability
In case of inverse current, meaning a voltage VOUT(INV) at the output higher than the supply voltage VS, a current
IL(INV) will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 11). In
case the IN pin is HIGH, the power DMOS is already activated and will continue to remain in ON state during
the inverse event. In case, the input goes from “L” to “H”, the DMOS will be activated even during an inverse
event. Under inverse condition, the device is not overtemperature / overload protected. During inverse mode
at ON the sense pin will provide a leakage current of less or equal to IIS0. Due to the limited speed of INV
comparator, the inverse duration needs to be limited.
VBAT
VS
Gate
driver
VOUT (INV)
I L(INV)
OL
comp.
INV
Comp.
OUT
GND
Figure 11
VOUT
Inverse Current Circuitry
(a) Inverse spike during ON -mode
for short times (< tp,INV ,noFAULT)
VOUT
VS
(c) Inverse spike during ON -mode with short
circuit after leaving Inverse mode
VOUT
VS
VS
t
t
IIS
(b) Inverse spike during ON -mode
for times > tp,INV ,noFAULT
t
> t p, INV ,noFAULT
< t p, INV ,noFAULT
IIS
tOFF (trip )
IIS
IIS (fault )
IIS (fault )
tsIS (ON)
t p, noINV, FAULT
tpIS (FAULT )
t
t
t
Internal Fault -flag set
Figure 12
Data Sheet
Inverse Behavior - Timing Diagram
19
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
5.1.6
PWM Switching
The switching losses during this operation should be properly considered (see following equation):
PTOTAL = (switching_ON_energy + switching_OFF_energy + IL2 × RDS(ON) × tDC) / period
PWM switching application slightly above tIN(RESETDELAY) parameter (see Figure 25) with calculated power
dissipation PTOTAL > PTOT parameter limit causes an effective increase in TJ(TRIP) parameter.
In the event of a fault condition it has to be ensured, that the PWM frequency will not exceed a maximum retry
frequency of fFAULT (parameter P_4.1.9). With this measure the short circuit robustness nRSC1 (parameter
P_4.1.4) can be utilized. Operation at nominal PWM frequency can only be restored, once the fault condition
is overcome.
VIN
VIN_H
V IN_L
t
P
PTOT
t
tDC
Figure 13
Switching in PWM
5.1.7
Advanced switch-off behavior
In order to reduce device stress when switching OFF critical loads and/or critical load conditions, the device
provides an advanced switch off functionality which results in a typically ten times faster switch off behavior.
This fast switch off functionality is triggered by one the following conditions:
•
The device is commanded off by applying VIN(L) at the IN pin. During the switch OFF operation the OUT pins’
voltage in respect to GND pin drops to typically -3 V or below (typically VOUT – VGND ≤ -3 V).
•
The device is commanded on or is already in on-state. The device then detects a short circuit condition
(IL ≥ ICL(0)) and initiates a protective switch off. Please refer to Chapter 5.3.6.1 and Chapter 5.3.6.2 for
details.
Data Sheet
20
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
5.2
Input Pins
5.2.1
Input Circuitry
The input circuitry is compatible with 3.3 V and 5 V microcontrollers or can be directly driven by VS. The
concept of the input pin is to react to voltage threshold. With the Schmitt trigger, the output is either ON or
OFF. Figure 14 shows the electrical equivalent input circuitry.
RVS
VS
IN
IIN
GND
Figure 14
Input Pin Circuitry
5.2.2
Input Pin Voltage
The IN uses a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the
threshold VIN(L) Max and VIN(H) Min. The exact value where ON and OFF take place depends on the process, as well
as the temperature. To avoid cross talk and parasitic turn ON and OFF, an hysteresis is implemented. This
ensures immunity to noise.
5.3
Protection Functions
The device provides embedded protective functions. Integrated protection functions are designed to prevent
the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as
“outside” normal operating range. Protection functions are designed neither for continuous nor for repetitive
operation.
Figure 15 describes the typical functionality of the diagnosis and protection block.
Data Sheet
21
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
VS
VDS
ESD
IN protection
current
sense
VS
RVS
VS(int)
2V
&
0
Driver
IIS (fault)
IS
1
Vb,IS
Overcurrent
1
IL
0
(IL/dkILI S) ± IIS 0
VIS
IIS
OUT
tIN(RESET
DEL AY)
VS -VOUT >3V
&
RIS
IL>ICL
≥1
&
ΤJ > ΤJ(TRIP )
R
Q
S
Q
FAULT
30mV
driver logic
invers e comp arator
GND
Figure 15
Diagram of Diagnosis & Protection Block
5.3.1
Loss of Ground Protection
In case of loss of module or device ground, where the load remains connected to ground, the device protects
itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage
applied at IN pin. It is recommended to use input resistors between the microcontroller and the
BTS50015-1TAD to ensure switching OFF of channel. In case of loss of module or device ground, a current
(IOUT(GND)) can flow out of the DMOS. Figure 16 sketches the situation.
Vbat
VIN
IN
Z(AZ)GND
Z(AZ)I S
VS
OUT
Logic
RIN
Z(ESD-L)
Z(ESD-H)
RVS
IS
GND
RIS
Figure 16
Loss of Ground Protection with External Components
5.3.2
Protection during Loss of Load or Loss of VS Condition
In case of loss of load with charged primary inductances the supply voltage transient has to be limited. It is
recommended to use a Zener diode, a varistor or VS clamping power switches with connected loads in parallel.
The voltage must be limited according to the minimum value of the parameter 6.1.33 indicated in Table 6.
Data Sheet
22
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
In case of loss of VS connection with charged inductive loads, a current path with sufficient load current
capability has to be provided, to demagnetize the charged inductances. It is recommended to protect the
device using a Zener diode together with a diode (VZ1 + VD1 < 16 V), with path (A) or path (B) as shown in
Figure 17.
For a proper restart of the device after loss of VS, the input voltage must be delayed compared to the supply
voltage ramp up. This can be realized by a capacitor between IN and GND (see Figure 30).
For higher clamp voltages, currents through all pins have to be limited according to the maximum ratings.
Please see Figure 17 and Figure 18 for details.
ext. components acc.
to either (A) or (B)
required, not both
VBAT
(A)
RVS
Logic
D1
VS
(B)
OUT
Z1
IN
IS
GND
RIN
D1
RIS
Figure 17
Inductive
Load
Z1
VIN
Loss of VS
VBAT
L/R cable
VS
Logic
RVS
Z2
OUT
IN
RIN
IS
GND
RIS
Load
V IN
Figure 18
Data Sheet
R/L cable
Loss of Load
23
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
5.3.3
Undervoltage Behavior
If the device is already ON and the power supply decreases but remains above the VS(UV), no effect is observed
and the device keeps on working normally (case 1, Figure 19)
If the power supply falls below the VS(UV) but remains above the VS(EXT,DYN), the device turns off, but it turns
automatically on again when the power supply goes above Min. VS(EXT) (case 2, Figure 19).
In case the power supply becomes lower than VS(EXT,DYN), the device turns off and can be switched on again only
after a reset signal at the IN pin, provided that the power supply is higher than Min. VS(EXT) (case 3, Figure 19).
1
2
3
MIN VS(EXT)
VS(UV)
VS(EXT,DYN)
Figure 19
Data Sheet
1
Always ON
2
turn OFF , automatic turn ON when V
3
turn OFF , turn ON with IN reset with V S ≥ MIN V S(EXT )
S≥
MIN V S(EXT )
Undervoltage Behavior
24
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
5.3.4
Overvoltage Protection
In case VS(SC)_max < VS < VDS(CL), the device will switch ON/OFF normally as in the nominal voltage range.
Parameters may deviate from the specified limits and lifetime is reduced. This specially impacts the short
circuit robustness, as well as the maximum energy EAS and EAR the device can handle.
The BTS50015-1TAD provides Infineon® SMART CLAMPING functionality, which suppresses excessive transient
overvoltage by actively clamping the overvoltage across the power stage and the load. This is achieved by
controlling the clamp voltage VDS(CL) depending on the junction temperature TJ and the load current IL (see
Figure 20 for details).
VBA T
IN
Z(A Z)G ND
VS
Smart
Clamp
VIN
Z(A Z)IS
RIN
Z(ESD -L)
Z(ESD-H)
RVS
OUT
IS
GND
RIS
Figure 20
Overvoltage Protection with External Components
5.3.5
Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. To limit the
risk of overtemperature, the device provides Infineon® ReverSave™ functionality. The power in this intrinsic
body diode is limited by turning the DMOS ON. The DMOS resistance is then equal to RDS(REV).
Additionally, the current into the logic has to be limited. The device includes a RVS resistor which limits the
current in the diodes. To avoid overcurrent in the RVS resistor, it is nevertheless recommended to use a RIN
resistor. Please refer to maximum current described in Chapter 4.1.
Figure 21 shows a typical application.
RIS is used to limit the current in the sense transistor, which behaves as a diode.
The recommended typical value for RIN is 4.7 kΩ and for RIS 1 kΩ.
Data Sheet
25
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
-VBA T
IN
Z(A Z)G N D
Reverse ON
IIN
Z(A Z)IS
RIN
Z(ESD-L)
Z(ESD -H)
RVS
Microcontroller
VS
OUT
-IL
IS
DOUT
IRVS
GND
RIS
-IIS
-IGND
GND
Figure 21
Reverse Polarity Protection with External Components
5.3.6
Overload Protection
In case of overload, high inrush current or short circuit to ground, the BTS50015-1TAD offers several protection
mechanisms. Any protective switch OFF latches the output. To restart the device, it is necessary to set
IN = LOW for t > tIN(RESETDELAY). This behavior is known as latch behavior. Figure 25 gives a sketch of the
situation.
5.3.6.1
Activation of the Switch into Short Circuit (Short Circuit Type 1)
When the switch is activated into short circuit, the current will raise until reaching the ICL(0) value. After tOFF(TRIP),
the device will turn OFF and latches until the IN pin is set to low for t > tIN(RESETDELAY). Under certain supply
undervoltage shutdown conditions (for example VS < VS(EXT,DYN)) the latched fault may be reset. For overload
(short circuit or overtemperature), the maximum retry cycle (ffault) under fault condition must be considered.
5.3.6.2
Short Circuit Appearance when the Device is already ON (Short Circuit Type 2)
When the device is in ON state and a short circuit to ground appears at the output (SC2) with an overcurrent
higher than ICL(0) for a time longer than tOFF(TRIP), the device automatically turns OFF and latches until the IN pin
is set to low for t > tIN(RESETDELAY). Under certain supply undervoltage shutdown conditions (for example
VS < VS(EXT,DYN)) the latched fault may be reset.
5.3.6.3
Influence of the battery wire inductance
The wire between the battery and the VS pin includes typically some parasitic inductance.
When the device switches off due to a short circuit event, the energy stored in the line inductance together
with the capacitance (either the capacitor placed at VS pin or the internal capacitance between drain and
source) could trigger an oscillatory behavior on the supply line at short circuit turn-off (see Figure 22), whose
frequency depends on the inductance and capacitance values.
Data Sheet
26
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
ILoad
Short circuit detected
ICL
t
VS
Oscillations of the
VS voltage
VBAT
t
Figure 22
Oscillations at VS pin
The oscillations can pull the VS pin voltage to GND or even below. In some cases this behaviour may cause the
device to reset the fault generated by the overcurrent event. As consequence the device may switch on again,
as soon as the VS reaches an adequate value. The short circuit condition will be detected again and then the
device will switch off. Short circuits and resets of the fault condition may repeatedly occur (see Figure 23).
ILoad
Short circuits detected
ICL
t
Figure 23
Data Sheet
Consecutive short circuit events
27
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
Potential solutions to dampen such oscillation and to achieve an effectively latching overcurrent protection
is a RC snubber network, which needs to be connected between the VS pin and device or module GND.
Figure 24 shows RC snubber circuits for each GND connection. For detailed information see Chapter 7.
IN
VS
IN
OUT
IS
Figure 24
VS
OUT
IS
GND
GND
RC Snubber circuits: between VS pin and module GND; between VS pin and device GND
The design of the most suitable RC snubber network is beyond the scope of this chapter. Nevertheless the
recommendation given in Chapter 7 contribute to effectively dampen the oscillation for typical line
inductance and CVS.
5.3.7
Temperature Limitation in the Power DMOS
The BTS50015-1TAD incorporates an absolute (TJ(TRIP)) temperature sensor. Activation of the sensor will cause
an overheated channel to switch OFF to prevent destruction. The device restarts when the IN pin is set to low
for t > tIN(RESETDELAY) and the temperature has decreased below TJ(TRIP) - ∆TJ(TRIP). Under certain undervoltage
shutdown conditions (for example below VS(EXT,DYN)) the latched fault might be reset.
Data Sheet
28
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
tIN(RESETDELAY)
IN
IL
tOFF(TRIP)
t
tOFF(TRIP)
ICL(1)
ICL(0)
t
TJ
TJ(TRIP)
TA
t
IIS
IIS(FAULT)
Figure 25
Input disable
IIS(F AULT) disable
Overtemperature
IIS (FAULT) disable
Input disable
Short Circuit 1
Input disable
IIS (FAULT) disable
Short Circuit 2
start
0
t
Overload Protection
The current sense exact signal timing can be found in the Chapter 5.4. It is represented here only for device’s
behavior understanding.
In order to allow the device to detect overtemperature conditions and react effectively, it is recommended to
limit the power dissipation below PTOT (parameter 4.1.15).
5.4
Diagnostic Functions
For diagnosis purposes, the BTS50015-1TAD provides a combination of digital and analog signal at pin IS.
5.4.1
IS Pin
The BTS50015-1TAD provides an enhanced current sense signal called IIS at pin IS. As long as no “hard” failure
mode occurs (short circuit to GND / overcurrent / overtemperature) and the condition VIS ≤ VOUT - 5 V is fulfilled,
a proportional signal to the load current is provided. The complete IS pin and diagnostic mechanism is
described in Figure 26. The accuracy of the sense current depends on temperature and load current. In case
of failure, a fixed IIS(FAULT) is provided. In order to enable the fault current reporting, the condition VS - VOUT > 2 V
must be fulfilled. In order to get the fault current in the specified range, the condition VS - VIS ≥ 5 V must be
fulfilled.
Data Sheet
29
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
Vs
RVS
RSenseMos
VS-VOUT>2V
IIS(FAULT)
FAULT
ZIS(AZ)
( IL / dkILIS ) ± IIS(0)
&
1
IS
0
Figure 26
Diagnostic Block Diagram
5.4.2
SENSE Signal in Different Operation Modes
Table 5
Sense Signal, Function of Operation Mode1)
Operation mode
Input Level
Output Level VOUT
Diagnostic Output (IS)2)
Normal operation
LOW (OFF)
~ GND
IIS(OFF)
Short circuit to GND
GND
IIS(OFF)
Overtemperature
~ GND
IIS(OFF)
Short circuit to VS
VS
IIS(OFF)
Open Load
Z
IIS(OFF)
Inverse current
> VS
IIS(OFF)
~ VS
IIS = (IL / dkILIS) ± IIS0
Overcurrent condition
< VS
IIS = (IL / dkILIS) ± IIS0 or IIS(FAULT)
Short circuit to GND
GND
IIS(FAULT)
Overtemperature (after the event)
~ GND
IIS(FAULT)
Short circuit to VS
VS
IIS < IL / dkILIS ± IIS0
Open Load
VS
IIS0
Inverse current
> VS
<IIS0
Normal operation
HIGH (ON)
1) Z = High Impedance
2) See Chapter 5.4.3 for Current Sense Range and Improved Current Sense Accuracy.
5.4.3
SENSE Signal in the Nominal Current Range
Figure 27 and Figure 28 show the current sense as function of the load current in the power DMOS. Usually, a
pull-down resistor RIS is connected to the current sense pin IS. A typical value is 1 kΩ. The dotted curve
represents the typical sense current, assuming a typical dkILIS factor value. The range between the two solid
curves shows the sense accuracy range that the device is able to provide, at a defined current.
IIS =
Data Sheet
IL
+ I with (IIS ≥ 0)
dkILIS IS0
30
(5.3)
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
where the definition of dkILIS is:
dkILIS =
IL4 − IL1
IIS4 − IIS1
(5.4)
and the definition of IIS0 is:
IIS0 = IIS1 −
IL1
dkILIS
(5.5)
3.5
dkILIS(min)
3
dkILIS(typ)
2.5
dkILIS(max)
IIS [mA]
2
1.5
1
0.5
IIS0(max)
0
0
20
40
IL1
IL2
60
80
IL3
100
120
140
160
IL4
IL[A]
Figure 27
Current Sense for Nominal and Overload Condition
5.4.3.1
SENSE Signal Variation and Calibration
In some applications, an enhanced accuracy is required around the device nominal current range IL(NOM). To
achieve this accuracy requirement, a calibration on the application is possible. After two point calibration, the
BTS50015-1TAD will have a limited IIS value spread at different load currents and temperature conditions. The
IIS variation can be described with the parameters ∆(dkILIS(cal)) and the ∆IIS0(cal). The blue solid line in Figure 28
is the current sense ratio after the two point calibration at a given temperature. The slope of this line is defined
as follows:
1
dkILIS(cal)
=
IIS(cal)2 − IIS(cal)1
IL(cal)2 − IL(cal)1
(5.6)
Data Sheet
31
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
The offset is defined as follows:
IIS0(cal) = IIS(cal)1 −
IL(cal)1
IL(cal)2
= IIS(cal)2 −
dkILIS(cal)
dkILIS(cal)
(5.7)
The bluish area in Figure 28 is the range where the current sense ratio can vary across temperature and load
current after performing the calibration. The accuracy of the load current sensing is improved and, given a
sense current value IIS (measured in the application), the load current can be calculated as follow, using the
absolute value for ∆(dkILIS(cal)) instead of % values:
(
) (
IL = dkILIS(cal) × 1 + ∆(dkILIS(cal)) × IIS − IIS0(cal) − ∆IIS0(cal)
)
(5.8)
where dkILIS(cal) is the current sense ratio measured after two-points calibration (defined in Equation (5.6)),
IIS0(cal) is the current sense offset (calculated after two points calibration, see Equation (5.7)), and ∆IIS0(cal) is the
additional variation of the individual offset over life time and temperature. For a calibration at 25°C ∆IIS0(cal)
varies over temperature and life time for all positive ∆IIS0(cal) within the differences of the temperature
dependent Max. limits. All negative ∆IIS0(cal) vary within the differences of the temperature dependent Min.
limits.
For positive IIS0(cal) values (IIS0(cal) > 0):
Max IIS0 (@TJ = 150°C) − Max IIS0 (@TJ = 25°C) ≤ ∆IIS0(cal) ≤ Max IIS0 (@TJ = -40°C) − Max IIS0 (@TJ = 25°C)
(5.9)
For negative IIS0(cal) values (IIS0(cal) < 0):
Min IIS0 (@TJ = 150°C) − Min IIS0 (@TJ = 25°C) ≥ ∆IIS0(cal) ≥ Min IIS0 (@TJ = -40°C) − Min IIS0 (@TJ = 25°C)
(5.10)
Equation (5.8) actually provides four solutions for load current, considering that ∆(dkILIS(cal)) and ∆IIS0(cal) can
be both positive and negative. The load current IL for any sense current IIS will spread between a minimum IL
value resulting from the combination of lowest ∆(dkILIS(cal)) value and highest ∆IIS0(cal) and a maximum IL value
resulting from the combination of highest ∆(dkILIS(cal)) value and lowest ∆IIS0(cal).
Data Sheet
32
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
IIS
1/dkILIS(min)
ΔdkILIS(cal)
1/dkILIS(cal)
IIS(cal)2
ΔdkILIS(cal)
1/dkILIS(max)
IIS
IIS(cal)1
ΔIIS0(cal)
IIS0(cal)
ΔIIS0(cal)
Figure 28
Data Sheet
Min IL
Typ IL
IL(cal)1
Max IL
IL(cal)2
IL
Improved Current Sense Accuracy after 2-Point Calibration
33
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Functional Description
5.4.3.2
SENSE Signal Timing
Figure 29 shows the timing during settling and disabling of the sense.
VIN
tOF F<tIN (RESETD EL AY) tOF F>tIN (RESETD EL AY)
Short /
Overtemp.
t
VOUT
t
IIS
IIS (fault)t
IIS 1.. 4
latch
no
reset
VIN
IL
VIN
t
tO N
Short
circuit
90% of
IL s tat ic
t
90% of
IS s tat ic
t
ts IS(O N)
t
t
VOUT
VOUT
IIS
t
reset
3V
t
IIS
tp IS(O N)_9 0
IIS (fault)
IIS 1.. 4
ts IS(L C)
t
tp IS(FAU L T)
Figure 29
Fault Acknowledgement
5.4.3.3
SENSE Signal in Case of Short Circuit to VS
t
In case of a short circuit between OUT and VS, a major part of the load current will flow through the short
circuit. As a result, a lower current compared to the nominal operation will flow through the DMOS of the
BTS50015-1TAD, which can be recognized at the current sense signal.
5.4.3.4
SENSE Signal in Case of Over Load
An over load condition is defined by a current flowing out of the DMOS reaching the current over load ICL or the
junction temperature reaches the thermal shutdown temperature TJ(TRIP). Please refer to Chapter 5.3.6 for
details. In that case, the SENSE signal will be in the range of IIS(FAULT) when the IN pin stays HIGH.
This is a device with latch functionality. The state of the device will remain and the sense signal will remain on
IIS(FAULT) until a reset signal comes from the IN pin. For example, when a thermal shutdown occurs, even when
the over temperature condition has disappeared, the DMOS can only be reactivated when a reset signal is sent
to the IN pin.
Data Sheet
34
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
6
Electrical Characteristics BTS50015-1TAD
6.1
Electrical Characteristics Table
Table 6
Electrical Characteristics: BTS50015-1TAD
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
Operating Current (Channel IGND(ACTIVE)
Active)
–
1.2
3
mA
VIN ≥ 2.2 V
P_6.1.1
Standby Current for Whole
Device with Load
IVS(OFF)
–
7
18
µA
1)
VS = 18 V
VOUT = 0 V
VIN ≤ 0.8 V
TJ ≤ 85°C
See Page 41
P_6.1.2
Maximum Standby Current
for Whole Device with Load
IVS(OFF)
–
25
120
µA
VS = 18 V
VOUT = 0 V
VIN ≤ 0.8 V
TJ ≤ 150°C
See Page 41
P_6.1.3
ON-State Resistance in
Forward Condition
RDS(ON)
–
2.1
3
mΩ
IL = 135 A
VIN ≥ 2.2 V
TJ = 150°C
See Page 42
P_6.1.4
ON-State Resistance in
Forward Condition, Low
Battery Voltage
RDS(ON)
–
3.2
5
mΩ
IL = 20 A
VIN ≥ 2.2 V
VS = 5.5 V
TJ = 150°C
See Page 42
P_6.1.5
ON-State Resistance in
Forward Condition
RDS(ON)
–
1.5
–
mΩ
1)
IL = 135 A
VIN ≥ 2.2 V
TJ = 25°C
See Page 42
P_6.1.6
ON-State Resistance in
Inverse Condition
RDS(INV)
–
2.1
3.1
mΩ
IL = -135 A
VIN ≥ 2.2 V
TJ = 150°C
See Figure 11
P_6.1.7
ON-State Resistance in
Inverse Condition
RDS(INV)
–
1.5
–
mΩ
1)
P_6.1.8
Operating and Standby Currents
Power Stage
Data Sheet
35
IL = -135 A
VIN ≥ 2.2 V
TJ = 25°C
See Figure 11
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Table 6
Electrical Characteristics: BTS50015-1TAD (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Nominal Load Current
IL(NOM)
33
39
–
A
TA = 85°C2)
TJ ≤ 150°C
P_6.1.9
Drain to Source Smart
Clamp Voltage VDS(CL) = VS VOUT
VDS(CL)
28
–
46
V
IDS = 50 mA
See Page 44
P_6.1.11
Output Leakage Current
IL(OFF)
–
5
15
µA
1)
VIN ≤ 0.8 V
VOUT = 0 V
TJ ≤ 85°C
P_6.1.13
Output Leakage Current
IL(OFF)
–
20
100
µA
VIN ≤ 0.8 V
VOUT = 0 V
TJ = 150°C
P_6.1.14
Turn ON Slew Rate
VOUT = 25% to 50% VS
dVON/dt
0.05
0.23
0.5
V/µs
P_6.1.15
Turn OFF Slew Rate
VOUT = 50% to 25% VS
-dVOFF/dt
0.05
0.25
0.55
V/µs
Turn ON Time to
VOUT = 90% VS
tON
–
220
700
µs
RL = 0.5 Ω
VS = 13.5 V
See Figure 8
See Page 42
See Page 43
Turn OFF Time to
VOUT = 10% VS
tOFF
–
300
700
µs
P_6.1.18
Turn ON Time to
VOUT = 10% VS
tON(DELAY)
–
80
150
µs
P_6.1.19
Turn OFF Time to
VOUT = 90% VS
tOFF(DELAY)
–
230
500
µs
P_6.1.20
Switch ON Energy
EON
–
7
–
mJ
1)
RL = 0.5 Ω
VS = 13.5 V
See Page 43
P_6.1.21
Switch OFF Energy
EOFF
–
5
–
mJ
1)
P_6.1.22
Data Sheet
36
RL = 0.5 Ω
VS = 13.5 V
See Page 43
P_6.1.16
P_6.1.17
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Table 6
Electrical Characteristics: BTS50015-1TAD (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
See Page 44
P_6.1.23
Input Pin
LOW Level Input Voltage
VIN(L)
–
–
0.8
V
HIGH Level Input Voltage
VIN(H)
2.2
–
–
V
See Page 44
P_6.1.24
P_6.1.25
Input Voltage Hysteresis
VIN(HYS)
–
200
–
mV
1)
LOW Level Input Current
IIN(L)
8
–
–
µA
VIN = 0.8 V
P_6.1.26
HIGH Level Input Current
IIN(H)
–
–
80
µA
VIN ≥ 2.2 V
P_6.1.27
Output Leakage Current
while Module GND
Disconnected
IOUT(GND_M)
0
20
100
µA
1)3)
VS = 18 V
P_6.1.28
VOUT = 0 V
IS & IN pins open
GND pin open
TJ = 150°C
See Figure 16
Output Leakage Current
while Device GND
Disconnected
IOUT(GND)
0
20
100
µA
VS = 18 V
GND pin open
VIN ≥ 2.2 V
1 kΩ pull down
from IS to GND
4.7 kΩ to IN pin
TJ = 150°C
See Figure 16
See Page 45
P_6.1.29
Protection: Loss of Ground
Protection: Reverse Polarity
ON-State Resistance in
Reverse Polarity
RDS(REV)
–
–
3.2
mΩ
VS = 0 V
VGND = VIN = 16 V
IL = -20 A
TJ = 150°C
See Figure 21
P_6.1.30
ON-State Resistance in
Reverse Polarity
RDS(REV)
–
1.5
–
mΩ
1)
VS = 0 V
VGND = VIN = 16 V
IL = -20 A
TJ = 25°C
See Page 45
P_6.1.31
Integrated Resistor
RVS
–
60
90
Ω
TJ = 25°C
P_6.1.32
Data Sheet
37
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Table 6
Electrical Characteristics: BTS50015-1TAD (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Protection: Overvoltage
Overvoltage Protection
VS to GND Pin
VS(AZ)_GND
64
70
80
V
See Figure 20
See Page 44
P_6.1.33
Overvoltage Protection
VS to IS Pin
VS(AZ)_IS
64
70
80
V
GND and IN pin
open
See Figure 20
See Page 44
P_6.1.34
Current Trip Detection Level ICL(0)
135
175
–
A
VS = 13.5 V, static P_6.1.35
TJ = 150°C
See Figure 25
ICL(0)
145
185
–
A
VS = 13.5 V, static
TJ = -40 ... 25°C
See Figure 25
Current Trip Maximum Level ICL(1)
–
190
250
A
1)
VS = 13.5 V
dIL/dt = 1 A/µs
See Page 45
Overload Shutdown Delay
Time
tOFF(TRIP)
–
12
–
µs
1)
P_6.1.36
Thermal Shutdown
Temperature
TJ(TRIP)
150
1701)
2001)
°C
See Figure 25
P_6.1.37
Thermal Shutdown
Hysteresis
∆TJ(TRIP)
–
10
–
K
1)
P_6.1.38
Sense Signal Current in Fault IIS(FAULT)
Condition
3.5
6
8
mA
1)
VIN = 4.5 V
VS - VIS ≥ 5 V
P_6.1.40
Sense Signal Saturation
Current
3.5
6
8
mA
1)
P_6.1.57
Protection: Overload
Diagnostic Function: Sense Pin
Data Sheet
IIS(LIM)
38
VIN = 4.5 V
VS - VIS ≥ 5 V
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Table 6
Electrical Characteristics: BTS50015-1TAD (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Test Condition
Number
Diagnostic Function: Current Sense Ratio Signal in the Nominal Area, Stable Current Load Condition
Current Sense Differential
Ratio
dkILIS
45300
51500
57700
–
IL4 = 135 A
IL1 = 20 A
See
Equation (5.4)
P_6.1.41
Calculated Sense Offset
Current
IL = IL0 = 0 A
IIS0
-165
15
190
µA
4)
VIN ≥ 2.2 V
VS - VIS ≥ 5 V
TJ = -40°C
See Figure 27
P_6.1.42
IIS0
-115
5
125
µA
1)4)
VIN ≥ 2.2 V
VS - VIS ≥ 5 V
TJ = 25°C
See Figure 27
IIS0
-65
-5
60
µA
4)
VIN ≥ 2.2 V
VS - VIS ≥ 5 V
TJ = 150°C
See Figure 27
Sense Current
IL = IL1 = 20 A
IIS1
180
390
635
µA
1)
Sense Current
IL = IL2 = 40 A
IIS2
525
780
1075
µA
Sense Current
IL = IL3 = 80 A
IIS3
1.22
1.56
1.96
mA
Sense Current
IL = IL4 = 135 A
IIS4
2.17
2.62
3.17
mA
-5
0
5
%
1)
P_6.1.47
Current Sense Ratio Spread ∆(dkILIS(cal))
over Temperature and
Repetitive Pulse Operation
after 2-Points Calibration
VIN ≥ 2.2 V
VS - VIS ≥ 5 V
See Figure 27
1)
VIN ≥ 2.2 V
VS - VIS ≥ 5 V
See Figure 27
See Figure 28
P_6.1.43
P_6.1.44
P_6.1.45
P_6.1.46
Diagnostic Function: Diagnostic Timing in Normal Condition
Current Sense Propagation tpIS(ON)_90
Time until 90% of IIS Stable
After Positive Input Slope on
IN Pin
0
–
700
µs
VIN ≥ 2.2 V
VS = 13.5 V
RL = 0.5 Ω
See Figure 29
P_6.1.48
Current Sense Settling Time tsIS(ON)
to IIS Stable after Positive
Input Slope on IN Pin
–
–
3000
µs
VIN ≥ 2.2 V
VS = 13.5 V
RL = 0.5 Ω
See Figure 29
P_6.1.49
IIS Leakage Current when IN IIS(OFF)
Disabled
0
0.05
1
µA
VIN ≤ 0.8 V
RIS = 1k Ω
P_6.1.50
Data Sheet
39
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Table 6
Electrical Characteristics: BTS50015-1TAD (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Current Sense Settling Time tsIS(LC)
after Load Change
Values
Min.
Typ.
Max.
–
50
–
Unit
Note or
Test Condition
Number
µs
1)
P_6.1.51
VIN ≥ 2.2 V
dIL/dt = 0.4 A/µs
Diagnostic Function: Diagnostic Timing in Overload Condition
Current Sense Propagation
Time for Short Circuit
Detection
tpIS(FAULT)
tIN(RESETDELAY)
Delay Time to Reset Fault
Signal at IS Pin after Turning
OFF VIN
0
–
100
µs
1)
250
1000
1500
µs
1)
P_6.1.53
VIN ≥ 2.2 V
P_6.1.52
from VOUT = VS 3 V to IIS(FAULT)_min
See Figure 29
Timing: Inverse Behavior
Propagation Time From
VOUT > VS to Fault Disable
tp,INV,noFAULT
–
4
–
µs
1)
P_6.1.55
Propagation Time from
VOUT < VS to Fault Enable
tp,noINV,FAULT
–
10
–
µs
1)
P_6.1.56
1)
2)
3)
4)
See Figure 12
See Figure 12
Not subject to production test, specified by design.
Value is calculated from the parameters typ. RthJA(2s2p), with 65 K temperature increase, typ. and max. RDS(ON).
All pins are disconnected except VS and OUT.
Value is calculated from the parameters dkILIS and IIS1.
Data Sheet
40
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
6.2
Typical Performance Characteristics
Standby Current for Whole Device with Load,
IVS(OFF) = f(VS, TJ)
Standby Current for Whole Device with Load,
IVS(OFF) = f(TJ) at VS = 13.5 V
40
30
-40°C
0°C
35
25°C
25
85°C
30
100°C
20
150°C
25
IVS(OFF) [µA]
I VS(OFF) [µA]
125°C
20
15
15
10
10
5
5
0
0
10
20
0
30
-40 -20
0
20
V S [V]
60
80 100 120 140 160
TJ [oC]
GND Leakage Current
IGND(OFF) = f(VS, TJ)
GND Leakage Current
IGND(OFF) = f(TJ) at VS = 13.5 V
4
4
3.5
3.5
3
3
2.5
2.5
I GND(OFF) [µA]
IGND(OFF) [µA]
40
2
1.5
2
1.5
-40°C
1
0°C
1
25°C
85°C
100°C
0.5
0.5
125°C
0
150°C
0
0
5
10
15
20
25
-40 -20
30
0
20 40 60 80 100 120 140 160
o
T J [ C]
V S [V]
Data Sheet
41
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
ON State Resistance
RDS(ON) = f(VS, TJ), IL = 20 A ... 135 A
ON State Resistance
RDS(ON) = f(TJ),VS = 13.5 V, IL = 20 A ... 135 A
2.5
5
4.5
-40°C
25°C
4
2
150°C
R DS(ON) [mΩ]
RDS(ON) [mΩ]
3.5
3
2.5
2
1.5
1
1.5
0.5
1
0.5
0
0
5
7
9
11
13
15
-40 -20
0
20 40 60 80 100 120 140 160
V S [V]
T J [°C]
Turn ON Time
tON = f(VS, TJ), RL = 0.5 Ω
Turn OFF Time
tOFF = f(VS, TJ), RL = 0.5 Ω
1200
1200
-40°C
25°C
1000
-40°C
25°C
1000
150°C
150°C
800
tOFF [µs]
tON [µs]
800
600
600
400
400
200
200
0
0
0
Data Sheet
5
10
15
VS [V]
20
25
30
42
0
5
10
15
VS [V]
20
25
30
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Slew Rate at Turn ON
dVON / t = f(VS, TJ), RL = 0.5 Ω
0.7
0.7
-40°C
0.6
150°C
25°C
150°C
0.5
dVOFF/dt [V/µs]
0.4
0.3
0.2
0.4
0.3
0.2
0.1
0.1
0
-40°C
0.6
25°C
0.5
dVON/dt [V/µs]
Slew Rate at Turn OFF
dVOFF / t = f(VS, TJ), RL = 0.5 Ω
0
5
10
15
20
25
0
30
0
5
10
Switch ON Energy
EON = f(VS, TJ), RL = 0.5 Ω
20
25
30
20
25
30
Switch OFF Energy
EOFF = f(VS, TJ), RL = 0.5 Ω
50
40
-40°C
-40°C
35
45
25°C
25°C
40
150°C
30
150°C
35
EOFF [mJ]
25
EON [mJ]
15
VS [V]
VS [V]
20
15
30
25
20
15
10
10
5
5
0
0
0
5
10
15
20
25
0
30
VS [V]
Data Sheet
5
10
15
VS [V]
43
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Drain to Source Clamp Voltage
VDS(CL) = f(TJ), IL = 50 mA
Overvoltage Protection
VS(AZ)_GND = f(TJ), VS(AZ)_IS = f(TJ)
44
80
78
42
V S(AZ)_GND, V S(AZ)_IS [V]
76
V DS(CL) [V]
40
38
36
34
74
72
70
68
66
64
32
62
30
60
-40 -20
0
20 40
-40 -20
60 80 100 120 140 160
0
20 40 60 80 100 120 140 160
T J [°C]
T J [°C]
HIGH Level Input Voltage
VIN(H) = f(VS, TJ)
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
V IN(H) [V]
V IN(L) [V]
LOW Level Input Voltage
VIN(L) = f(VS, TJ)
1
0.8
0.6
0.8
0.6
-40°C
-40°C
25°C
0.4
1
25°C
0.4
150°C
150°C
0.2
0.2
0
0
0
5
10
15
20
25
30
0
V S [V]
Data Sheet
5
10
15
20
25
30
V S [V]
44
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Output Leakage Current while Device GND
Disconnected, IOUT(GND) = f(VS, TJ)
Overload Detection Current
ICL(1) = f(dIL/dt, TJ), VS = 13.5 V
25
400
350
-40°C
20
25°C
300
15
ICL(1) [A]
IOUT(GND) [µA]
150°C
10
250
200
-40°C
25°C
150°C
150
100
5
50
0
0
0
5
10
15
20
25
0
30
2
4
Resistance in ReverSave™
RDS(REV) = f(VS, TJ), IL = -120 A
12
8
6
10
8
6
4
4
2
2
8
10
12
14
16
0
18
4
6
8
10
12
14
16
18
VS [V]
VS [V]
Data Sheet
25°C
150°C
150°C
10
-40°C
12
25°C
RDS(REV) [mΩ]
RDS(REV) [mΩ]
14
-40°C
6
10
Resistance in ReverSave™
RDS(REV) = f(VS, TJ), IL = -20 A
14
4
8
dI L/dt [A/µs]
V S [V]
0
6
45
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Electrical Characteristics BTS50015-1TAD
Input Current
IIN = f(TJ); VS = 13.5 V; VIN(L) = 0.8V; VIN(H) = 5.0 V
Input Current
IIN = f(VIN, TJ); VS = 13.5 V
60
60
IIN(L)
50
50
IIN(H)
40
IIN [µA]
I IN(H)
[µA]
I IN [µA]
40
30
20
30
-40°C
20
25°C
150°C
10
10
0
-40 -20
0
20
40
60
80
0
100 120 140 160
0
TJ [°C]
2
4
6
8
10
12
14
VIN [V]
GND current
IGND(ACTIVE) = f(VS, TJ); VIN = 2.2 V
1,6
1,4
1,2
IGND(ACTIVE) [mA]
1,0
0,8
0,6
-40°C
0,4
25°C
150°C
0,2
0,0
4
8
12
16
20
24
28
V S [V]
Data Sheet
46
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Application Information
7
Application Information
Note:
The following information is given as a hint for the implementation of the device only and shall not
be regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
R/L cable
(A)
ZA
CVS
VDD
ext. components acc.
to either (A) or (B)
required, not both
RS
ZB
CS
VS
VDD
GPIO
Micro controller
A/D IN
RIN
IN
RIS_PROT
IS
OUT
COUT
R/L cable
CIN
VSS
GND
RIS
CSENSE
(B)
RGND
Load
Figure 30
Application Diagram with BTS50015-1TAD
Note:
This is a very simplified example of an application circuit. The function must be verified in the real
application.
Data Sheet
47
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Application Information
Table 7
Bill of material
Reference
Value
Purpose
RGND
4Ω
Resistor of RC snubber network Option B, damps possible oscillation of the
VS pin voltage in combination with CVS
RIN
4.7 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
allows BTS50015-1TAD channels OFF during loss of ground
RIS
1 kΩ
Sense resistor
RIS_PROT
4.7 kΩ
Protection of the microcontroller during overvoltage
Protection of the BTS50015-1TAD during reverse polarity
RS
3.9 Ω
Resistor of RC snubber network Option A, damps possible oscillation of the
VS pin voltage with improved EMC behavior
Za
Zener diode
Protection of the BTS50015-1TAD during loss of load with primary charged
inductance, see Chapter 5.3.2
Zb
Zener diode
Protection of the BTS50015-1TAD during loss of battery or against huge
negative pulse at OUT (like ISO pulse 1), see Chapter 5.3.2
CSENSE
10 nF
Sense signal filtering
CVS
100 nF
Improved EMC behavior (in layout, pls. place close to the pins)
COUT
10 nF
Improved EMC behavior (in layout, pls. place close to the pins)
CIN
150 nF
BTS50015-1TAD tends to latched switch-off due to short negative
transients on supply pin; CIN automatically resets the device
CS
4.7 µF
Capacitor of RC snubber network Option A, damps possible oscillation of
the VS pin voltage with improved EMC behavior
7.1
Further Application Information
•
Please contact us for information regarding the pin FMEA
•
For further information you may contact http://www.infineon.com/
Data Sheet
48
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Package Outlines
8
Package Outlines
4.4
10 ±0.2
1.27 ±0.1
0...0.3
B
0.05
4.7 ±0.5
2.7 ±0.3
2.4
0.1
1.3 ±0.3
7.55 1)
1 ±0.3
9.25 ±0.2
(15)
A
8.5 1)
0...0.15
6 x 0.6 ±0.1
6 x 1.27
0.5 ±0.1
0.25
M
A B
8˚ MAX.
1) Typical
Metal surface min. X = 7.25, Y = 6.9
All metal surfaces tin plated, except area of cut.
Figure 31
0.1 B
GPT09063
Dimensions in mm
PG-TO-263-7-8 (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
49
Dimensions in mm
Rev. 1.0
2016-02-26
BTS50015-1TAD
Smart High-Side Power Switch
Revision History
9
Revision History
Revision
Date
Changes
1.0
2016-02-26
Data Sheet created.
Data Sheet
50
Rev. 1.0
2016-02-26
Please read the Important Notice and Warnings at the end of this document
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2016-02-26
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.